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APPENDIX A

In this appendix, we prove the convergence of |30 — X0]|,.
In order to do this, we use a covering net argument. First, we
prove convergence for any «, 5 € R"™ such that ||«||2, || 82 <
1.

We assume that the process begins 7}, > 0 time units before
observations take place. In other words, T, = T5. We
provide some definitions and rewrite a few expressions.
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Lemma 1. We have these properties:
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Proof. We can define binary matrices {Ji}e(r,+7] € of
dimension T x T}, +T'. J; denotes locations in block matrix &
where A! is present. J; has at most 1 non-zero entry in each
row. Hence, ||.J|l2 < 1.
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The second point is self-evident by definition. O

Let 0; be an [-dimensional vector of zeros. We create
stacked vectors of noise W = [w_1, 1] ... |wolw1] ... |wr],
the initial conditions of the same dimension Xg = [x5|0((T+
T, — 1)n)], and the observational noise V' = [v1]. .. |vr]. Let
the stacked vector of observations of position ¢ with delay k be
the T-dimensional vector Z(k); = [214k.i|22+4k.i - - - |27.:|Ok]-
We recall that P;; is 1 if the it" position of noisy ob-
servation of z; is observed in the sampling case or is the
multiplicative noise otherwise. We create the 7'-diagonal ma-
trix P(k); = diag([Pi4,|...|Pr:|0(k)]) and denote with
P(k)i,; = P(0); P(k);. Finally, 0(k); ; = E[Pri Prs,j].

First, we prove a lemma about the impact of multiplicative
noise or sampling.

Lemma 2. With bounded multiplicative noise, we have with
probability at most 6/3, event Err occurs where
Tr(P? (k)i
Err ={ max ————~2_ _ 1>
{ v (T—=k)O(k)i;

\/ (k + 1)(p — p!) log(3n2(k + 1)/5) }
2(T — 2k)0(k)2

Proof. To bound Tr(P?(k);;), we need to bound the
sum Y1 F P} P? ;- We break this up into k + 1
with the number of terms being at least [T — 2k/k +

1] independent terms. The m® such series is S, =
Z(Tfk7m+1/k+1‘\ p2 P2
t=1 (k+1)t+m—1,i" (k+1)t+m—1+k,j°
First consider the case where P, ; is bounded between

[pi,pu). Each of the terms in the sum is (p} — p})?/4
subgaussian. By Hoeffding inequality,
Pr (S, >0(k)i;|[T—k—m+1/k+1](1+p,)) <
( 20(k)? ;2 [T — 2k /k + 1] >
exp | — :

(ph — p})?

We re-arrange and use union bound over these k + 1 sums as
well as the n2 number of i, j terms and rearrange to complete
the proof. O

From earlier definitions, we have
Z(k); = P(k)iApDi ((W 4+ X5) + V)

. 1
aTSh g = XJ: i f3; [WZ(O);Z(k)j

—(Qu)i1(k = 0)].



We can split aTﬁ)fj B into these three terms -
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Lemma 3. Conditioned on the event that Err does not occur,
we have
Pr(|Th —E[Th]] > €)
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Proof. Term T;:

W can be written as Q%fzu, where Qw = E[WWT]
Qu @ Irgpr, w741, and z, ~ N(0,L,xy,). Similarly V' =
%//221,. It can be seen that ||Qwll2 < [|Qull2, Qv |2
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= |L1||% < |Brl3l|Ar |3

Norm of B7 can be bounded as

1Qul3

| Br|l3 < max(||Qy |3, m
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We employ lemma 1 and 2 to now bound Ar with high

probability as

l4rl = Z(Tk)fe()nz?( Jeell:
262
<3 e MO0
Sm(gaz)(gﬂf)
1
= T Rak).

For the concentration result, consider eigenvalues of sym-
metric matrix L* = LI%LI be \;. We have >, \? = ||[L#||% <
L2, Diagonalizing L*® and because of the circularly symmetric
nature of standard gaussian vector

Z)\ 22— 1)
r(Z)\i(zi —1)>e)<e tEHE exp (tA;(27 — 1))]

2TL1z —E[zTLy2] =

(&
w0 ]] gy
< exp (—te + 2t? Z A?)

The first inequality holds when ¢ > 0. The second holds using
MGF of x? random variable when t\; < % The last inequality
holds as log(l — z) > —z — 22 when z < % or whenever
tA; < ;. We take ¢ = £ to obtain the bound.
F
Term 75
We can write
_ T |[Rw
T, =11 H
o = XIOT(Ar + A]) [2Q}?
.
(T —k)?

/7
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We now bound || A7||3 as

P(k); Sy Plk)e s AxTjol2

Ar|? <
|| T||2 — H(k) i’ a(k)i/,j

Z ;i Bjo By |T] Ak

1,5,4,5"

P4 2 32
< =t s B3

9(16)3%: v

where the last inequality is by applying lemma 1 and observing
that I‘]TAZPQA;CF]-/ is zero when j # j' as P is a diagonal
matrix. We now apply Hoeffding bound to arrive at the answer.
Term 73
We use the bound on || A7||2 and submultiplicative property
of the ¢5 bound to prove the bound. Also, |75 — E[T3]| <
| T3] + |E[T5]]. O




Lemma 4. The difference between the mean of the sample We use Lemma 4 to get
covariance and the true covariance matrices is bounded as

2T, +k aT(BF —¥h)3
I e < (o S $108(6/9) 1Qull
~ Ymax < w B iy
el Rledlh ) <\ (0 e 10l + o 07
{(1 “o2_) " min e(k)l,j] :

when [|af|s, [|B]l < 1.

Proof. We have ©F = Elza], ] = (D0, A'QuA'T) AT Now using « = ¢; and 3 = e; we obtain the convergence
Now we can split the empirical covariance into two terms - result for each element \E’“ - E’“ | and taking union bound
the first due to a start from origin and the second due to the over the n? choices, we obtain the result for the max bound.
exponential decay of the initial state captured in T5. {5 norm bound Let us define AX¥ = 3F— % We consider
a covering set .A such that for any o € R™ such that |||z < 1,

T—k
E[SF] = E 1 Z wal,, | o1, = s there exists o/ € A with ||¢/|2 < 1, |la — &/|]2 < e. From
T—Fk covering set theory, we can construct such a set with |A| <
_ T +t—1 (3/¢)™. Applying union bound, we find
== Z Y AQuATT +|Ty|1
=1 =0 TASEG < 8(2nlog(e/3) + log(6/0)) "
Jmax aTAYS < (T — k)0(k).
SRS 1Qul
3 i wl|2 —
B[]~ 54 < 7t 1Qullaoigt + 7 o (122 o ) 4 o -
t=1 :T (1 - Inax)
—k Now, we see
: ||Q1211 |20H1ax Z 0_1211(;1;?—&-75) + |T3|
— (L= o)l IASF |5 = maxaTASFS
< oiﬂa““ Qulls_, _pillasl3 e WTASH rAst
02 ) T B) [(1— 030  ming, 60K): S JPE,T ATV (oo iAT
We complete the proof by observing that for any M x M +aTAx? B-5"
matrix L, ||L|lmax = max; jeqar le] Lej| < || L. O < max o TAYFB + 2¢|| AXF||5
We now present the proof of Theorem 1 which combines B T Aok
the above results. = [[AZ%l2 S 1o o boa® AT
Proof. Max norm bound Conditioned on event Err®, using we yse ¢ — 1 /4 to obtain the final result. ]
Lemma 3 and Lemma 2, we see that with probability larger
than 1 —4/3, APPENDIX B
Ty —E[T]] <

In this section, we prove the analogue of Theorem 1 for
8log(6/0) 1Quw |2 higher order VAR processes.
( (1 )2 I ||Q’U || >

(T — k)6(k), The proof from section A goes through with a few modifica-
, tions. Qv = E[VVT] = Q, ® Jy where Jy is a binary matrix
+o((T=k)77). with at most p ones in each row. Thus || Qv ||2 < p[|Qu 2.
Similarly, for T we find that with probability larger than ~ The other difference is the term Tr(P?(k); ;). It can be
1-4/3, observed that
) < Lol O e ([ )
< L£(R)ij
(7 — DGk,
\/810g(6/5)( [Qull2 2+||Qv||2> o (171'11_1(1)dn+41;j71m0dn+1)
(1~ Omax) (ip, dp) = S -5 +k=0
which is o((T — k)~9-5). (j—1lmodn+1,i—1modn) ow.

Finally, Thus earlier convergence result holds with union bound taken

15 = ¥ lmax < [£° = EIS*) lmax + |EIS*] = S fanax OVr (np)? choices of i, j.
. 2 .
< Ty — E[T1]| + | T3] We also now take the union bound over (np)“ choices for

“k i the max bound and correspondingly larger set for the 2 norm.
+ |15 = E[T5]] + [[E[ZY] = Z¥lmax |A] < (3/€)" to get the final answer.



APPENDIX C

In this appendix, we derive convergence guarantees for the
covariance matrix under structural assumptions.

Sparsity Let the set U = {¥ : > . |¥;[? < kVi}. We
assume XF € .

Consider the thresholding operation 73 (-) defined as

(L)), = By (2] > ).
We observe,
T (%) = SF[l2 < Te(ZF) — Tu(E9) |12 + I To(EF) — SF||2
The second term can be bounded as
[ T:(F) — $F ||, <maxZ|E 1= < ¢)
< math|E JHIL(|ZE] < ¢)
< ek (5)

The first term needs a more detailed analysis as

IT(£%) = To(2*)]2 < maXZI Ti(Sh) = T(S9))i

<max2|2
+max2\z J1(IZE | > ¢, (25 < )
+max2\2 JL(ZE] <t 185 > ¢)

=I+1I + I1I
I can be bounded with high probability as,
I < |ASF || max maxz (IS5] > )

max E

()t~

/t 1(|SE > 1) (6)

For term II, we have,

II<maxZ<|AE |4 Sk \) 12| > ¢, S5 | < 1)

< (v (6)+t)kt a

where we have used the bound in Eq. 6 and recognised that
each term in the second summation is bounded by t.
Term IIT can be written in two parts

III<maXZ|AE 1+ ZEL(SE ] < ¢, 125 > t)
<maxZ\Az JL(SE| < |55 > ¢) + k'

maxz \E | >t —(8)) + kt' e

t q

(1=~(8)/t)?

< () + ktl™a

|1\E|>t\2|>ﬁ§

where Eq. 5 has been used.

We now use ¢ = 2v(4) to obtain the bound.

Additionally, if )\mm(Ek) > ¢y, we obtain the result
for the inverse as well as [(T3(SF))~! — (ZF) 1), =

w (I (E*) = 24)2)

Bandedness It is assumed that ¥ € V = (%
max; » 125 11(Ji = j| > s) < Cs™ Wk, i}

We Cons1der the banding operation B;(-) defined as

Bs(%)ij = %ij1(|i = j] < )

As earlier, we observe,

1Bs(£5) = ZH|l2 < [IBs(8%) = Bo(Z) |2 + |1Bs(Z*) — =¥z
< 2sy(0) + Cs™@

We use s = ~~Y/(@+1(§) to obtain the final answer

O(y*/(@+1)(§)). The inverse can be obtained in a similar
manner to the sparse case by additionally assuming that the
minimum eigenvalue of X¥ is above e.

Sparsity of the Inverse

Here we make the assumption that the inverse covariance
matrix 0" = (29! is sparse. Let £(0%) = {(i,j)]i #

e 0} be the set of off-diagonal non-zero elements
the inverse covariance matrix. Define s = |£(0Y)] as the
size of this set. Set S = £(0) U {(4,4)|¢ € [n]} includes the
diagonals. Also, d is the maximum row cardinality which is
the maximum number of non-zero elements in any row of the
inverse covariance matrix.

We define I' = (0°)~! @ (©%)~! which is the Hessian of
the log-determinant determinant function. We characterize the
convergence in terms of quantities £z = ||X°]|o0, £ = ||T']| 0o-
Another important assumption being made is an irrepre-
sentability condition given by ||I'scs(Fss) oo < 1 — cu.

The estimator for the empirical inverse covariance matrix is
obtained from the Bregman divergence on the log determinant
function. Consider g(©) = —log |©|. We now find symmetric
positive definite matrix © which minimizes D,(0°||©) which
leads to

6" = argming, ( Tr(OTX°) — log |0 + A [|O]1.0ff

We obtain the final estimator by replacing unknown X% with
its empirical estimate and a regularization term which is the
¢y sum of off-diagonal elements [|O||1or = >, ; ;2; [Oi;]-

For T > 288log %2 d? max( 195 (10, 13) max (k343
2)26(0).1, w1th probability at least ||AY?||pax < Y(6) <
(1+8/a)dmax(nrf€z pyEal Following Theorem 1 and corollary
3 of Ravikumar, we see with high probability and upto order

T 1/2

kprS)(1+

16° — O°%|max < 26 (1 + 2)7(5)
16° — 0% p < 2kp(1+ 2)\/@7(5)
18° —©°[l> < 2rr(1 + 2) min(v/s +n, d)y(6)
120 — 20|l < 26&kr(1 + %)7(5) +6r%RE(L+ 2)2d272(5)



Low rank matrix We assume the rank of the matrix X"
is 7 < n. We employ the following estimator to obtain a low
rank matrix approximation

$F = argming, || — ZF[1F + A2
We now observe,

IZF = S51% + AallZl < 8% = ZF)% + Al 2]
= AlE - 2(8, A%F) < M)Al
= AlF < @IAS 2 + A) Al

_ 3 _
= IAI3 < SAalA]L ™

where in the final step, we have used the fact that A\, >
A AS |2 and [|All. < V7] Allp.

We now bound ||Al|... We define subspace A to span the first
r singular vectors of ¥* and B the remaining singular vectors.
We use II 4 to denote the euclidean projection operation onto
subspace A. Clearly, % = I1 4(X%) + Iz (ZF).

We now define Ay = I15(A) and A; = A — A,. Consider
the SVD of ¥*¥ = UDVT. We can write

A=U [Vn V12:| al
Va1 Va2

U [Vn V12:| VT
V91 0

_ vii/2 0 /2 vz T
—u([? o+ ey
where v1; € R™". Clearly, rank(A;) < 2r as it can be
written as a sum of 2 matrices with r non-zero rows or

columns in each.
We can write

:>A1

IZ* ) = TLa(ZF) + Az + () + Ad
> [ITLA(SY) + Bafls — [[T5(5*) + Al
> LA () + [ B2l = [Ts(E5) L~ [Adll (®)

From optimal solution of optimization problem, we have
0 < A%/ An
1. _
< AL+ M. - 155

3 < 1
2T (). + S1A1 . = 513,
= 1Ball. < 314 +4Ts (2],

where we have used Eq. 8 in the third inequality. We conclude

1Al < 4| A
< 4V2r|A|lp

We substitute this in the Eq. 7 to obtain ||A||p < 6\,V/2r

[A=%F-X
[(A, B) <This|lis|[ @it when [[AT0]l2 < Amin (X°) and X0 is invertible.

APPENDIX D

In this section, we estimate the transition matrix under
various constraints.

Dense Transition Matrix

With probability greater than 1 — 4 both, maximum value of
AY0 = 30 — 50 and AX! = ! — 2! are less than v(5/2).
We have also seen that |AX0|, |[AS!]2 < O(/ny(5/2)).
As mentioned in [1], we get

2
||%]20T||2 < |ZT5A%0; < %

min

The error is given by,
[A— Ay < EPTE0F — plT0t 4 plrs0f _ sirs0fy|,
(Al + [IZ ) IAS 2 + (S|l A2
2vny(6/2)

0'2 ’

min

IN

IN

completing the proof.
Sparse Transition Matrix
We now prove Theorem 3 to obtain results with sparse A.
This proof is described in [2] for getting performance bounds
on estimate A using algorithm (??) with our estimates of
»0 »h
Let ~(6/2) be the maximum deviation of empirical covari-
ance matrices as earlier.
We show that AT = 207! is a feasible solution with high
probability.
||2A:0AT - ZA31||max < H(io - EO)AHmax + ”(21 - El)”max
<7(6/2)(AL +1) = A
Clearly, |Al; < ||A|ly with high probability. We also
obtain,
H‘Z1 — Allmax = ||EOT(ZOAT - Zl)”max
— ||xOf (ZOAT CSO0AT £ S0AT s 21) e
< 2=l =M
We can use A; as a threshold level for sparsity. We consider
each column j separately. Define set 7 = {i € [n]|A;;| > A1 }.
For convenience, we denote column j of matrix A as a and
matrix A as a. We can write
la —ally < llarelly + llarelly + [la7 — arlL
< lally + lla7elx — a7l + llar — a7l
<2llazells + (larls = llarlh) + llar — arll
<2(llare|1 + llar —arlh)

Consider sum




Now, [la7e|1 < Aisq = 5)\%7‘1. Also, ||ar—aT|1 < M|Tj] <
AMse = s\~ . Substituting these, we get the bound [|A —
AHI S 48)\17(1.

Low Rank Transition Matrix

We assume the rank of the transition matrix A is r < n.
We use the following estimator

A = argming (AT, 30AT — 251 4+ ), ||A]..

For the analysis, we again denote A = A — A. From the
optimality conditions and some algebra,

(AT, 20AT) < 2(AT, B! - £04T) + A (Al — 1 4])
< 2= = 2°AT2 + A IA]
< (A% |2 + omaxl| AZ]l2) + An) (1A«

As shown in appendix earlier, we get ||All. < 4v2r||A|r
when A\, > 4(JJAXY]s + omax|AX02) = 4(1 +
Omax)72(0/2).

Now the optimization problem is convex when
0 > 0 and a sufficient condition is when
JAXO; € 72(0/2) < Awn(S°)/2. This happens
when we have large enough number of time samples

128nlog1/6 w |2
T > )\Qn g(go)i max ((1[€m!i)47 ”Qv“%) Now

(AT S0AT) > )‘"“‘f(zo)HAH% which leads to the bound
AllF < 12X,v/2r.

APPENDIX E

In this appendix, we study the estimation of time-varying
vector autoregressive processes.
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