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Abstract—We consider the problem of estimating the parameters
of a vector autoregressive (VAR) process from low-dimensional
random projections of the observations. This setting covers the
cases where we take compressive measurements of the observations
or have limits in the data acquisition process associated with
the measurement system and are only able to subsample. We
first present fundamental bounds on the convergence of any
estimator for the covariance or state-transition matrices with and
without considering structural constraints of sparsity and low-
rankness. We then construct an estimator for these matrices or
the parameters of the VAR process and show that it is order
optimal.

Index Terms—system identification, covariance estimation, au-
toregressive processes, high-dimensional analysis, robust estima-
tion, minimax theory.

I. INTRODUCTION

A Vector Autoregressive (VAR) process is characterized by a
finite set of parameters that describe the linear relation between
present and future values of a state vector xt ∈ Rn as

xt+1 = Axt + wt wt
iid∼ N (0, Qw), 1 ≤ t ≤ T, (1)

where A is the state-transition matrix. VAR processes have
been used as models in finance, econometrics, neuroscience,and
bioinformatics among other areas [1], [2] because of their
expressive and predictive power. A central problem in these
applications is to identify the state-transition matrix A or
equivalently the stationary covariance matrices Σk = E[xtx

ᵀ
t+k]

as quickly as possible with limited samples. This is because
measurement systems attempting to capture such models, e.g.
in wireless sensor networks, may have communication, energy,
or hardware constraints in collecting or communicating mea-
surements to a central fusion center. This is especially relevant
if we assume the measurements from a large number of sensors
arise from a high-dimensional VAR process. One strategy to
deal with this constraint is to sample measurements or take
compressive measurements of the state vector xt. This sampling
or compression procedure may or may not be under our control.
These limitations on data acquisition motivate identifying or
making inferences from a system with partial or compressed
observations. The problem of estimating the covariance matrix
is also of fundamental importance in statistics with applications
in principal component analysis, classification and portfolio
selection [3].
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We assume that we have access to m-dimensional projections
(m � n) of the state vector xt, which models the scenario
where we have access to a few components or a few compres-
sive measurements. Our goal is to use them to estimate the
stationary covariance matrix and the transition matrix A.
A. Contribution

We first analyse the fundamental rates of convergence
of any estimator of the covariance and transition matrices
from m−dimensional projections. We show that if T =
o(n3/(m2ε2)), then for any estimator, there exists processes for
which the error in the estimate (of A or Σ0) exceeds ε with non-
negligible probability. This implies that the minimum number
of time samples needed to get within a given estimation error
scales with the dimension n and inverse quadratically with the
number of dimensions we see at each point in time. We can
remove this dependence on dimension by imposing a structural
constraint of sparsity or low-rankness on the matrix we are
estimating to reduce the number of minimum time samples
required for estimation. Finally, we construct estimators of
these matrices and present refinements when we have structural
assumptions. We show that the accuracy of these estimators is
optimal and matches the fundamental bound up to logarithmic
factors in the order of n, T , m, and constants describing
structural constraints. This provides an upper bound guarantee
on the number of time samples required for a given estimation
accuracy. We note that these results extend to the case with iid
observations that is widely studied in the literature by taking
A = 0. Proofs are omitted and can be found in [4].
B. Related Work

Subsampling measurements is a common approach to dealing
with high-dimensional systems [5]. The use of compressive
measurements (or low-dimensional projections) was introduced
in [6] to estimate the subspace of iid, bounded observations.
We use this compressive measurement approach to estimate
parameters of our VAR process.

The estimation of parameters of VAR processes with com-
plete observations is well studied: a least-squares procedure
for estimating A was first proposed in [7]. These results were
obtained in the regime where the number of time samples T
is larger than the dimension n of the process. When n is
larger than T , structural assumptions on A are required for
identifiability. When A is sparse, many estimation methods have
been proposed, including a 2-stage approach for fitting sparse
models [8], lasso regularization [9] and a Dantzig estimator
for weakly sparse matrix estimation [10]. In [11], the authors



consider the question of sparse transition matrix estimation for
a continuous time VAR process. The work [12] showed how
spectral density functions influence the rate of convergence.
The case where A is low-rank and measurements are fully
available was considered in [13], [14]. We recover bounds of
[10], [14] in the full observation case in terms of scaling in
n, T and structural constraint constants. Asymptotic analysis
of covariance estimation for the simpler scalar autoregressive
process with sampling is presented in [15]. Works [16], [17]
considered the problem of VAR system identification from
subsampled observations, which included multiplicative and
additive noise. The estimators were used in joint system-state
identification and validated via simulation.

We obtain estimates of the covariance matrix of the ob-
servations in this work. With complete observations, it has
been shown that the empirical covariance is an asymptoti-
cally consistent estimator only in the low dimensional regime
(n � T ) [18]. Sparse covariance matrix estimation from iid
observations was considered in [19], [20]. We recover the results
of [19] in the case of independent Gaussian samples (A = 0)
with full observations (m = n) in terms of scaling with n,
T and structural constraint constants. We obtain fundamental
bounds for sparse covariance matrices by following principles
laid out in [21] and match these for the full observation case.
Structured covariance estimation with full observations has
been considered in stationary processes [3] but not for VAR
processes. Low rank covariance matrix estimation with missing
iid data was treated in [22] and lower bounds on covariance
estimation error were provided.

This work extends [16], [17] by considering the case of com-
pressive measurements. This paper also extends the structured
covariance results to VAR processes observed with compressive
measurements. Finally, fundamental performance bounds are
provided that follow the principles laid out in [22], [23], [21].

The rest of this paper is organized as follows: the problem
description is provided in Section II. In Section III, minimax
lower bounds on the rates of convergence are presented for
any estimator of Σk and A. Section IV presents an achievable
estimator along with performance guarantees.

Notation Operator norm is denoted by ‖ · ‖2, Frobenius
norm by ‖ · ‖F , maximum element maxi,j |A|ij by ‖A‖max,
nuclear norm by ‖ · ‖∗, the `1 to `1 norm is denoted by ‖A‖1
which is also maxj

∑
i |Aij |, the `∞ to `∞ norm which is also

‖Aᵀ‖1 is denoted by ‖A‖∞ . The zero matrix or vector is
denoted by 0 and the subscript when provided denotes size.
Term 1(·) evaluates to one if the condition in the parenthesis
is true and zero otherwise. The indicator vector is ei where
(ei)j = 1(i = j). Kronecker product is ⊗ and ◦ denotes
the Schur or elementwise product. Consider functions fn, gn of
variables n = (n1, n2, . . . , nm). fn = O(gn) denotes that there
exists constant c > 0 independent of n such that fn ≤ cgn.
Similarly fn = Ω(gn) implies there exists constant c > 0 such
that fn > cgn. The set [q] = {1, 2. . . . , q}.

II. PROBLEM DESCRIPTION
Consider a vector autoregressive process with state vector

xt ∈ Rn evolving as (1) where the noise vector wt is a zero-
mean normally distributed variable. The transition matrix A and
covariance matrix Qw are unknown. It is assumed that ‖A‖2 =

σmax < 1. This is a sufficient condition to ensure the spectral
radius of A is bounded by 1 and the VAR process is stable
[10], [11]. Note that if σmax = 0, then the observations are
independent across time.

Alternatively, the stationary VAR process can be viewed as a
Gauss-Markov vector valued stochastic process with covariance
matrix Σk = E[xtx

ᵀ
t+k] satisfying the Yule-Walker equations:

Σ0 = AΣ0Aᵀ +Qw

Σk+1 = ΣkAᵀ. (2)

The system is initiated at x0 = 0.
In our model, we observe m−dimensional projections of the

state vector at each point in time. These projections may be
randomly chosen using a process that is independent from the
innovation noise process wt. In other words as xt+1 = Axt +
wt, we observe zt = Ψtxt, where zt ∈ Rn and Ψt ∈ Rn×n

is an m−dimensional projection matrix. The data model may
represent two scenarios:

1) Subsampling: In the simplest case, the low-dimensional
projection could be viewing m components out of n. In this
case Ψt is a diagonal binary matrix with m of the diagonal
components uniformly and randomly chosen to be one. In other
words, consider a subset of m indices {ψ1, . . . , ψm} ∈ [n]m

uniformly chosen at each time instant, and let

Ψt = diag




m∑

j=1

eψj


 (3)

zt = Ψtxt = diag




m∑

j=1

eψj


xt.

Here, the measurement and communication costs at each instant
are O(m).

2) Compressive Measurements: Suppose we take m com-
pressive measurements at each instant in time. The compressive
measurement is yt = Mtxt where yt ∈ Rm, Mt ∈ Rm×n and
the rows (Mt)i are picked uniformly and independently from
the surface of an n−dimensional sphere. An alternate way of
characterizing yt is through

zt = Mᵀ
t (MtM

ᵀ
t )−1yt = Ψtxt, (4)

where zt is what we observe using the random m-dimensional
projection Ψt = Mᵀ

t (MtM
ᵀ
t )−1Mt. In this case, the measure-

ment cost at time t is O(m). The communication cost is O(m)
if the central fusion centre has access to Mt or O(n) otherwise.

To summarize, our goal is to propose and analyse algo-
rithms to estimate the transition matrix A and the stationary
covariance matrix Σ0 = E[xtx

ᵀ
t ] from a finite number of

samples zt and find achievable and fundamental bounds on
‖Â − A‖2, ‖Σ̂0 − Σ0‖2. We investigate the case where we do
not make any structural assumptions on A, Σ0 as well as the
setting where A or Σ0 are s−sparse, meaning they have at most
s non-zero components in each row or they are rank-r matrices.

III. FUNDAMENTAL BOUNDS IN ESTIMATION
In this section, we focus on obtaining lower bounds on

estimator error for the estimation of the transition matrix A and
the stationary covariance matrix Σ0 from partial measurements.
This will give us the minimum number of time samples we need
to observe below which any estimate is inaccurate with non-
negligible probability for some systems. We focus on the case



where we see a random m components of the n dimensional
state vector xt at each point in time zt = Ψtxt where Ψt arises
in the sampling case as in (3) or the compressive measurements
scenario (4) but with Mt having orthogonal rows. We term the
latter observations as orthogonal compressive measurements.

We first have a theorem on the error of any estimator of the
covariance matrix.
Theorem 1. Consider observations zt = Ψtxt which model
either subsampling in (3) or orthogonal compressive measure-
ments (4). Let B1 represent the class of s−sparse covariance
matrices where s = O(m

√
T/n). Then there exists constants

b, c > 0 such that for any estimator Σ̂0

inf
Σ̂0

sup
Σ0∈B1,A,Qw

PΣ0,A,Qw

(
‖Σ̂0 − Σ0‖2 ≥ c

n

m

√
s

T

)
≥ b.

Moreover, let the covariance matrix belong to a class of rank
r positive semidefinite matrices B2. When r = O(m

√
T/n),

inf
Σ̂0

sup
Σ0∈B2,A,Qw

PΣ0,A,Qw

(
‖Σ̂0 − Σ0‖F ≥ c

n

m

√
nr

T

)
≥ b.

This theorem states that with non-negligible probability b,
any estimator will incur an error of at least Ω

(
n
m

√
s
T

)
for

some values of sparse Σ0. We can further improve the bound
in terms of s as Ω(s) instead of Ω(

√
s) as done in Appendix D

of [4] using the proof technique of [21]. This implies that if the
number of observations T scales as o( n2s

m2ε2 ), the error incurred
by any estimator for some Σ0 is greater than ε. Similarly,
the theorem states that the number of observations cannot be
o( n3r
m2ε2 ) if we require that ‖Σ̂0−Σ0‖F ≤ ε for some estimator

Σ̂0 and all values of Σ0. One observation we make is that
the minimum number of time instants required scales inverse
quadratically with the number of low-dimensional projections
m at each time instant; i.e. if m halves, T increases by a factor
of 4. We can also see the gain of applying structural constraints
of sparsity or low-rankness; the error of the optimal estimator
is reduced by a factor of at least n/s or n/r in either case.

We next consider estimation of the transition matrix with
various constraints. We note that the covariance matrix is
not completely independent from the transition matrix and
assumptions on one have an impact on the other. For instance, a
block-diagonal and s−sparse A and innovation noise matrix Qw
would lead to a block-diagonal and s−sparse covariance matrix.
However, it is possible to have sparse covariance matrices
for full-rank and dense transition matrices and vice versa.
In different circumstances, we may be compelled to make
structural assumptions on either the covariance matrix or the
transition matrix.
Theorem 2. Consider the same observation process as in
Theorem 1. Let A1 represent the class of transition matrices
A which are s−sparse and the innovation noise process is
Qw = I . For s = O(m

√
T/n), there exist constants c, b > 0

such that for any estimator Â

inf
Â

sup
A∈A1,Qw

PA,Qw

(
‖Â−A‖2 ≥ c

n

m

√
s

T

)
≥ b.

Moreover, let A2 denote the class of rank r transition
matrices such that r = O(m2T/n3). Then

inf
Â

sup
A∈A2,Qw

PA,Qw

(
‖Â−A‖F ≥ c

n

m

√
nr

T

)
≥ b.

An immediate consequence of the theorem is that for an
optimal estimator that matches this lower bound, the minimum
number of time samples required is at least Ω(n2s/(m2ε2)) for
obtaining ‖Â − A‖2 ≤ ε for the sparse case. This result, as
shown later, is sharp in n, m, and T . The estimation error
of the optimal estimator falls by a factor of n/s when the
structural constraint of sparsity is applied and n/r when a low-
rank transition matrix is considered.
Proof Outline

We use the general framework introduced by Tsybakov [23]
to prove most lower bounds.

Let the probability distribution for some observations be
indexed by parameters θ ∈ Θ. In this case, the parameters
could refer to any combination of the transition matrix A, the
innovation noise matrix Qw, and the covariance matrices Σk.
Let d represent the distance between parameters. In our case, it
could refer to the 2-norm or the Frobenius norm. We focus on
minimax lower bounds and proceed as follows:

1) We construct a finite set of parameters θi ∈ Θ, i ∈
{0, 1, . . . ,M} that are adequately distant from each other

I = inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ δ) ≥ inf
θ̂

max
i∈[M ]

Pθi(d(θ̂, θi) ≥ δ).

If quantity I > 0, then there is a non-negligible probabil-
ity that d(θ̂, θ) ≥ δ, i.e. any estimate θ̂ is δ distant from
the optimal value. Further, if d(θi, θj) ≥ 2δ, then we use
the closest-distance estimator Υ∗ = argminθi d(θ̂, θi) to
conclude that for any estimator Υ,

I ≥ inf
Υ

max
i

Pθi(Ψ 6= θi) = pe.

2) We show that the KL divergence between the probabilities
indexed by θ0 and θi, i ∈ [M ], is bounded by:

1

M

M∑

i=1

DKL(Pθi‖Pθ0) ≤ logM

8
. (5)

As shown in [23], this implies that pe > 0.

We now list the subset of the parameter class that we include to
prove bounds with various structural assumptions. In Appendix
C, we show that bound (5) is met in each of these cases.

1) Covariance Matrix: We consider a class of
n−dimensional autoregressive processes with A = 0 and
Σ0 arising from a class B of symmetric rank r matrices
detailed below

B =



γ

∑

1≤i<j≤r
εi,j(eie

ᵀ
j + eje

ᵀ
i ) +

[
Ir 0
0 0

]
, ε ∈ {0, 1} r(r−1)

2



 .

This class of matrices is non-zero only in the upper left corner.
Here γ = c(m2T/n2)−1/2 is a parameter.

Consider any Σε ∈ B. Note that Σ0 with ε = 0 is also a
member. We observe that ‖Σε−Σ0‖2 ≤ rγ. This quantity would
be less than 1 guaranteeing that Σε � 0 if T = Ω(r2n2/m2).

The Gilbert-Varshamov bound states that there exists a set E
of r(r−1)/2−dimensional binary vectors of size |E| > 2

r(r−1)
16

such that for any ε, ε′ ∈ E , ‖ε − ε′‖1 > r(r−1)
16 . Using this,

there exists a subset BE , |BE | > 2r(r−1)/16, such that for any
Σε,Σε′ , we have



‖Σε − Σε′‖2F ≥
γ2r(r − 1)

8
>
γ2r2

16
.

This is a subset of the class of s−sparse matrices if s = r.
Observe additionally that ‖Σε − Σε′‖2 ≥ γ

√
s

4
2) Sparse Transition Matrix: We consider a class A of

transition matrices that are block diagonal with each block being
s× s. The noise matrix Qw = I . For convenience, we assume
s divides n but the proof can easily be extended to relax this
assumption. The transition matrix comes from the class:
A ={
γ
∑

i,j∈[n]

εi,jeie
ᵀ
j1(k−1)s≤i<j≤(k−1)(s+1),k∈[n/s])ε ∈ {0, 1}ns

}
.

Here, γ = cn/m
√
T . We require that ‖Aε‖2 ≤ σmax < 1 for

the VAR process to be stable as described in Section II. Noting
that ‖Aε‖2 ≤ ‖Aε‖1 ≤ sγ, we require that T = Ω(n2s2/m2).

Any matrix Aε ∈ A is indexed by an ns−dimensional binary
vector ε. From the Gilbert-Varshamov theorem, we construct a
subset AE ⊂ A with |AE | ≥ 2ns/8 such that for any Aε, Aε′ ∈
AE , we have,

‖Aε −Aε′‖2F ≥
nsγ2

8
⇒ ‖Aε −Aε′‖2 ≥ γ

√
s

8
.

3) Low-Rank Transition Matrix: We consider the family A
of rank−r transition matrices (with Qw = I). For convenience,
assume r divides n. Now,
A =

{
1n/r ⊗ Āε, Āε ∈ Rr×n, (Āε)i,j = γεi,j , ε ∈ {0, 1}nr

}
,

with γ = c
√
rn/Tm2. For any A ∈ A, we require stabil-

ity, or nγ ≤ σmax < 1, which implies a requirement of
T = Ω(n3r/m2). From the Gilbert-Varshamov theorem, we
know that there exists AE ⊂ A with |AE | ≥ 2nr/8 such that
for Aε, Aε′ ∈ AE ,

‖Aε −Aε′‖2F ≥
γ2n2

8
.

IV. ACHIEVABLE ESTIMATION ERROR BOUNDS
In this section, we construct an estimator of the k correlation

matrix Σk , E[xtx
ᵀ
t+k] for a stationary VAR process and

then use these estimates for finding the transition matrix A.
We find the non-asymptotic error bounds and show that our
estimate is optimal in an order sense. We assume that we have
2 independent views z1

t and z2
t of the state vector (zit = Ψi

txt) at
each time instant. This could be considered equivalent to having
a view of 2m low-dimensional samples at each time instant.
These views could model subsampling (3) or compressive
measurements (4).

We construct an estimate of the covariance matrix as

Σ̂k =
n2

m2(T − k)

T−k∑

t=1

z1
t z

2ᵀ
t+k. (6)

Clearly, in the sub-sampling case, this scaled version of the em-
pirical covariance matrix would be unbiased as the probability
of observing the ith component in z1

t and the jth component
of z2

t that allows for the estimation of Σkij is m2/n2.
To see that this is the case for the random low-dimensional

projection, any low rank projection matrix can be written as

UUᵀ, where U = Ω

[
Im
0

]
for Ω a random rotation matrix

including permutations. Now, Ωxt can be considered as a ran-
dom rotation of xt with magnitude ‖xt‖2. A vector uniformly

0
xt

√
ηt(1− ηt)Rtxt

ηtxt

zt

√
ηt‖xt‖2

cos−1(
√
ηt)

Fig. 1: Geometric depiction of projection zt.
located on a spherical surface can be generated by a normalized
Gaussian vector with iid components. Thus, we see that

z1
t = Ωᵀ

[
I 0
0 0

] ‖xt‖2√∑n
i=1 u

2
i




u1

u2

...
un




⇒ ‖z1
t ‖22 = ‖xt‖22

∑m
i=1 u

2
i∑n

i=1 u
2
i

= ‖xt‖22ηt.

Here ui
iid∼ N (0, 1) are the components of a uniform vector on

a hypersphere. The variable ηt
iid∼ Beta

(
m
2 ,

n−m
2

)
is the ratio

of chi-squared distributions
∑m

i=1 u
2
i∑n

i=1 u
2
i

.

The angle θ between xt and z1
t is given by cos−1

(
‖z1t ‖2
‖xt‖2

)
=

cos−1(
√
ηt). Thus we can write,

z1
t = 〈z1

t ,
xt
‖xt‖2

〉 xt
‖xt‖2

+ 〈z1
t , R

1
t

xt
‖xt‖2

〉 xt
‖xt‖2

= xtηt +
√
ηt(1− ηt)R1

txt.

Here R1
t is a rotation matrix and R1

t
xt

‖xt‖2 is distributed on
the hypersphere and orthogonal to xt. Also, z2

t = ωtxt +√
ωt(1− ωt)R2

txt. This is depicted in Fig. 1. The variable
ηt, ωt

iid∼ Beta
(
m
2 ,

n−m
2

)
. From the fact that E[ηtωt] = m2/n2

and in expectation the cross-terms (eg. xtx
ᵀ
tR

1
t ) are zero by

symmetry, we see that the estimator is unbiased.
The following theorem presents error bounds for ∆Σk

∆
=

Σ̂k − Σk which we term the error in the estimate of the
covariance estimate.
Theorem 3. With probability at least 1− δ we have

‖∆Σk‖max ≤ γ = O
(√

log(n2/δ)

(T − k)

n‖Qw‖2
m(1− σmax)2

)

‖∆Σk‖2 ≤ γ2 = O(
√
nγ). (7)

Theorem 3 implies that the number of time samples needed
for ‖∆Σk‖2 ≤ ε is O( n3 logn

m2ε2(1−σmax)4 ). The main point to note
is that this achievable error bound is off only by a factor of
log n compared to the optimal estimator of Section III. Also, as
σmax → 1, we need more samples and this can be understood
as the samples present less new information if there is strong
dependency. In Fig. 2, we see the performance of this estimator
with low-dimensional projections when n = 10 averaged over
10 trials. It can be seen that error depends inversely on T−1/2m.

Table I, collating results from [17], shows how we can refine
this estimate of the covariance matrix with a sparsity constraint
as well as estimating A with or without constraints of sparsity
and low-rank. In the sparse Σ estimator, observe that if q = 0,
there are s non-zero values in each row and column. We would



Structural Constraint Refinement Convergence Result
w.h.p.

Sparse Covariance Matrix
∑

j |Σi,j |q ≤
s,
∑

j |Σj,i|q ≤ s ∀i
Thresholding U(Σ) = [Σi,j1(|Σi,j | ≥ 2γ)]i,j∈[n] ‖∆Σ‖2 = O(s[γ]1−q)

Dense Transition Matrix Σ0 is full rank Âᵀ = Σ̂0†Σ̂1 when T = Ω(n2 logn/m2) ‖∆A‖2 = O(γ2)

Low Rank Covariance Matrix, Σ0 is rank−r Nuclear-norm regularization Σ̄0 = minΣ�0 ‖Σ− Σ̂0‖2F +λn‖Σ‖∗,
when λn = O(γ2)

‖∆Σ‖F = O(γ
√
nr)

Sparse Transition Matrix maxj∈[n]

∑n
i=1 |A

q
i,j | ≤

s,maxi∈[n]

∑n
j=1 |A

q
i,j | ≤ s, ‖A‖1 ≤ A1

Dantzig estimator Âᵀ = argminM∈Rn×n

∑
i,j |Mi,j | s.t. ‖Σ̂1 −

Σ̂0M‖max ≤ A1γ

‖∆A‖2 =
O
(
s(A1γ‖Σ0†‖1)1−q

)
.

Low Rank Transition Matrix A is rank−r and Σ0

is full-rank
Nuclear-norm regularization Â = argminM 〈Mᵀ, Σ̂0Mᵀ − 2Σ̂1〉+
λn‖M‖∗. when T = Σ(n3 logn/m2) and λn = O(γ2)

‖∆A‖F = O(γ
√
nr)

TABLE I: Refinements for estimators of the covariance and transition matrix with different structural constraints.

t
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1

10
3

10
5

‖∆
Σ

0
‖ 2
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-2
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10
0
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t
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3
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4
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5

‖∆
A
‖ 2
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-2
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-1

10
0
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1

m=2

m=4

m=8

Fig. 2: Parameter estimation with low-dimensional projections,
n = 10.

then need O( s
2n2 logn
m2ε2 ) time samples for ‖∆Σk‖2 ≤ ε; this

estimator is of the same order as the optimal estimator but for
a factor of s log n. In dense A estimation, for ‖Â−A‖2 ≤ ε, we
need O(n

3 logn
m2ε2 ) samples which is again off by a log n factor

from the ideal estimator. In sparse A estimation, when q = 0,
the class being considered is s−sparse. The convergence rate
agrees with the ideal rate up to a factor of s log n. Finally, in
low-rank A estimation, this estimator matches the fundamental
bound up to a logarithmic order log n.

V. CONCLUSION

We considered the problem of estimating the parameters
of large vector autoregressive processes from low-dimensional
random projections of the underlying state vector. This models
a sub-sampling strategy where we have access to a limited
number of components of the state vector as well as compressive
measurement strategies. We presented minimax lower bounds
on the convergence rate of any estimator of the covariance and
state-transition matrices. It was seen that the number of time
samples required for any estimator to get the estimation error
within a required bound scales proportionally to the dimension
(this was removed when structural assumptions were added)
and inverse quadratically with the number of components seen.
An estimator for the covariance matrix was then constructed.
A refinement based on an assumption of sparsity, suitable for
high-dimensional processes, was described as well as estimates
for the transition matrix with and without further structural as-
sumptions of sparsity or low-rank. We show that our estimators
are optimal up to logarithmic factors in the dimension.
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