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Abstract—The problem of learning the parameters of a vector
autoregressive (VAR) process from partial random measure-
ments is considered. This setting arises due to missing data
or data corrupted by multiplicative bounded noise. We present
an estimator of the covariance matrix of the evolving state-
vector from its partial noisy observations. We analyze the non-
asymptotic behavior of this estimator and provide an upper
bound for its convergence rate. This expression shows that the
effect of partial observations on the first order convergence rate
is equivalent to reducing the sample size to the average number
of observations viewed, implying that our estimator is order-
optimal. We then present and analyze two techniques to recover
the VAR parameters from the estimated covariance matrix
applicable in dense and in sparse high-dimensional settings. We
demonstrate the applicability of our estimation techniques in
joint state and system identification of a stable linear dynamic
system with random inputs.

Index Terms—system identification, covariance estimation, au-
toregressive processes, high-dimensional analysis, robust estima-
tion

I. INTRODUCTION

Vector Autoregressive (VAR) models were first introduced
by Sims [1] as a tool in macroeconometric analysis. These
models are natural tools for forecasting since the model
implies that current values of variables depend on past values
through a joint generation mechanism [2] and find applica-
tion in finance, econometrics, and neuroscience. Often VAR
models are fit on high dimensional data, in which the costs
of collecting, communicating, storing or computing may be
prohibitively high. One example is in wireless sensor networks
measuring an underlying VAR phenomenon. To conserve
battery power, measurements are typically collected from
only a few of the sensors at each epoch. In addition, data
collected using a sensor array may be missing or noisy due
to additive receiver noise or multiplicative fading noise. These
limitations on data acquisition motivate identifying or making
inferences from a system with partial observations. Under such
restrictions on the availability of the data, it is important to
design and analyze estimation procedures that are robust to
missing data.
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An auto-regressive (AR) process is characterized by a finite
set of parameters that describe the linear relation between
present time vector-valued samples and past vector samples
plus independent noise. A VAR process extends the definition
of an AR process by assuming that each coefficient in this
linear combination is a matrix. Specifically, random vectors
xt ∈ Rn evolve as

xt+1 = Axt + wt wt
iid∼ N (0, Qw), (1)

where A is the state-transition matrix. Our goal is to infer
the matrix A from partial observations of xt. Specifically,
suppose that we observe each element of xt with probability
ρ. We achieve this by first estimating the sample covariance
matrix for several time lags and then using these estimates to
approximate A.

A. Contribution

The main result of this paper is an estimator for the
covariance matrix of a first order VAR process from its partial
samples which are corrupted by multiplicative and additive
noise. We analyze the non-asymptotic behavior of the error
under this covariance estimator and provide an upper bound for
its convergence rate. For large time horizon T , we show that
the operator norm of the covariance estimator error vanishes
as 1/ρ

√
n/T where ρ ∈ (0, 1] is the effective rate of missing

data, T is the number of samples, and n is the dimension.
This implies that the effect of missing data translates to a ρ2

reduction in efficiency of estimation. In addition, we analyse
two methods to identify the transition matrix of the VAR: the
first approach may be applied to all matrices, while the second
one is particularly suited for sparse matrices. We compare
these two techniques by simulations which confirm the the-
oretical convergence predictions. Finally, we demonstrate our
proposed VAR parameter estimation techniques in estimating
the parameters of a stable linear dynamical system from its
partial state measurements. Once the system is identified,
Kalman filtering and Rauch-Tung-Striebel (RTS) smoothing
are used to jointly identify the state.

B. Related Work

While estimating the parameters of scalar auto-regressive
(AR) processes as well as their statistics is a well-established



field in signal processing and control [3], [4], some of the
counterparts of these problems for VAR estimation have still
not been studied. Recovering autoregressive model parameters
from partial observations is considered in [5]. In that work,
the authors quantify the asymptotic variance of the sample
covariances which indicate how quickly their estimator of the
covariance converges. The autoregressive model parameters
can then be obtained from the covariance.

The classic solution for estimating the state-transition matrix
A from full noiseless observations is done by using least-
squares [6]. When dimension n is larger than T , structural
assumptions on the transition matrix are imposed to enforce
identifiability. The work in [7] proposes a 2-stage approach
for fitting sparse VAR models where non-zero coefficients of
A are selected in the first stage and estimated in the second.
The authors of [8] and [9] impose lasso and nuclear norm
regularization procedures to encourage sparsity, low-rank in
the transition matrices. Non-asymptotic performance analysis
was performed assuming that certain stringent restricted strong
convexity properties held. Basu [10] showed how spectral
density influence the rate of convergence of sparse VAR
transition matrices.

In this work, methods from the following two papers on
VAR parameter estimation are adapted in our problem formu-
lation. In Bento et al. [11], attention is paid to recovering the
sparse support of the state-transition matrix of a VAR process
with complete observations. They consider a continuous-time
process model, but they break down the proof on the con-
vergence rate of the estimator for the state-transition matrix
by first considering the discrete-time case. The result in this
paper regarding the convergence rate of the covariance matrix
estimator is an extension of the discrete-time case of [11]. Our
results reduce to these in the special case of full and noiseless
observations. With full noiseless observations, work by Han
and Liu [12] analyses the problem of estimating weakly sparse
transition matrices without making the restricted eigenvalue
or irrepresentable condition approximations of prior analyses.
We apply their algorithm for estimating sparse transition
matrices from covariance estimates and obtain the same rate of
convergence in the case with complete noiseless observations.

The paper [13] is especially relevant to the problem at hand.
There the authors provide guarantees for high-dimensional
linear regression where the observations may have added
noise, missing data and may be dependent. This is done by
showing that the estimators for the covariance matrix satisfy
restricted strong convexity conditions. The estimators of the
covariance matrix from partial observations used in this work
are similar to the ones we use.

The problem of performing system identification from
partial samples is closely related to the subspace learning
problem with partial information. In the subspace learning
problem, iid samples are given from a high dimensional
distribution over a smaller subspace. The subspace in which
the observations lie is determined from its covariance matrix.
Like in our VAR parameter estimation problem, it is of
interest to determine the covariance matrix from partial

measurements in the subspace identification problem. The
algorithm GROUSE of [14] and PETRELS of [15] are
online algorithms without guarantees in which the subspace
is learned from partial observations. Theoretical sample
guarantees for this problem are obtained in [16]. In that work,
the convergence of an estimator of the covariance matrix
is first analysed after which bandit principle component
analysis (PCA) as well as other algorithms are used to obtain
the subspace. We obtain the same scaling in the covariance
estimate error. Similar in spirit, [17] uses a few compressive
linear measurements instead of partial samples and seeks
to learn the covariance matrix and the subspace of the
observations. The key difference is that the samples in our
problem are not iid but are dependent, which leads to slower
convergence of the covariance matrix.

The rest of this paper is organized as follows: the estimation
problem is presented in Section II. Section III states the main
results with respect to the estimators of covariance and state-
transition matrices and their convergence rates, where sketches
of the proofs are given in Section IV. Section V presents two
examples where our estimation techniques may apply, as well
as numerical simulations of the performance.

II. PROBLEM DESCRIPTION

Consider a linear dynamical system with state vector xt ∈
Rn evolving as (1). The transition matrix A is unknown and
it is assumed that ‖A‖2 = σmax < 1 A is stable; this implies
that the spectral radius is bounded by one and that A is stable.
It is observed that if σmax = 0, then the observations are
independent across time. Innovation process statistic Qw is
unknown. At each time instant we observe

zt = Pt(xt + vt),

where vt
iid∼ N (0, Qv) and the matrix Qv is assumed to be

known. The matrix Pt is a random measurement matrix of the
form

Pt = diag(pt),

with pt denoting an n−dimensional random vector. This vector
is independently sampled from a distribution P on bounded
non-negative support, where it is assumed that the first and
second order statistics of pt are known. The system is initiated
such that x0 is not assumed to be known but ‖x0‖2 is bounded
by O(T−1/2).

The above scenario may correspond to any of the following
observation models:

(i) Independent and homogenous random sampling of
observations: When P ≡ Bn(ρ), each observation is
viewed independently with fixed probability ρ. If ρ ≈ 1,
we have full observations and if ρ ≈ 0, we have limited
observations. Prior work [11], [12] has focussed on the
case where ρ ≈ 1.

(ii) Independent and heterogenous random sampling of
observations: In this setting P ≡ ∏n

i=1 B(ρi), so that



each observation is viewed independently with differ-
ing probabilities. This could model a scenario where
communication from some sensors is costlier or noisier
and hence observations from these sensors are made less
often.

(iii) Intermittent observations: When

P ≡
{
I w.p. ρ
0 else

,

we see all the observations with probability ρ or see
no observations at all at any time instant. This is the
scenario considered in the intermittent Kalman filtering
literature [18], [19], [20].

(iv) Multiplicative noise: The case in which P is an ar-
bitrary distribution on non-negative bounded support
[pl, pu]n, 0 ≤ pl ≤ pu < ∞ could model independent
multiplicative noise. Multiplicative noise could arise
from independent fading in the wireless sensor network
setting. Note that the multiplicative noise is independent
across time but the noise affecting each dimension of the
observation may be correlated.

We seek to find an algorithm to estimate A and bound the
number of samples T such that ‖ÂT − A‖ ≤ ε for a suitable
norm.

III. ALGORITHM AND RESULTS

A. Estimation Algorithm

Consider the k cross-correlation matrix

Σk , E[xtx
ᵀ
t+k].

From the Yule-Walker equations,

Σ1 = Σ0Aᵀ,

so that

A = Σ1ᵀΣ0†. (2)

Our approach is to form an estimate of Σk and then use that
to estimate A.

Since Σk is unknown, we first consider the empirical
covariance matrix Sk of observations zt:

Sk =
1

T − k
T−k∑
t=1

ztz
ᵀ
t+k.

Let θ(k)ij denote the average scaling due to the multiplicative
noise observed in the ijth element of Sk. We have

θ(k) = E[ptp
ᵀ
t+k].

We can observe that E[Sk] = E[ztz
ᵀ
t ] = θ(k)◦(Σk+Qv1(k =

0)) where ◦ denotes the entrywise or Hadamard product, Qv
is the covariance of the additive noise, and 1(·) is 1 if the
condition inside evaluates to true and is zero otherwise. We
define θ(k)∗ = mini,j θ(k)i,j to denote the minimum scaling
due to the multiplicative noise.

As our estimate of Σk, we use

Σ̂kij =
Skij
θ(k)ij

− (Qv)ij1(k = 0), (3)

The estimator Σ̂k is unbiased if the observations are taken
when the system is stationary (x0 arises from the stationary
distribution of the state vector).

Remark 1. In the special case of independently sampled ob-
servations with probability ρ, matrix θ(k)ij is the probability
that both the ith element of xt and the jth element of xt+k
are observed. The estimator can then be rewritten as

Σ̂k =
1

ρ2
Sk −

(
1− ρ
ρ2

Sk ◦ In −Qv
)
1(k = 0),

where ◦ denotes the Hadamard or entrywise product of matri-
ces. The matrix Sk ◦ In is diagonal with entries that are the
diagonal entries of matrix Sk.

Once Σk is estimated, we use it to estimate the transition
matrix in two ways, depending on the matrix properties:

1) Dense Matrix:
For dense A, our estimate Â is given by,

Âᵀ = Σ̂0†Σ̂1. (4)

2) Sparse Matrix:
The estimation (4) is not cognizant of special structural
properties of A such as sparsity. Sparsity is especially
relevant in high-dimensional regimes where the number
of samples is not much larger or even smaller than the
dimension. When A is sparse, the following estimate
from [12] is used:

Âᵀ = argmin
M∈Rn×n

∑
i,j

|Mi,j |

s.t. ‖Σ̂1 − Σ̂0M‖max ≤ λ (5)

The estimate (5) is similar to the Dantzig selector which
selects the sparsest choice of transition matrix satisfying
the constraints given for an appropriate choice of λ. This
form (5) suggests that we can recover other structured
high-dimensional transition matrices by using appropri-
ate regularization. An example would be to obtain a low
rank transition matrix by using the nuclear norm. This
will be investigated in future work.

B. Key Results

In this section, we obtain high probability performance
guarantees for the estimators described in the previous section.

Theorem 1. With probability at least 1− δ we have

‖∆Σk‖max ≤ γ(δ)

‖∆Σk‖2 ≤ γ2(δ) = 4
√
nγ(δ),

(6)

where up to order (T − k)−1/2,

γ(δ) =

√
8 log(6n2/δ)

(T − k)θ(k)∗
max

( ‖Qw‖2
(1− σmax)2

‖Qv‖2
)
.



Theorem 1 implies that the maximum deviation of the
sample covariance matrix from the expected covariance matrix
is proportional to the logarithm of the dimension. We could
have exponentially more dimensions than we have samples
and still expect to see low maximum deviation. The maximum
deviation is also penalized by the innovation noise and obser-
vation noise although the impact of the former is scaled up by
σmax, which represents the dependency factor. As σmax → 1,
we need more samples to estimate the covariance matrix to
a given accuracy. This is intuitive as the samples present less
new information if there is strong dependency.

Corollary 1. In the independent sampling case with prob-
ability ρ and with noiseless observations, we obtain with
probability greater than 1− δ

‖Σ̂k − Σk‖max ≤
‖Qw‖2

ρ(1− σmax)2

√
8 log(6n2/δ)

(T − k)
+ o((T − k)−0.5). (7)

The key fact to observe here is that the error is inversely
proportional to the square root of the number of samples
and inversely proportional to the sampling probability ρ. For
example, this implies that if the sampling ratio is halved,
then the number of time samples to maintain the same er-
ror increases four-fold. This phenomena can be intuitively
understood since the probability of observing an element
in the sample covariance matrix is proportional to ρ2. For
‖Σ̂0 −Σ0‖max ≤ ε, we need O( logn

ρ2ε2(1−σmax)4
) time samples.

For ‖Σ̂0−Σ0‖2 ≤ ε, we need a much larger O( n logn
ρ2ε2(1−σmax)4

)
number of samples.

Substituting ρ = 1, we have the full observation case. In
[11], the error in estimating Σ0 when Qw = I was found to
be

‖Σ̂0 − Σ0‖max ≤
√

32 log(2n2/δ)

T (1− σmax)3
,

which is the same scaling in ρ, n, and T to the bound we
obtain. Our bound has a slightly weaker factor of (1−σmax)−2

as opposed to (1−σmax)−1.5 as we have loosened the analysis
to obtain bounds on the operator norm. It is possible to tighten
it further to (1−σ2

max)−1.5. The second difference that arises
is different constants as we have used a concentration result
for multiplicative noise which is not needed in the noiseless
fully observed case of ρ = 1. In the scalar case n = 1, the
results from [5, Eq. 3.11] implies that with high probability,

‖Σ̂k − Σk‖max ≤
√
C1

T
+

C2

ρ2T

for some constants C1, C2 > 0, which agrees with Corollary 1.

Next, we consider estimation of the transition matrix A
using the relation (4). We have the following result:

Theorem 2. Let σmin be the minimal singular value of Σ0.
For T = Ω( logn

θ(0)∗(1−σmax)4
), with probability at least 1− δ we

have

‖Â−A‖2 = O
(
σmaxγ2(δ/2)‖Qw‖2
σ2
min(1− σ2

max)

)
.

Theorem 2 indicates that the error is proportional to the
square root of the dimension which is much larger than the
log factor in (6) and (7). This unfortunate fact could lead to
very loose bounds in the high dimensional setting where n is
on the same order as the number of time samples.

One way to get around this penalizing
√
n factor is to

impose structural constraints such as sparsity. As in [12] we
further assume A ∈ A(q, s, A1) where

A(q, s, A1) ={
B ∈ Rn×n : max

j∈[n]

n∑
i=1

|Bqi,j | ≤ s, ‖B‖1 ≤ A1

}
.

Note that q = 0 indicates we have an s sparse matrix with
bounded `1 induced norm. The scalar A1 ∈ [0,

√
nσmax]

restricts the size of the class of transition matrices from which
the estimate Â is obtained. This is the weakly sparse case.

The following theorem provides a guide for selecting ap-
propriate λ in (5) along with performance bounds which are
logarithmic in dimension.

Theorem 3. Let A ∈ A(q, s, A1) and let

λ = (1 +A1)γ(δ/2),

with γ(·) defined in Theorem 1. Then, with probability greater
than 1− δ,

‖Â− Â‖1 ≤ 4s(2λ‖Σ0†‖1)1−q

‖Â− Â‖max ≤ 2‖Σ0†‖1λ.

These theorems imply that we can bound ‖Â−A‖ to within

O( 1
ρ

√
logn
T ) with high probability.

When s = n, we obtain ‖Â−Â‖1 . Θ(nγ(δ/2)) with high
probability which is also the upper bound on ‖Â − A‖1 we
get from Theorem 2. Alternatively, if we need ‖Â−A‖2 ≤ ε,
we need a fraction s2

n of the time samples when we consider
A,Aᵀ ∈ A(q, s, A1) compared to the estimator (3).

IV. PROOF SKETCHES OF THEOREMS 1-2

In this section, we provide a sketch of the proofs for
Theorems 1 and 2. A detailed version of these proofs as well
as the proof for Theorem 3 is in the supplementary document
[21].

We first outline the steps in proving the bound for ‖Σ̂0 −
Σ0‖max in Theorem 1. We focus on the convergence of each
element of the sample covariance matrix Σ̂0

ij . In order to do
this, our analysis hinges on expressing the various errors in
terms of quadratic and linear products of Gaussian vectors
as well as a concentration result to determine limits on the
multiplicative noise.

We assume that the process begins Tp ≥ 0 time units before
observations take place. In other words, x−Tp

= xS . We create
stacked vectors of noise W = [w−Tp+1| . . . |w0|w1| . . . |wT ]



and of initial conditions of the same dimension XS = [xS |0].
Let the stacked vector of observations of position i be the
T -dimensional vector Zi = [z1,i|z2,i| . . . |zT,i]. Similarly, the
stacked vector of observation noise for position i is Vi =
[v1,i|v2,i| . . . |vT,i]. We recall that Pt,i is 1 if the ith position
of noisy observation of xt is observed in the sampling case
or is the multiplicative noise otherwise. Finally, create the T -
diagonal matrix Pi = diag([P1,i| . . . |PT,i]).

Consider the matrix Φi ∈ RT×n(T+Tp), defined as

Φi =


A
Tp

i . . . Ai Ii . . . 0

A
Tp+1
i . . . A2

i Ai . . . 0
...

. . .
...

A
Tp+T−1
i . . . ATi AT−1i . . . Ii

 (8)

where Li for a matrix L is its ith row.
We now have

Zi = Pi (Φi(W +XS) + Vi)

Σ̂0
i,j =

1

(T )θ(0)i,j
Zᵀ
i Zj − (Qv)i,j . (9)

We further define P (0)i,j = PiPj . This is a diagonal matrix
with the terms arising from a bounded distribution. In the
sampling case, the marginal distribution is B(θ(0)i,j) for the
elements. We can expand the terms of (9) as

T1 =
(W ᵀΦᵀ

i + V ᵀ
i )P (0)i,j(ΦjW + Vj)

Tθ(0)i,j
− (Qv)i,j

T2 =
Xᵀ
S

Tθ(0)i,j

[(
Φᵀ
i P (0)i,jΦj + Φᵀ

jP (0)i,jΦi
)
W

+ Φᵀ
i P (0)i,jVj + Φᵀ

jP (0)i,jVi

]
T3 =

Xᵀ
SΦᵀ

i P (0)i,jΦjXS

Tθ(0)i,j

Σ̂0
i,j = T1 + T2 + T3

We now have to bound the deviation of individual terms Ti
from their mean. The term T1 indicates the deviation if the
system started from zero state. The effect of the initial state
is through terms T2 and T3.

It can be seen that T1 can be written as zᵀL1z/(Tθ(0)i,j)
where z ∼ N (0, I). We show that ‖L1‖2F = O(Tr(P (0)2i,j)).
We need to bound what the average multiplicative noise
is for the ijth term of the matrix. As the multiplicative
noise is bounded, it converges rapidly to its mean. In other
words Tr(P (0)2i,j)/(Tθ(0)i,j) ≤ 1 + O(T−1/2). The proof
follows by expressing Tr(P (0)2i,j) as a collection of sums
of independent terms and then applying the Hoeffding bound
as the terms are bounded. In the independent sampling case
with probability ρ, this implies that the number of effective
samples for the ijth element of Σ0 is ρ2T when i 6= j
and ρT otherwise. We see that term T1 is a sub-exponential
or χ2 random variable and deviation from its mean falls as
O(T−1/2).

Similarly, T2 can be written as lᵀ2z/(Tθ(0)i,j) where
‖l2‖2 = O((1 − σmax)−2). Term T2 is a Gaussian random

variable and converges to its mean zero as O(T−1). Finally,
we see that the term T3 decays as O(T−1). Thus we see
that the convergence of Σ̂0 to its mean is dominated by the
convergence of the T1, implying that the initial state does not
matter much as long as xS = o(T−1/2). We can union bound
the maximum deviation of T1, T2 for all elements of Σ̂k and
this gives us an additional factor of log n.

We have characterized how rapidly Σ̂0 converges to its
mean, but also need to quantify how far E[Σ̂0] is from the
true covariance matrix Σk. It is shown that ‖E[Σ̂0]−Σ0‖2 =

O(σ
Tp
max/T ). If Tp � 1, then the system has been running

for a long time and is stationary. Otherwise, the system has
a transient period where it transitions from non-stationarity to
stationarity. Thus the estimate is asymptotically unbiased. The
bias does not play a significant role as the sample covariance
matrix converges to its mean at a much slower rate.

Theorem 1 is now proved by observing that the deviation
can be split as

‖Σ0 − Σ̂0‖max ≤ ‖Σ̂0 − E[Σ̂0]‖max + ‖E[Σ̂0]− Σ0‖max

≤ max
i,j
|T1 − E[T1]|+ max

i,j
|T2|+ ‖E[Σ̂0]− Σ0‖max.

The bounds on ‖Σ̂0 − Σ0‖2 = max‖u‖2,‖v‖2≤1 u
ᵀΣ0v

follow from a covering argument.
We now prove Theorem 2. In the case of identifying dense

A, we further assume that the condition number of Σ0 is finite.
This can occur when A is a full rank matrix. Let the minimum
singular value of Σ0 be greater than σmin. From Theorem 1,
we have with high probability that the deviation from the mean
of estimators of Σ1 and Σ0 is less than γ(δ/2), a quantity
that falls as O((T − k)−1/2). In other words defining ∆Σ0 =

Σ̂0 −Σ0 and ∆Σ1 = Σ̂1 −Σ1, we have ‖∆Σ0‖2, ‖∆Σ1‖2 ≤
4
√
nγ(δ/2). We now use a standard linear algebra result from

[22] that relates the error in estimating Σ0†. The result states
that ‖∆Σ0†‖2 ≤ ‖Σ0†‖22‖∆Σ0‖2. Theorem 2 follows from a
decomposition of the error as

‖Â−A‖2 ≤ ‖Σ̂1ᵀΣ̂0† − Σ1ᵀΣ̂0† + Σ1ᵀΣ̂0† − Σ1ᵀΣ0†‖2
≤ (‖∆Σ0†‖2 + ‖Σ0†‖2)‖∆Σ1‖2 + ‖Σ1‖2‖∆Σ0†‖2

V. EXAMPLES

A. Joint System and State Identification

In this subsection, we consider an application to the joint
system and state identification of a stable linear dynamical
system with inputs that are chosen randomly and known. In
the case where inputs are not randomly chosen but are known,
classical system identification techniques can be applied to
jointly infer the parameters and state [23]. However, there are
no non-asymptotic guarantees in the literature.

Specifically, we consider the dynamical system

xt+1 = Axt +But + wt

zt = Ptxt,

where A and B are unknown. We start from unknown initial
state x0. At each point, we input ut

iid∼ N (0, I) whose value
is known. Noise wt

iid∼ N (0, I) is added. Pt = diag(pt) and
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‖Â
−
A
‖ 2

ρ = 1/4

ρ = 1/2

ρ = 3/4
ρ = 1

ρ = 3/4 EM

(a)

102 103 104
10−2

10−1

100

101

Time

‖B̂
−
B
‖ 2

ρ = 1/4

ρ = 1/2

ρ = 3/4
ρ = 1

ρ = 3/4 EM

(b)

101 102 103 104 105 106
10−0.4

10−0.2

100

100.2

100.4

Time

‖x̂
t
−
x
t
‖ 2

ρ = 1/4

ρ = 1/2

ρ = 3/4

ρ = 3/4 EM

(c)

Fig. 1. Results for joint state and system identification with partially observed samples (a) Error in estimating the transition matrix with different sampling
rates. (b) Error in estimating the input matrix B (c) Error in estimating the final state through Kalman filtering.

pt
iid∼ B(ρ) or observations are seen with probability ρ and

with no multiplicative noise. We can equivalently recast the
problem with state and noise matrices

x̂t =

[
xt
ut

]
, ŵt =

[
wt
ut+1

]
as,

x̂t+1 =

[
A B
0 0

]
x̂t + ŵt

ẑt =

[
Pt 0
0 I

]
x̂t.

This new transition matrix is stable if ‖A‖2 ≤ σmax < 1 as it
is an upper triangular matrix.

The matrix P̂t is the effective multiplicative noise at each
time instant. It is a diagonal matrix with entries p̂t =

[Pt,1, . . . , Pt,n,1(n)] where Pt,i
iid∼ B(ρ). We have θ(k) =

E[p̂tp̂
ᵀ
t ]. Thus, we run the algorithm with the following θ(k)

θ(k) =

[
ρ211ᵀ + (ρ− ρ2)I1(k = 0) ρ11ᵀ

ρ11ᵀ 11ᵀ

]
.

Since our matrix A has this structure, we estimate Â1:n,: =
(Σ̂1

:,1:n)ᵀΣ̂0. Given an estimate of the matrices Â and B̂, we
can perform Kalman filtering and Rauch-Tung-Striebel (RTS)
smoothing to estimate the state we are in [24].

We compare the results of estimator (3) to the EM estimate
[25]. In the EM estimate, we solve for the joint ML estimate
of the unobserved state sequence as well as system matrices A
and B. This is a non-convex problem and is solved iteratively.
In the E step, we compute an approximation to the log-
likelihood function while keeping A and B constant - this
results in Kalman filtering and RTS smoothing to obtain the
hidden state sequence xt. In the M step, we solve for A
and B by maximizing the approximation to the log-likelihood
while keeping the state-sequence constant. The method is
computationally intensive with memory requirements O(T )
larger than in estimator (3) as well as requiring O(T ) more
inversions of matrices of size n × n. This method is not

computationally feasible for high-dimensional systems. The
estimate of A can in fact serve to initialize the EM procedure.

In this example, dimension n = 7 and dense transition
matrices with σmax = 0.8, σmin = 0.2 are chosen. Results
average 16 runs. Fig. 1 presents the error in estimating the
transition matrices as well as the error in estimating the final
state. As can be seen from the plots, the error in identifying
the system has slope −1/2 which validates the theory that
the error is proportional to T−1/2. We also verify that as
the sampling rate doubles, the error reduces by a factor of
4. The performance of the expensive EM procedure (with 10
iterations) is seen for ρ = 3/4 and it is seen to perform better
than estimator (3).

B. Sparse Transition Matrices

In this example, we consider the system

xt+1 = Axt + wt

zt = Pt(xt + vt),

where wt
iid∼ N (0, I), vt

iid∼ N (0, I) and we have a sparse
unknown A. The matrix Pt is diagonal with entries pt =

[Pt,1, . . . , Pt,n] and Pt,i
iid∼ U([0, 1]). Thus, we see all the

observations corrupted by multiplicative noise and zero-mean
additive noise. In this case, we cannot use the EM based
estimator of the previous subsection as we do not know Pt,
the multiplicative noise at each time instant.

We consider 10 instances of a sparse stable 30 dimensional
system where there are an average of 20 non-zero elements
in each. Results comparing the performance of the sparse and
dense estimator are shown in Fig. 2. As expected the sparse
identification method outperforms the dense estimator of the
transition matrix. The scaling of the error in the covariance
matrix is seen to be around T−1/2 as predicted.

VI. CONCLUSION

We have considered the problem of system identification
of vector autoregressive processes with partial observations
corrupted by multiplicative and additive noise. This problem



101 102 103 104 105 106

10−2

10−1

100

Time

‖Σ̂
−
E[

Σ
]‖

m
a
x

Σ0

Σ1

(a)

101 102 103 104 105 106

10−2

10−1

100

101

102

Time

‖Â
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Fig. 2. Results for sparse system identification with observations having
multiplicative and additive noise (a) Maximum entrywise deviation of sample
covariance matrices from the actual value. (b) Error in transition matrix
estimation assuming it is dense and sparse.

is motivated by the difficulty in storing, processing or commu-
nicating a large number of observations in high-dimensional
VAR processes.

An estimator of the covariance matrices of the process
which can be arbitrarily initialized is first described. This is
used to obtain the transition matrix in both the general case
and one with structural constraint of sparsity which is relevant
in the high-dimensional regime. The error in estimating the
transition matrix scaled as O( 1

ρ
√
T

), which implies that the
number of time samples required to estimate the matrix to a
certain accuracy increases quadratically as the sampling ratio
decreases.

The estimators were validated through simulation and ap-
plied to the problem of jointly estimating the state and system
of a stable linear dynamical system with random inputs.
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