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ABSTRACT
We consider the problem of estimating the covariance matrix and
the transition matrix of vector autoregressive (VAR) processes from
partial measurements. This model encompasses settings where there
are limitations in the data acquisition of the underlying measurement
systems so that data is lost or corrupted by noise. An estimator for
the covariance matrix of the observations is first presented. More
refined estimators, factoring in structural constraints on the covari-
ance matrix such as sparsity, bandedness, sparsity of the inverse and
low-rank are then introduced that are particularly useful in the high-
dimensional regime. These estimates are then used to perform sys-
tem identification by estimating the state transition matrix with or
without further structural assumptions. Non-asymptotic guarantees
are presented for all estimators.

Index Terms— system identification, covariance estimation,
autoregressive processes, high-dimensional analysis, robust estima-
tion

1. INTRODUCTION

Vector Autoregressive (VAR) models are natural tools for forecast-
ing; they have been used for this purpose in finance, econometrics,
and neuroscience, as well as in other applications [1, 2]. VAR mod-
els are often used to describe high dimensional data (the dimension
n is comparable to or greater than the number of time samples T ).
In many practical measurement systems, such as wireless sensor net-
works, there may be communication or energy constraints in collect-
ing measurements. Computation constraints may limit the number of
samples a central fusion centre can use at once. A common strategy
to deal with this constraint is to sample measurements. Moreover,
measurements may be lost or corrupted by noise. These limitations
on data acquisition in measurement systems motivate identifying or
making inferences from a system with partial noisy observations.

A VAR process is characterized by a finite set of parameters
that describes the linear relation between present time vector-valued
samples and past vector samples plus independent noise. Specifi-
cally, the state vector xt ∈ Rn evolves as

xt+1 = Axt + wt wt
iid∼ N (0, Qw), 1 ≤ t ≤ T, (1)

where A is the state-transition matrix. The stationary VAR pro-
cess can alternatively be described in terms of its covariance matrix
Σk = E[xtx

ᵀ
t+k] and the quantities are linked by the Yule-Walker

equations. The problem of estimating the covariance matrix is of
fundamental importance in statistics with applications in Principal
Component Analysis, classification and portfolio selection [3]. We
have access to a noisy version of each measurement with probability
ρ. Our goal is to estimate the covariance matrix and the transition
matrix A from these partial and sub-sampled observations of xt.

1.1. Contribution

In this paper, we first propose an estimator for the covariance matrix
of a VAR process from partial samples affected by multiplicative

and additive noise. We show that the operator norm of the error of
the covariance matrix estimate scales as 1

ρ

√
n
T

where ρ is the sub-
sampling rate or the probability that we view an observation, n is the
dimension and T is the number of time samples. If the sampling rate
is halved, then the number of time samples needed for estimation of
a pre-specified accuracy quadruples. We need T to be proportional
to n which may be very high. To overcome this bottleneck, we pro-
vide estimators given structural constraints on the covariance matrix
such as sparsity, low rank, bandedness and sparsity of the inverse
covariance matrix. For these estimators, the operator norm of the er-
ror scales proportionally to logn, which reduces the number of time
samples needed. These results also apply to partial observations of
independent Gaussian samples when A = 0. The estimates of the
covariance matrix are then used to estimate the transition matrix.
In addition, estimators for A given structural constraints of sparsity
and low rank on A are presented and we show that factoring in con-
straints reduces the number of time samples needed for estimation.
Finally, extensions to higher order VAR processes are presented and
it is shown that the number of time samples needed is increased by
the order of the VAR process. Due to space constraints, the proofs
are omitted and can be found in [4].

1.2. Related Work

This paper extends the work [5] which considered the problem of
VAR system identification from partial samples but did not include
higher order VAR processes and structural constraints in covariance
matrix estimation. The estimators were used in joint system-state
identification and validated via simulation. Earlier, [6] presented the
asymptotic analysis of covariance estimation for the simpler autore-
gressive process identification with sampling.

With complete observations, it has been shown that the naive
empirical covariance estimator is consistent only in the low dimen-
sional regime (n� T ) [7]. This paper extends prior work on struc-
tured covariance matrix estimation to include constraints of spar-
sity, bandedness and precision matrix sparsity. Prior works [8, 9, 10]
deal with each of these constraints, respectively, but under noiseless
and full observations. [11] provides estimators and their analysis
for high-dimensional linear regression with partial iid observations;
their estimators for covariance matrix estimation are applied to de-
pendent data in this work and the focus of our analysis in on conver-
gence as opposed to proving restricted eigenvalue properties. Low
rank covariance matrix estimation with missing iid data was consid-
ered in [12] and lower bounds on covariance estimation error were
provided. For iid samples with partial samples, [13] analyses an es-
timator with a sparse inverse covariance matrix assumption. This
paper extends these results to partially observed VAR processes. We
also recover these results in the case of independent Gaussian sam-
ples with full observations (ρ = 1) in terms of scaling with n, T
and structural constraint constants. Structured covariance estimation
with full observations has been looked at in stationary processes [3]
but not for VAR processes.

In the full observation and noiseless scenario, [14] first proposed
the least-squares procedure for estimating A. In order to enforce



identifiability when the dimension n is larger than the number of
time samples T , structural assumptions are required. Methods for
sparse estimation of A in VAR processes include a 2-stage approach
for fitting sparse models [15], lasso regularization [16] and a dantzig
estimator for weakly sparse matrix estimation [17]. In [18], authors
consider the question of sparse transition matrix estimation for a con-
tinuous time VAR process. [19] showed how spectral density func-
tions influence the rate of convergence. Low-rank transition matrix
estimation was considered in [20, 21]. These works do not consider
partial observations. We again recover bounds of [17, 21] in the full
observation case in terms of scaling in n, T and structural constraint
constants.

The rest of this paper is organized as follows: the problem de-
scription is provided in Section 2. Section 3 presents algorithms and
convergence analysis to estimate the covariance matrix given struc-
tural constraints. In Section 4, it is shown how these estimators for
the covariance matrices can be used to obtain the transition matrix.
The algorithms are generalized to higher order VAR processes in
Section 5.

Notation Trace inner product Tr(AᵀB) is denoted by 〈A,B〉.
Operator norm is denoted by ‖ · ‖2, Frobenius norm by ‖ · ‖F , max-
imum element maxi,j |A|ij by ‖A‖max, nuclear norm by ‖ · ‖∗, the
`1 to `1 norm is denoted by ‖A‖1 which is also maxj

∑
i |Aij |, the

`∞ to `∞ norm which is also ‖Aᵀ‖1 is denoted by ‖A‖∞ . The zero
matrix or vector is denoted by 0 and the subscript when provided de-
notes size. Term 1(·) evaluates to one if the condition in the paren-
thesis is true and zero otherwise. The indicator vector is ei where
(ei)j = 1(i = j). Kronecker product is ⊗ and ◦ denotes the Schur
or elementwise product. For order, fn = O(gn) denotes that there
exists c > 0 such that fn ≤ cgn. Similarly fn = Ω(gn) implies
there exists c > 0 such that fn > cgn. The set [q] = {1, 2. . . . , q}.

2. PROBLEM DESCRIPTION

Consider a vector autoregressive process with state vector xt ∈ Rn

evolving as (1) where the noise vector wt is a zero-mean normally
distributed variable. The transition matrix A and covariance matrix
Qw are unknown. It is assumed that ‖A‖2 = σmax < 1 to ensure
the spectral radius of A is bounded by 1 and the VAR process is
stable. Note that if σmax = 0, then the observations are independent
across time.

Alternatively, the stationary VAR process can be viewed as a
Gauss-Markov vector valued stochastic process with covariance ma-
trix Σk = E[xtx

ᵀ
t ] satisfying the Yule-Walker equations:

Σ0 = AΣ0Aᵀ +Qw

Σk+1 = ΣkAᵀ (2)

The system is initiated x0 = xS where ‖xS‖2 = o(T−1/2). This
ensures that the initial effects die down. At each time instant we
observe

zt = Pt(xt + vt),

where vt
iid∼ N (0, Qv) is an additive observation noise and the co-

variance matrix Qv is assumed to be known and Pt is a random
measurement matrix of the form Pt = diag(pt) with pt denoting an
n−dimensional random vector. This vector is independently sam-
pled from a distribution P on bounded non-negative support, where
it is assumed that the first and second order statistics of pt are known.
Let θ(k)ij denote the average scaling due to the multiplicative noise
observed in the ijth element of Sk or θ(k) = E[ptp

ᵀ
t+k]. A quantity

that will be of use later is θ(k)∗ = minij θ(k)ij which denotes the
minimum scaling of an element in Σk.

This model can encompass several scenarios. Scenario 1:
Each observation sample is seen independently with probability ρ
((pt)i

iid∼ B(ρ)). This is the random sampling case and is analyzed
specifically throughout the paper. Complete observations would

correspond to the case where ρ = 1. Scenario 2: Each observation

sample is seen with different probability ((pt)i
indep∼ B(ρi)) which

can model the case where it is more expensive to get observations
from certain sensors. Scenario 3: The observation vector is seen
with probability ρ (Pt = I w.p. ρ). This removes the independence
assumption across observation samples and has been the model
studied in the intermittent Kalman filtering literature [22, 23, 24];
Scenario 4: Observations could have bounded multiplicative noise
modelling fading that occurs in wireless sensor networks. Here
0 ≤ pl ≤ (pt)i ≤ pu <∞.

To reiterate, we assume that (1) ‖A‖2 = σmax < 1; (2) the first
two moments of pt are known; (3) the covariance matrix Qv of the
additive observation noise is known; (4) the innovation noise process
wt, the additive noise process vt and the multiplicative noise process
pt are independent from each other and across time instants. Our
goal is to propose and analyse algorithms to estimate the transition
matrixA and the stationary covariance matrix Σ0 = E[xtx

ᵀ
t ] from a

finite number of samples. We also note that because of the equivalent
representation, the estimation of A and of Σk are closely related.

3. ESTIMATING THE COVARIANCE MATRICES

In this section, we focus on estimators of the k correlation matrix
Σk , E[xtx

ᵀ
t+k] for a stationary VAR process. We note that in

particular, this can be used to estimate the subspace that signals lie in
by taking the top eigenvectors. The error is proportional to ‖∆Σ0‖2
through the Davis-Kahn Theorem [25].

3.1. General Case

We first consider the empirical covariance matrix Sk of the T obser-
vations {zt}t∈[T ]:

Sk =
1

T − k

T−k∑
t=1

ztz
ᵀ
t+k.

We observe that E[Sk] = E[ztz
ᵀ
t ] = θ(k) ◦ (Σk + Qv1(k = 0)).

As our estimate of Σk, we use

(Σ̂k)ij = (Sk)ij/θ(k)ij − (Qv)ij1(k = 0). (3)

The estimator Σ̂k is unbiased if xS is initialized from the stationary
distribution of xt. In the random sampling case where observations
are seen with probability ρ, this reduces to

Σ̂k =
1

ρ2
Sk −

(
1− ρ
ρ2

Sk ◦ In −Qv
)
1(k = 0).

The following theorem presents error bounds for ∆Σk = Σ̂k − Σk

which we term the error in the estimate of the covariance estimate.

Theorem 1. With probability at least 1− δ we have

‖∆Σk‖max ≤ γ(δ)

‖∆Σk‖2 ≤ γ2(δ) = 4
√
nγ(δ),

(4)

where up to order (T − k)−1/2,

γ(δ) =

√
8 log(6n2/δ)

(T − k)θ(k)∗
max

(
‖Qw‖2

(1− σmax)2
‖Qv‖2

)
.

Theorem 1 implies that the number of time samples needed
for ‖∆Σk‖2 ≤ ε in the random sampling case (Scenario 1) is
O( n logn

ρ2ε2(1−σmax)4
). Time samples needed are proportional to the

dimension which can be large. As the sampling rate is halved, the
number of time samples needed increases four-fold. As σmax → 1,
we need more samples and this is intuitive as the samples present
less new information if there is strong dependency.



3.2. Refined estimates of the covariance matrix

We next observe how structural constraints on the covariance esti-
mates can improve estimation accuracy. Before we proceed, we note
that structural properties of matrix Σk has implications for the struc-
ture of A and vice versa. For instance, when A is block-diagonal
and Qw = I or the VAR process can be decomposed to decoupled
sub-systems (for instance, (xt)[1,3] could evolve by a 3-dimensional
VAR process), Σ0 can be shown to be banded. On the other hand,
when the decoupled structure of A is not known, it might be written
as a permutation of a block-diagonal matrix. The covariance matrix
would be sparse in this case. Finally, if A and Qw are low rank, Σ0

can be low rank as well. This is practical motivation for not only
considering the general problem of estimating Σk but also the spe-
cial cases when Σk satisfies additional structural constraints.

3.2.1. Bandedness

We consider the case where Σk is banded and follow the analysis
of [9]. Let us suppose that the covariance matrix (and its transpose)
belongs to the following well-conditioned tapering class:

V = {Σ :
∑
j

|Σi,j |1(|i− j| ≥ s) ≤ Cs−α, ∀i}.

The higher the value of α, the more banded the matrix. We use the
following operation

Bs(Σ) = [Σi,j1(|i− j| ≤ s)]i,j∈[n],

to construct a refined estimate of the covariance matrix.

Theorem 2. If we choose a banding factor s = γ(δ)−1/(α+1),
we have with probability at least 1 − δ that ‖Bs(Σ̂k) − Σk‖2 =

O([γ(δ)]α/(α+1)). Additionally, if λmin(Σ0) ≥ ε0, then ‖[Bs(Σ̂0)]−1−
[Σ0]−1‖2 = O(sγ(δ)).

This theorem can be extended to soft banding operations as well.
As α increases, the band s we consider decreases. We find that
the number of time samples needed for ‖∆Σk‖2 ≤ ε is s2

n
times

that of the naive estimator in Eq. 3. We have a weaker s2 depen-
dence because we have bounded ‖∆Σk‖22 ≤ ‖∆Σk‖1‖∆Σk‖∞ and
‖∆Σk‖1, ‖∆Σk‖∞ = O(s).

3.2.2. Sparsity

We next consider the case where the covariance matrix is sparse. Fol-
lowing the analysis of [8], let us suppose that the covariance matrix
belongs to the class of sparse positive definite matrices U defined as

U = {Σ :
∑
j

|Σi,j |q ≤ s,
∑
j

|Σj,i|q ≤ s ∀i}.

This is a class of well conditioned sparse covariance matrices. When
q = 0, then there are s non-zero values in each row (and column).
We process our empirical covariance matrix by thresholding the en-
tries. In other words,

Uu(Σ) = [Σi,j1(|Σi,j | ≥ u)]i,j∈[n]. (5)

Theorem 3. When the thresholding factor is u = 2γ(δ), we
have with probability at least 1 − δ that ‖Uu(Σ̂k) − Σk‖2 =

O(s[γ(δ)]1−q). Additionally, if λmin(Σ0) ≥ ε0, we have ‖[Uu(Σ̂0)]−1−
[Σ0]−1‖2 = Ω(s[γ(δ)]1−q).

In the random sampling case (Scenario 1) with s non-zero ele-
ments in each row and column, we would need O( s2 logn

ρ2(1−σmax)4ε2
)

time samples for ‖∆Σk‖2 ≤ ε error. We need s2

n
fraction of time

samples compared to estimator in (3) which can be significantly
smaller than 1 in the sparse setting.

3.2.3. Sparsity of the Inverse

A popular regularization assumption in the case of covariance esti-
mation from independent samples is the sparsity of the precision (in-
verse covariance matrix Θ0 = (Σ0)−1) assumption. This assump-
tion is valid in the independent case (σmax = 0) where estimating
the sparse precision matrix maps to Gaussian Markov random model
selection. Also, when the covariance matrix is block-diagonal, we
expect the inverse to be block-diagonal and sparse.

In this section, we follow the convergence analysis of [10]. Let
E(Θ0) = {(i, j)|i 6= j,Θ0

ij 6= 0} be the set of off-diagonal non-
zero elements in the inverse covariance matrix. Define s = |E(Θ0)|
as the size of this set. Set S = E(Θ) ∪ {(i, i)|i ∈ [n]} consists
of E(Θ) and the diagonal elements. Also, d is the maximum row
cardinality which is the maximum number of non-zero elements in
any row of the inverse covariance matrix.

The estimator for the empirical inverse covariance matrix is ob-
tained from the Bregman divergence on the log determinant function
[26]. Consider g(Θ) = − log |Θ|. We now find the symmetric pos-
itive definite matrix Θ that minimizes Dg(Θ0||Θ). We obtain the
final estimator by replacing the unknown Σ0 with its empirical esti-
mate and a regularization term which is the `1 sum of off-diagonal
elements ‖Θ‖1,off =

∑
i,j i 6=j |Θij |:

Θ̂0 = argminΘ�0 Tr(ΘᵀΣ̂0)− log |Θ|+ λn‖Θ‖1,off.

This is a convex optimization problem and can be efficiently solved.

Theorem 4. For the choice of regularization parameter λn =

Ω(γ(δ)) and when the number of time samples T = Ω( d2 logn
θ(0)∗(1−σmax)4

),

we have with probability at least 1 − δ that ‖Θ̂0 − Θ0‖2 =

O(min(
√
s+ n, d)γ(δ)) and ‖[Θ̂]−1 − Σ0‖2 = O(dγ(δ)).

The number of time samples required for the `2 norm of the
covariance matrix error estimate to be within ε is O( d

2

n
) times the

number needed in the naive estimator.

3.2.4. Low Rank

Finally, we consider the assumption that the rank r(Σk)� n which
is valid if the system is evolving in a small subspace. We follow [12]
and refine our estimate as

Σ̄ = argminΣ ‖Σ− Σ̂0‖2F + λn‖Σ‖∗.

Theorem 5. Using regularization factor λn = 4γ2(δ) = 16
√
nγ(δ),

we obtain with probability at least 1− δ that

1√
n
‖Σ̄k − Σk‖F = O(γ(δ)

√
r).

We need a fraction r
n

time samples for the Frobenius norm of the
estimator error to be lower than ε compared to the naive estimator in
(3). Analysis in [12] indicates that for the iid case, this scaling in
dimension and rank is also present in the lower bound.

4. ESTIMATION OF THE TRANSITION MATRIX

Once Σk is estimated, we use it to estimate the transition matrix
as the quantities are related through the Yule-Walker equation Σ1 =
Σ0Aᵀ. The error analysis also allows us to analyse the error in future
predictions given the current state value as

‖xt+1 − Âxt‖ = ‖∆A‖‖xt‖+ ‖wt‖.

We present three estimators depending on structural assumptions.



4.0.1. General Case
For dense A, our estimate Â is given by

Âᵀ = Σ̂0†Σ̂1. (6)

The error in the estimate of the transition matrix ∆A = Â− A
is bounded in the following theorem.

Theorem 6. Let σmin be the minimal singular value of Σ0. When
the number of samples T = Ω( logn

θ(0)∗(1−σmax)4
), with probability at

least 1− δ, we have that

‖Â−A‖2 = O
(
σmaxγ2(δ/2)‖Qw‖2
ε2σ2

min(1− σ2
max)

)
.

For ‖Â − A‖2 ≤ ε, we need O( n
(1−σmax)5ρ2

) samples, which
can be very large in the high-dimensional case. If we make assump-
tions on Σk, we can use the estimators of Section 3.2 to reduce the
number of time samples needed.

4.0.2. Sparsity

WhenA is sparse, we follow [17] and assumeA,Aᵀ ∈ A(q, s, A1),
where

A(q, s, A1) =

{
B ∈ Rn×n : max

j∈[n]

n∑
i=1

|Bqi,j | ≤ s, ‖B‖1 ≤ A1

}
.

Note that q = 0 indicates we have an s sparse matrix with bounded
`1 induced norm. The scalar A1 ∈ [0,

√
nσmax] restricts the size

of the class of transition matrices from which the estimate Â is ob-
tained. This is the weakly sparse case and need not exclude the case
of Σ0 being dense. We use:

Âᵀ = argminM∈Rn×n

∑
i,j

|Mi,j |

s.t. ‖Σ̂1 − Σ̂0M‖max ≤ λ. (7)

This estimate is of the form of the Dantzig selector and amounts
to selecting the sparsest matrix A that satisfies the constraints. It
reduces to solving parallel linear programs and can be efficiently
computed.

Theorem 7. Let A,Aᵀ ∈ A(q, s, A1) and λn = (1 + A1)γ(δ/2),
With probability greater than 1−δ, ‖Â−Â‖2 = O

(
s(λn‖Σ0†‖1)1−q) .

In the random sampling case (Scenario 1), we find that the num-
ber of time samples for estimation to a specified accuracy is a frac-
tion s2

n
of the time samples of the naive estimator (6).

4.0.3. Low Rank

We assume the rank of the transition matrix A is r � n, and Σ0 is
full rank. We use the following estimator:

Â = argminM 〈M
ᵀ, Σ̂0Mᵀ − 2Σ̂1〉+ λn‖M‖∗. (8)

We obtain this estimator from nuclear norm regularized minimiza-
tion of E[‖xt+1−Mxt‖22]. With a sufficiently large enough number
of samples, Σ̂0 � 0 and (8) becomes a convex optimization problem.

Theorem 8. Let the number of time samples T = Ω( d2 logn
θ(0)∗(1−σmax)4

).

When λn ≥ 4(1+σmax)γ2(δ/2), we have ‖Â−A‖F = O(λn
√
r)

with probability at least 1− δ.
The low rank estimator reduces ‖∆A‖F by a factor of n/r

which is significant in the high dimensional regime.

5. EXTENSIONS TO GENERAL MODELS
We can extend our results to estimators for VAR(p) processes. In
this case,

xt+1 = A1xt +A2xt−1 + . . . Apxt−p+1 + wt.

Using xt = [xtxt−1 . . . xt−p+1], we can write

xt+1 =


A1 . . . Ap
I . . . 0
...

. . .
...

0 . . . I

xt +


wt
0
...
0


⇒ xt+1 = Axt + wt,

which is now a VAR(1) process. It is assumed that ‖A‖2 = σmax <
1. This is a sufficient condition for the system to be stable.

Rewriting zt = [ztzt−1 . . . zt−p+1], vt = [vtvt−1 . . . vt−p+1],
and P t = diag(Pt, Pt−1, . . . , Pt−p+1), we get zt = P t(xt + vt).
The key difference between the VAR(p) and the VAR(1) model con-
sidered earlier is that vt and P t are not independent across time. The
latter matrix does not have independent diagonal matrices either.

Nonetheless, we can extend our earlier estimator. Defining ma-
trices Q

v
= E[vtv

ᵀ
t ], θ(k) = E[diag(P t) diag(P t)

ᵀ], we have

Sk =
1

T − k − p+ 1

T−k∑
t=p

ztz
ᵀ
t+k

(Σ̂
k
)ij = Skij/θ(k)ij − (Q

v
)ij .

Taking p = 1, we retrieve our old estimator.
We have the following concentration theorem for VAR(p) pro-

cesses.
Theorem 9. With probability greater than 1− δ

‖∆Σk‖max = O

(√
log(np/δ)

log(n/δ)
γ(δ)

)
‖∆Σk‖2 = O (

√
pnγ(δ))

After obtaining Â from Σ̂
k

for k = 0, 1, we have Âi =

(Â)[n]×{p(i−1)+1,...,pi}. The main conclusion from the theorem
is that covariance estimation and hence system identification of
VAR(p) processes is approximately p times slower than identifica-
tion of VAR(1) processes.

6. CONCLUSION
We have considered the problem of estimating the covariance matrix
and performing system identification of large structured vector au-
toregressive processes with partial observations which could be cor-
rupted by multiplicative or additive noise. This problem is motivated
by the limitations of data acquisition in high-dimensional measure-
ment systems.

An estimator of the covariance matrices of the process that can
start from an arbitrary state is first described. Refined estimators
for the case where the covariance matrix has structural constraints
such as sparsity, low rank, bandedness, and sparsity in the inverse
covariance matrix are then described and analysed. These were sub-
sequently used to obtain the transition matrix in both the general
case and one with structural constraints of sparsity and low-rank.
The number of time samples required for a pre-specified accuracy
scales with the dimension and inversely with the squared sampling
rate in the general case. As structural constraints are factored in, the
number of time samples scales logarithmically in the dimension.
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