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APPENDIX A

In this appendix, we prove the convergence of ‖Σ̂0−Σ0‖2.
In order to do this, we use a covering net argument. First, we
prove convergence for any α, β ∈ Rn such that ‖α‖2, ‖β‖2 ≤
1.

We assume that the process begins Tp ≥ 0 time units before
observations take place. In other words, x−Tp = xS . We
provide some definitions and rewrite a few expressions.

Consider Φ ∈ RnT×n(Tp+T ),Γi ∈ RT×nT ,Λk ∈ RT×T

Φ =


ATp . . . A I . . . 0
ATp+1 . . . A2 A . . . 0

...
. . .

...
ATp+T−1 . . . AT AT−1 . . . I



Γi =


eᵀi
eᵀn+i

...
eᵀn(T−1)+i


Λk =

[
0T−k×k IT−k×T−k
0k×k 0k×T−k

]
Lemma 1. We have these properties:

1) ‖Φ‖2 ≤ (1− σmax)−1

2) Λᵀ
kΓiΓ

ᵀ
jΛk =

[
0 0
0 IT−k×T−k

]
1(i = j)

Proof. We can define binary matrices {Jl}l∈[Tp+T ] ∈ of
dimension T ×Tp+T . Jl denotes locations in block matrix Φ
where Al is present. Jl has at most 1 non-zero entry in each
row. Hence, ‖Jl‖2 ≤ 1.

Φ =

Tp+T∑
l=0

Jl ⊗Al [Kronecker product]

⇒ ‖Φ‖2 ≤
∞∑
l=0

‖Jl‖2‖Al‖2 [Norm over ⊗]

⇒ ‖Φ‖2 ≤
∞∑
l=0

σlmax =
1

(1− σmax)

This research was supported in part by TI Stanford Graduate Fellowship,
and in part by the NSF under CPS Synergy grant 1330081.

M. Rao, A. Kipnis, and A. Goldsmith are with the Dept. of Electri-
cal Engineering, Stanford University, Stanford, CA 94305, USA (e-mail:
milind@stanford.edu, kipnisal@stanford.edu, andrea@ee.stanford.edu).

T. Javidi is with the Dept. of Electrical and Computer Engineering,
University of California, San Diego, La Jolla, CA 92093, USA (e-mail:
tjavidi@ucsd.edu).

Y. Eldar is with the Dept. of Electrical Engineering Technion, Israel Institute
of Technology, Haifa 32000, Israel (email:yonina@ee.technion.ac.il)

The second point is self-evident by definition.

Let 0l be an l-dimensional vector of zeros. We create
stacked vectors of noise W = [w−Tp+1| . . . |w0|w1| . . . |wT ],
the initial conditions of the same dimension XS = [xS |0((T+
Tp − 1)n)], and the observational noise V = [v1| . . . |vT ]. Let
the stacked vector of observations of position i with delay k be
the T -dimensional vector Z(k)i = [z1+k,i|z2+k,i| . . . |zT,i|0k].
We recall that Pt,i is 1 if the ith position of noisy ob-
servation of xt is observed in the sampling case or is the
multiplicative noise otherwise. We create the T -diagonal ma-
trix P (k)i = diag([P1+k,i| . . . |PT,i|0(k)]) and denote with
P (k)i,j = P (0)iP (k)j . Finally, θ(k)i,j = E[Pt,iPt+k,j ].

First, we prove a lemma about the impact of multiplicative
noise or sampling.

Lemma 2. With bounded multiplicative noise, we have with
probability at most δ/3, event Err occurs where

Err =

{
max
i,j

Tr(P 2(k)i,j
(T − k)θ(k)i,j

− 1 ≥√
(k + 1)(p4

u − p4
l ) log(3n2(k + 1)/δ)

2(T − 2k)θ(k)2
∗

}
Proof. To bound Tr(P 2(k)i,j), we need to bound the
sum

∑T−k
t=1 P 2

t,iP
2
t+k,j . We break this up into k + 1

with the number of terms being at least dT − 2k/k +
1e independent terms. The mth such series is Sm =∑dT−k−m+1/k+1e
t=1 P 2

(k+1)t+m−1,iP
2
(k+1)t+m−1+k,j .

First consider the case where Pt,i is bounded between
[pl, pu]. Each of the terms in the sum is (p4

u − p4
l )

2/4
subgaussian. By Hoeffding inequality,

Pr (Sm ≥ θ(k)i,jdT − k −m+ 1/k + 1e(1 + pρ)) ≤

exp

(
−

2θ(k)2
i,jp

2
ρdT − 2k/k + 1e

(p4
u − p4

l )
2

)
We re-arrange and use union bound over these k+ 1 sums as
well as the n2 number of i, j terms and rearrange to complete
the proof.

From earlier definitions, we have

Z(k)i = P (k)iΛkΓi(Φ(W +XS) + V )

αᵀΣ̂kijβ =
∑
i,j

αiβj
[ 1

(T − k)θ(k)i,j
Z(0)ᵀi Z(k)j

− (Qv)i,j1(k = 0)
]
.



We can split αᵀΣ̂kijβ into these three terms -

T1 = (W ᵀΦᵀ + V ᵀ)AT (ΦW + V )

− αᵀQvβ1(k = 0)

T2 = Xᵀ
S(AT +Aᵀ

T )(ΦW + V )

T3 = Xᵀ
SΦᵀATΦXS

Σ̂ki,j = T1 + T2 + T3

AT =
∑
i,j

αiβjΓ
ᵀ
i

P (k)i,j
(T − k)θ(k)i,j

ΛkΓj

Lemma 3. Conditioned on the event that Err does not occur,
we have

Pr (|T1 − E[T1]| ≥ ε)

≤ 2 exp

− ε2(T − k)θ(k)∗

8 max(‖Qv‖22,
‖Qw‖22

(1−σmax)4 )

 (1)

Pr (|T2| ≥ ε)

≤ 2 exp

(
− ε2(T − k)2θ(k)2

∗
8p4
u‖xS‖22(‖Qw‖2(1− σmax)−2 + ‖Qv‖2)

)
(2)

|T3| ≤
p2
uσ

2Tp
max‖xS‖22

(T − k)θ(k)∗(1− σmax)2
(3)

|T3 − E[T3]|

≤
(
p2
u

θ(k)∗
+ 1)σ

2Tp
max‖xS‖22

(T − k)(1− σmax)2
(4)

Proof. Term T1:
W can be written as Q1/2

W zw where QW = E[WW ᵀ] =
Qw ⊗ IT+Tp×T+Tp

and zw ∼ N (0, In×n). Similarly V =

Q
1/2
V zv . It can be seen that ‖QW ‖2 ≤ ‖Qw‖2, ‖QV ‖2 ≤
‖Qv‖2.

T1 =

[
zW
zV

]ᵀ
L1

[
zW
zV

]
− αᵀQvβ1(k = 0)

L1 = Bᵀ
TATBT

BT =

[
ΦQ

1/2
W 0

0 Q
1/2
V

]
⇒ ‖L1‖2F ≤ ‖BT ‖42‖AT ‖2F

Norm of BT can be bounded as

‖BT ‖42 ≤ max(‖Qv‖22,
‖Qw‖22

(1− σmax)4
)

We employ lemma 1 and 2 to now bound AT with high

probability as

‖AT ‖2F =
∑
i,j

α2
iβ

2
j

(T − k)2θ(k)i,j
‖P (k)i,jΛk‖2F

≤
∑
i,j

α2
iβ

2
j

(T − k)2θ(k)i,j
Tr(P (k)2

i,j)

≤ 1

(T − k)θ(k)∗
(
∑
i

α2
i )(
∑
j

β2
j )

≤ 1

(T − k)θ(k)∗

For the concentration result, consider eigenvalues of sym-
metric matrix Ls =

L1+Lᵀ
1

2 be λi. We have
∑
i λ

2
i = ‖Ls‖2F ≤

L2
F . Diagonalizing Ls and because of the circularly symmetric

nature of standard gaussian vector

zᵀL1z − E[zᵀL1z] =
∑
i

λi(z
2
i − 1)

Pr(
∑
i

λi(z
2
i − 1) ≥ ε) ≤ e−tε

∏
i

E[exp
(
tλi(z

2
i − 1)

)
]

≤ exp (−tε)
∏
i

e−tλi

√
1− 2tλi

≤ exp

(
−tε+ 2t2

∑
i

λ2
i

)
The first inequality holds when t ≥ 0. The second holds using
MGF of χ2 random variable when tλi ≤ 1

2 . The last inequality
holds as log(1 − x) ≥ −x − x2 when x ≤ 1

2 or whenever
tλi ≤ 1

4 . We take t = ε
4L2

F
to obtain the bound.

Term T2

We can write

T2 = lᵀ2

[
zw
zv

]
l2 = Xᵀ

SΦᵀ(AT +Aᵀ
T )
[
ΦQ

1/2
W Q

1/2
V

]
⇒ ‖l2‖22 ≤

4

(T − k)2
‖xS‖22‖AT ‖22[(1− σmax)−2)‖Qw‖2 + ‖Qv‖2]

We now bound ‖AT ‖22 as

‖AT ‖22 ≤
∑

i,j,i′,j′

αiβjαi′βj′‖Γᵀ
jΛk

P (k)i,j
θ(k)i,j

ΓiΓ
ᵀ
i′
P (k)i′,j′

θ(k)i′,j′
ΛkΓj′‖2

≤ p4
u

θ(k)2
∗

∑
i,j

α2
iβ

2
j

where the last inequality is by applying lemma 1 and observing
that Γᵀ

jΛᵀ
kP

2ΛkΓj′ is zero when j 6= j′ as P is a diagonal
matrix. We now apply Hoeffding bound to arrive at the answer.

Term T3

We use the bound on ‖AT ‖2 and submultiplicative property
of the `2 bound to prove the bound. Also, |T3 − E[T3]| ≤
|T3|+ |E[T3]|.



Lemma 4. The difference between the mean of the sample
covariance and the true covariance matrices is bounded as

‖E[Σ̂k]− Σk‖2 ≤
σ

2Tp+k
max

(1− σ2
max)(T − k)

×[
‖Qw‖2

(1− σ2
max)

+
p2
u‖xS‖22

mini,j θ(k)i,j

]
.

Proof. We have Σk = E[xtx
ᵀ
t+k] =

(∑∞
i=0A

iQwA
iᵀ
)
Akᵀ.

Now we can split the empirical covariance into two terms -
the first due to a start from origin and the second due to the
exponential decay of the initial state captured in T3.

E[Σ̂k] = E

[
1

T − k

T−k∑
t=1

xtx
ᵀ
t+k | x−Tp

= xS

]

� 1

T − k

T−k∑
t=1

Tp+t−1∑
i=0

AiQwA
i+kᵀ + |T3|I

‖E[Σ̂k]− Σk‖2 ≤
1

T − k

T−k∑
t=1

∞∑
i=Tp+t

‖Qw‖2σ2i+k
max + |T3|

≤ ‖Qw‖2σkmax

(1− σ2
max)(T − k)

T−k∑
t=1

σ2(Tp+t)
max + |T3|

≤ σ
2Tp+k
max

(1− σ2
max)(T − k)

[
‖Qw‖2

(1− σ2
max)

+
p2
u‖xS‖22

mini,j θ(k)i,j

]
We complete the proof by observing that for any M × M
matrix L, ‖L‖max = maxi,j∈[M ] |eᵀi Lej | ≤ ‖L‖2.

We now present the proof of Theorem 1 which combines
the above results.

Proof. Max norm bound Conditioned on event Errc, using
Lemma 3 and Lemma 2, we see that with probability larger
than 1− δ/3,

|T1 − E[T1]| ≤√
8 log(6/δ)

(T − k)θ(k)∗
max

(
‖Qw‖2

(1− σmax)2
, ‖Qv‖2

)
+ o((T − k)−0.5).

Similarly, for T2 we find that with probability larger than
1− δ/3,

|T2| ≤
p2
u‖xS‖2

(T − k)θ(k)∗
×√

8 log(6/δ)

(
‖Qw‖2

(1− σmax)2
+ ‖Qv‖2

)
which is o((T − k)−0.5).

Finally,

‖Σk − Σ̂k‖max ≤ ‖Σ̂k − E[Σ̂k]‖max + ‖E[Σ̂k]− Σk‖max

≤ |T1 − E[T1]|+ |T2|
+ |T3 − E[T3]|+ ‖E[Σ̂k]− Σk‖max

We use Lemma 4 to get

αᵀ(Σ̂k − Σk)β

≤

√
8 log(6/δ)

(T − k)θ(k)∗
max

(
‖Qw‖2

(1− σmax)2
, ‖Qv‖2

)
+ o((T − k)−1/2)

when ‖α‖2, ‖β‖2 ≤ 1.
Now using α = ei and β = ej we obtain the convergence

result for each element |Σ̂kij − Σkij | and taking union bound
over the n2 choices, we obtain the result for the max bound.
`2 norm bound Let us define ∆Σk = Σ̂k−Σk. We consider

a covering set A such that for any α ∈ Rn such that ‖α‖2 ≤ 1,
there exists α′ ∈ A with ‖α′‖2 ≤ 1, ‖α − α′‖2 ≤ ε. From
covering set theory, we can construct such a set with |A| ≤
(3/ε)n. Applying union bound, we find

max
α,β∈A

αᵀ∆Σkβ ≤

√
8(2n log(ε/3) + log(6/δ))

(T − k)θ(k)∗
×

max

(
‖Qw‖2

(1− σmax)2
, ‖Qv‖2

)
+ o((T − k)−1/2)

Now, we see

‖∆Σk‖2 = max
α,β

αᵀ∆Σkβ

≤ max
α′,β′∈A

α′ᵀ∆Σkβ′ + (α− α′)ᵀ∆Σkβ′

+ αᵀ∆Σk(β − β′)
≤ max
α′,β′∈A

α′ᵀ∆Σkβ′ + 2ε‖∆Σk‖2

⇒ ‖∆Σk‖2 ≤
1

1− 2ε
max

α′,β′∈A
α′ᵀ∆Σkβ′

We use ε = 1/4 to obtain the final result.

APPENDIX B

In this section, we prove the analogue of Theorem 1 for
higher order VAR processes.

The proof from section A goes through with a few modifica-
tions. QV = E[V V ᵀ] = Qv⊗JV where JV is a binary matrix
with at most p ones in each row. Thus ‖QV ‖2 ≤ p‖Qv‖2.

The other difference is the term Tr(P 2(k)i,j). It can be
observed that

Tr(P 2(k)i,j) = Tr

(
P 2

(∣∣∣∣bj − 1

n
c − b i− 1

n
c+ k

∣∣∣∣)
ip,jp

)

(ip, jp) =


(i− 1 mod n+ 1, j − 1 mod n+ 1)

b j−1
n c − b

i−1
n c+ k ≥ 0

(j − 1 mod n+ 1, i− 1 mod n) o.w.
.

Thus earlier convergence result holds with union bound taken
over (np)2 choices of i, j.

We also now take the union bound over (np)2 choices for
the max bound and correspondingly larger set for the 2 norm.
|A| ≤ (3/ε)np to get the final answer.



APPENDIX C
In this appendix, we derive convergence guarantees for the

covariance matrix under structural assumptions.
Sparsity Let the set U = {Σ :

∑
j |Σij |q ≤ k∀i}. We

assume Σk ∈ U .
Consider the thresholding operation Tt(·) defined as

(Tt(Σ))ij = Σij1(|Σij | ≥ t).

We observe,

‖Tt(Σ̂k)− Σk‖2 ≤ ‖Tt(Σ̂k)− Tt(Σk)‖2 + ‖Tt(Σk)− Σk‖2
The second term can be bounded as

‖Tt(Σk)− Σk‖2 ≤ max
i

∑
j

|Σkij |1(|Σkij | ≤ t)

≤ max
i
t
∑
j

|Σkij/t|q1(|Σkij | ≤ t)

≤ t1−qk (5)

The first term needs a more detailed analysis as

‖Tt(Σ̂k)− Tt(Σk)‖2 ≤ max
i

∑
j

|(Tt(Σ̂k)− Tt(Σk))ij |

≤ max
i

∑
j

|Σkij − Σ̂kij |1(|Σkij | ≥ t, |Σ̂kij | ≥ t)

+ max
i

∑
j

|Σkij |1(|Σkij | ≥ t, |Σ̂kij | ≤ t)

+ max
i

∑
j

|Σ̂kij |1(|Σkij | ≤ t, |Σ̂kij | ≥ t)

= I + II + III

I can be bounded with high probability as,

I ≤ ‖∆Σk‖max max
i

∑
j

1(|Σkij | ≥ t)

≤ γ(δ) max
i

∑
j

(Σkij/t)
q1(|Σkij | ≥ t) (6)

≤ γ(δ)kt−q

For term II, we have,

II ≤ max
i

∑
j

(
|∆Σkij |+ |Σ̂kij |

)
1(|Σkij | ≥ t, |Σ̂kij | ≤ t)

≤ (γ(δ) + t)kt−q

where we have used the bound in Eq. 6 and recognised that
each term in the second summation is bounded by t.

Term III can be written in two parts

III ≤ max
i

∑
j

[|∆Σkij |+ |Σkij |]1(|Σkij | ≤ t, |Σ̂kij | ≥ t)

≤ max
i

∑
j

|∆Σkij |1(|Σkij | ≤ t, |Σ̂kij | ≥ t) + kt1−q

≤ γ(δ) max
i

∑
j

1(|Σkij | ≥ t− γ(δ)) + kt1−q

≤ γ(δ)
t−q

(1− γ(δ)/t)q
+ kt1−q

where Eq. 5 has been used.
We now use t = 2γ(δ) to obtain the bound.
Additionally, if λmin(Σk) ≥ ε0, we obtain the result

for the inverse as well as ‖(Tt(Σ̂k))−1 − (Σk)−1‖2 =

ω
(
‖Tt(Σ̂k)− Σk‖2

)
Bandedness It is assumed that Σk ∈ V = {Σ :

maxi
∑
j |Σkij |1(|i− j| > s) ≤ Cs−q∀k, i}.

We consider the banding operation Bs(·) defined as

Bs(Σ)ij = Σij1(|i− j| ≤ s)

As earlier, we observe,

‖Bs(Σ̂k)− Σk‖2 ≤ ‖Bs(Σ̂k)−Bs(Σk)‖2 + ‖Bs(Σk)− Σk‖2
≤ 2sγ(δ) + Cs−α

We use s = γ−1/(α+1)(δ) to obtain the final answer
O(γα/(α+1)(δ)). The inverse can be obtained in a similar
manner to the sparse case by additionally assuming that the
minimum eigenvalue of Σk is above ε0.

Sparsity of the Inverse
Here we make the assumption that the inverse covariance

matrix Θ0 = (Σ0)−1 is sparse. Let E(Θ0) = {(i, j)|i 6=
j,Θ0

ij 6= 0} be the set of off-diagonal non-zero elements
in the inverse covariance matrix. Define s = |E(Θ0)| as the
size of this set. Set S = E(Θ) ∪ {(i, i)|i ∈ [n]} includes the
diagonals. Also, d is the maximum row cardinality which is
the maximum number of non-zero elements in any row of the
inverse covariance matrix.

We define Γ = (Θ0)−1 ⊗ (Θ0)−1 which is the Hessian of
the log-determinant determinant function. We characterize the
convergence in terms of quantities κΣ = ‖Σ0‖∞, κΓ = ‖Γ‖∞.
Another important assumption being made is an irrepre-
sentability condition given by ‖ΓScS(ΓSS)−1‖∞ ≤ 1− α.

The estimator for the empirical inverse covariance matrix is
obtained from the Bregman divergence on the log determinant
function. Consider g(Θ) = − log |Θ|. We now find symmetric
positive definite matrix Θ which minimizes Dg(Θ

0||Θ) which
leads to

Θ̂0 = argminΘ�0 Tr(ΘᵀΣ0)− log |Θ|+ λn‖Θ‖1,off

We obtain the final estimator by replacing unknown Σ0 with
its empirical estimate and a regularization term which is the
`1 sum of off-diagonal elements ‖Θ‖1,off =

∑
i,j i6=j |Θij |.

For T ≥ 288 log 6n2

δ d2 max(
‖Qw‖22

(1−σmax)4 , ‖Qv‖22) max(κ2
Γκ

2
Σ, κ

4
Γκ

6
Σ)(1+

8
α )2θ(0)−1

∗ , with probability at least ‖∆Σ0‖max ≤ γ(δ) ≤
1

6(1+8/α)dmax(κΓκΣ,κ2
Γκ

3
Σ)

. Following Theorem 1 and corollary
3 of Ravikumar, we see with high probability and upto order
T−1/2

‖Θ̂0 −Θ0‖max ≤ 2κΓ(1 +
8

α
)γ(δ)

‖Θ̂0 −Θ0‖F ≤ 2κΓ(1 +
8

α
)
√
s+ nγ(δ)

‖Θ̂0 −Θ0‖2 ≤ 2κΓ(1 +
8

α
) min(

√
s+ n, d)γ(δ)

‖ ˆ̂
Σ0 − Σ0‖2 ≤ 2κ2

ΣκΓ(1 +
8

α
)γ(δ) + 6κ3

Σκ
2
Γ(1 +

8

α
)2d2γ2(δ)



Low rank matrix We assume the rank of the matrix Σk

is r � n. We employ the following estimator to obtain a low
rank matrix approximation

Σ̄k = argminΣ ‖Σ− Σ̂k‖2F + λn‖Σ‖∗

We now observe,

‖Σ̄k − Σ̂k‖2F + λn‖Σ̄‖∗ ≤ ‖Σk − Σ̂k‖2F + λn‖Σk‖∗
⇒ ‖∆̄‖2F − 2〈∆̄,∆Σk〉 ≤ λn‖∆̄‖∗ [∆̄ = Σ̄k − Σk]

⇒ ‖∆̄‖2F ≤ (2‖∆Σk‖2 + λn)‖∆̄‖∗ [〈A,B〉 ≤ ‖A‖2‖B‖∗]

⇒ ‖∆̄‖2F ≤
3

2
λn‖∆̄‖∗ (7)

where in the final step, we have used the fact that λn ≥
4‖∆Σk‖2 and ‖A‖∗ ≤

√
r‖A‖F .

We now bound ‖∆̄‖∗. We define subspaceA to span the first
r singular vectors of Σk and B the remaining singular vectors.
We use ΠA to denote the euclidean projection operation onto
subspace A. Clearly, Σk = ΠA(Σk) + ΠB(Σk).

We now define ∆̄2 = ΠB(∆̄) and ∆̄1 = ∆̄− ∆̄2. Consider
the SVD of Σk = UDV ᵀ. We can write

∆̄ = U

[
ν11 ν12

ν21 ν22

]
V ᵀ

⇒ ∆̄1 = U

[
ν11 ν12

ν21 0

]
V ᵀ

= U

([
ν11/2 0
ν21 0

]
+

[
ν11/2 ν12

0 0

])
V ᵀ

where ν11 ∈ Rr×r. Clearly, rank(∆̄1) ≤ 2r as it can be
written as a sum of 2 matrices with r non-zero rows or
columns in each.

We can write

‖Σ̄k‖∗ = ‖ΠA(Σk) + ∆̄2 + ΠB(Σk) + ∆̄1‖∗
≥ ‖ΠA(Σk) + ∆̄2‖∗ − ‖ΠB(Σk) + ∆̄1‖∗
≥ ‖ΠA(Σk)‖∗ + ‖∆̄2‖∗ − ‖ΠB(Σk)‖∗ − ‖∆̄1‖∗ (8)

From optimal solution of optimization problem, we have

0 ≤ ‖∆̄‖2F /λn

≤ 1

2
∆̄‖∗ + ‖Σk‖∗ − ‖Σ̄k‖∗

2‖ΠB(Σk)‖∗ +
3

2
‖∆̄1‖∗ −

1

2
‖∆̄2‖∗

⇒ ‖∆̄2‖∗ ≤ 3‖∆̄1‖∗ + 4‖ΠB(Σk)‖∗,

where we have used Eq. 8 in the third inequality. We conclude

‖∆̄‖∗ ≤ 4‖∆̄1‖∗
≤ 4
√

2r‖∆̄‖F

We substitute this in the Eq. 7 to obtain ‖∆̄‖F ≤ 6λn
√

2r

APPENDIX D

In this section, we estimate the transition matrix under
various constraints.

Dense Transition Matrix
With probability greater than 1−δ both, maximum value of

∆Σ0 = Σ̂0 − Σ0 and ∆Σ1 = Σ̂1 − Σ1 are less than γ(δ/2).
We have also seen that ‖∆Σ0‖2, ‖∆Σ1‖2 ≤ O(

√
nγ(δ/2)).

As mentioned in [1], we get

‖∆Σ0†‖2 ≤ ‖Σ0†‖22‖∆Σ0‖2 ≤
√
nγ(δ/2)

σ2
min

.

This is true when ‖∆Σ0‖2 < λmin(Σ0) and Σ0 is invertible.
The error is given by,

‖Â−A‖2 ≤ ‖Σ̂1ᵀΣ̂0† − Σ1ᵀΣ̂0† + Σ1ᵀΣ̂0† − Σ1ᵀΣ0†‖2
≤ (‖∆Σ0†‖2 + ‖Σ0†‖2)‖∆Σ1‖2 + ‖Σ1‖2‖∆Σ0†‖2

≤ 2
√
nγ(δ/2)

σ2
min

,

completing the proof.
Sparse Transition Matrix
We now prove Theorem 3 to obtain results with sparse A.

This proof is described in [2] for getting performance bounds
on estimate A using algorithm (??) with our estimates of
Σ0,Σ1.

Let γ(δ/2) be the maximum deviation of empirical covari-
ance matrices as earlier.

We show that Aᵀ = Σ0†Σ1 is a feasible solution with high
probability.

‖Σ̂0Aᵀ − Σ̂1‖max ≤ ‖(Σ̂0 − Σ0)A‖max + ‖(Σ̂1 − Σ1)‖max

≤ γ(δ/2)(‖A‖1 + 1) = λ

Clearly, ‖Â‖1 ≤ ‖A‖1 with high probability. We also
obtain,

‖Â−A‖max = ‖Σ0†(Σ0Âᵀ − Σ1)‖max

= ‖Σ0†
(

Σ0Âᵀ − Σ̂0Âᵀ + Σ̂0Âᵀ − Σ̂1 + Σ̂1 − Σ1
)
‖max

≤ 2λ‖Σ0†‖1 = λ1

We can use λ1 as a threshold level for sparsity. We consider
each column j separately. Define set T = {i ∈ [n]|Aij | ≥ λ1}.
For convenience, we denote column j of matrix A as a and
matrix Â as â. We can write

‖â− a‖1 ≤ ‖âT c‖1 + ‖aT c‖1 + ‖âT − aT ‖1
≤ ‖a‖1 + ‖aT c‖1 − ‖âT ‖1 + ‖âT − aT ‖1
≤ 2‖aT c‖1 + (‖aT ‖1 − ‖âT ‖1) + ‖âT − aT ‖1
≤ 2 (‖aT c‖1 + ‖aT − âT ‖1)

Consider sum

sa =
∑
i

min(
|ai|
λ1

, 1)

≤ λ−q1

∑
i

|ai|q = sλ−q1



Now, ‖aT c‖1 ≤ λ1sa = sλ1−q
1 . Also, ‖aT −âT ‖1 ≤ λ1|Tj | ≤

λ1sa = sλ1−q
1 . Substituting these, we get the bound ‖Â −

A‖1 ≤ 4sλ1−q
1 .

Low Rank Transition Matrix
We assume the rank of the transition matrix A is r � n.

We use the following estimator

Â = argminB〈Aᵀ, Σ̂0Aᵀ − 2Σ̂1〉+ λn‖A‖∗

For the analysis, we again denote ∆̂ = Â − A. From the
optimality conditions and some algebra,

〈∆̄ᵀ, Σ̂0∆̄ᵀ〉 ≤ 2〈∆̄ᵀ, Σ̂1 − Σ̂0Aᵀ〉+ λn(‖A‖∗ − ‖Â‖∗)
≤ (2‖Σ̂1 − Σ̂0Aᵀ‖2 + λn)‖∆̄‖∗
≤ (2(‖∆Σ1‖2 + σmax‖∆Σ0‖2) + λn)‖‖∆̄‖∗

As shown in appendix earlier, we get ‖∆̂‖∗ ≤ 4
√

2r‖∆̂‖F
when λn ≥ 4(‖∆Σ1‖2 + σmax‖∆Σ0‖2) = 4(1 +
σmax)γ2(δ/2).

Now the optimization problem is convex when
Σ̂0 � 0 and a sufficient condition is when
‖∆Σ0‖2 ≤ γ2(δ/2) < λmin(Σ0)/2. This happens
when we have large enough number of time samples
T ≥ 128n log 1/δ

λ2
minθ(0)∗

max
(
‖Qw‖22

(1−σmax)4 , ‖Qv‖22
)

. Now

〈∆̄ᵀ, Σ̂0∆̄ᵀ〉 ≥ λmin(Σ0)
2 ‖∆̄‖2F which leads to the bound

‖∆̄‖F ≤ 12λn
√

2r.

APPENDIX E

In this appendix, we study the estimation of time-varying
vector autoregressive processes.
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