
On the Capacity of Diffusion-Based
Molecular Timing Channels With Diversity

Nariman Farsad, Yonathan Murin, Milind Rao, and Andrea Goldsmith
Electrical Engineering, Stanford University, USA

Abstract—This work introduces a class of molecular timing
(MT) channels, where information is modulated on the release
timing of multiple indistinguishable information particles, with
finite life time, and decoded from the times of arrival at the
receiver. The capacity of the MT channel, as well as an upper
bound on this capacity, are derived for the case where information
particles are released simultaneously by the transmitter. The
paper is concluded by outlining two possible lower bounds on
the capacity.

I. INTRODUCTION

In molecular communication information is modulated on
different properties of small particles (e.g., concentration, the
type, the number, or the time of release) that are released by
the transmitter [1]. The information particles are transported
from the sender to a receiver through different means such
as: diffusion, active transport, bacteria, and flow [1]. Several
experimental platforms have been developed in recent years
that are capable of transmitting short messages [2].

In this work, we consider the molecular timing channel
(MT) presented in [3], where information is modulated on
the time of release of the information particles, and extend
the results to the case of multiple particles. Communication
based on the time of release my be used in the brain at
the synaptic cleft, where two chemical synapses communicate
over a chemical channel [4]. The released information particles
randomly propagate from the transmitter to the receiver, which
results in a random delay in time until detection at the receiver.
A common assumption, which is accurate for many sensors,
is that a particle is absorbed and then removed from the
environment as part of the detection process [3]. Thus, the
random delay until the particle first arrives at the receiver can
be represented as an additive noise term.

One may observe some similarities between the timing
channel considered in this work and the timing channel con-
sidered in [5], which studied the transmission of bits through
queues. Yet, the problem formulation and the noise models are
fundamentally different. In [5], the queue induces an order on
the channel output (i.e. arrival times), namely, the first arrival
time corresponds to the first channel use, the second arrival
corresponds to the second channel use, and so on. On the other
hand, in molecular channels with indistinguishable particles,
order may not be preserved, as was observed in [6].

To account for the lack of ordering, in [3] we considered
an MT channel where the transmitter encodes messages over
a finite time interval, called the symbol interval, by releasing
a single particle at a corresponding time in that interval.
Furthermore, the released information particles have a finite
lifetime, called the particle’s lifetime, after which they spon-

taneously dissipate. Note that many particles naturally degrade
over time and the speed of this process can be controlled
through chemical reactions, e.g., through enzymes [7]. Using
this scheme, a single channel use interval is the sum of the
symbol interval and the particle’s lifetime, and the channel can
then be used sequentially without intersymbol interference.

Some of the other previous papers on molecular timing
channels focused on the additive inverse Gaussian noise
(AIGN) channel, which features a positive drift from the
transmitter to the receiver [8]–[11]. In this case, the first
time of arrival over a one-dimensional space follows the
inverse Gaussian distribution, giving the channel its name.
In these papers, upper and lower bounds on the maximal
mutual information between the input and output of the
AIGN channel, denoted in this work by capacity per channel
use, were provided for different input and output constraints.
However, it is not clear what the associated capacity is in bits
per second.

In [3] we studied the case where a single particle is released
during the symbol interval, and derived tight upper and lower
bounds on the capacity of the diffusion-based MT (DBMT)
channel. In the current work, we extend the results of [3] to the
case where m particles are released during the symbol interval.
In particular, we present the channel capacity expression for
the case where all m particles are released simultaneously by
the transmitter, and derive an upper bound on the capacity
of this channel. We also present a guideline for deriving two
lower bounds, one for the case when the receiver observes a
linear combination of arrival times, and one for the case where
the receiver uses the time of the first of the m particles that
arrive for detection.

The rest of this paper is organized as follows. The system
model and the problem formulation are presented in Section
II. The capacity of the DBMT channel with multiple particles
is studied in Section III: The capacity and an upper bound on
capacity are derived. In addition, two different approaches for
deriving a lower bound are discussed. Concluding remarks are
provided in Section IV.

Notation: We denote the set of real numbers by R, the set of
positive real numbers by R+, and the set of positive natural
numbers by N. Other than these sets, we denote sets with
calligraphic letters, e.g., J , where |J | denotes the cardinality
of the set J . [n] denotes the set {1, . . . , n}. We denote random
variables (RVs) with upper case letters, e.g., X , Y , their
realizations with the corresponding lower case letters, e.g.,
x, y, and vectors with boldface letters, e.g., X,Y. The ith

element of a vector X is denoted by X[i]. We use fY (y) to



denote the probability density function (PDF) of a continuous
RV Y on R, fY |X(y|x) to denote the conditional PDF of Y
given X , and FY (y) to denote the cumulative distribution
function (CDF). We use h(·) to denote the entropy of a
continuous RV and I(·; ·) to denote the mutual information
between two continuous RVs, as defined in [12, Ch. 8]. Finally,
X ↔ Y ↔ Z is used to denote a Markov chain formed by
the RVs X,Y, Z as defined in [12, Ch. 2.8].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. The Molecular Timing Channel
We consider a molecular communication channel in which

information is modulated on the time of release of the in-
formation particles. The information particles themselves are
assumed to be identical and indistinguishable at the receiver.
Therefore, the receiver can only use the time of arrival to
decode the intended message. The information particles prop-
agate from the transmitter to the receiver through some random
propagation mechanism (e.g. diffusion). To develop our model,
we make the following assumptions about the system:
A1) The transmitter and receiver are perfectly synchronized in

time. The transmitter perfectly controls the release time
of the particles, while the receiver perfectly measures the
arrival times.

A2) An information particle which arrives at the receiver is
absorbed and removed from the propagation medium.

A3) All information particles propagate independently of each
other, and their trajectories are random according to an
independent and identically distributed (i.i.d.) process.

Note that these assumption have been traditionally considered
in all previous works [6], [8]–[11] to make the models
tractable. Next, we formally define the channel.

Let Tx,k ∈ Rm+ , k ∈ [K], denote the times of the kth

transmissions for the m ∈ N indistinguishable particles re-
leased into the medium by the transmitter. The transmitted
information is encoded in the sequence of times Tx,k, k∈ [K],
where Tx,k are assumed to be independent of the random
propagation time of each of the information particles. Let Ty,k

be an m-length vector consisting of the times of arrival of each
of the information particles, i.e., Ty,k[i] is the arrival time of
the ith particle released at time Tx,k[i]. Therefore, we have
Ty,k[i] ≥ Tx,k[i], i ∈ [m]. Thus, we obtain the following
vector additive noise channel model:1

Ty,k = Tx,k +Tn,k, (1)

where Tn,k[i], i ∈ [m], is a random noise term representing
the propagation time of the ith particle of the kth transmission.
Note that assumption A3) implies that all the elements of Tn,k

are independent.
One of the main challenges of the channel in (1) is that the

particles from different channel uses may arrive out of order,
which results in channel memory. To resolve this issue, we
make two assumptions. First, we assume that at the beginning
of each transmission there is a finite time interval called the

1Here we place no assumption on the particles’ lifetimes, namely, they do
not dissipate before arriving at the receiver.

Fig. 1. The MT channel in (2). The channel input is Tx,k[i], while the
channel output depends on the condition Tn,k[i] ≷ τn.

symbol interval over which the transmitter can choose times to
release the information particles for that transmission. Second,
we assume that information particles have a finite lifetime, i.e.,
they dissipate immediately after this finite interval, denoted by
the particle’s lifetime. By setting the channel use interval to
be a concatenation of the symbol interval and the particle’s
lifetime, we ensure that order is preserved and obtain a
memoryless channel.

Let τx < ∞ be the symbol interval, and τn < ∞ be the
particle’s lifetime (i.e. each transmission interval is equal to
τx+τn). Then our two assumptions can be formally stated as:
A4) The release times obey:

(k−1) · (τx+τn)≤Tx,k[i]≤ (k−1) · (τx+τn)+τx,
A5) The information particles dissipate and are never received

if Tn,k[i] ≥ τn, i ∈ [m].
The first assumption can be justified by noting that the
transmitter can choose its release interval, while the second
assumption can be justified by designing the system such that
information particles are degraded in the environment after
a finite time (e.g. using chemical reactions) [7], [13]. The
resulting channel, which we call the molecular timing (MT)
channel, is given by:

Ỹk[i] =

{
Ty,k[i] = Tx,k[i] +Tn,k[i], Tn,k[i] ≤ τn
φ, Tn,k[i] > τn

, (2)

where φ is the empty symbol (i.e., a symbol indicating nothing
has arrived), Tx,k is the channel input, i.e., the kth release
timing vector, Ty,k[i] is the arrival time of the ith information
particle at the receiver (if it arrives), and Ỹk is an m-length
vector of channel outputs at the kth channel use interval. The
ith element of the MT channel (2) is depicted in Fig. 1.
We emphasize that the receiver observes a sorted version of
the channel output Ỹk, which we denote by Yk. Next, we
formally define the capacity of the MT channel with input
Tx,k and output Yk.

B. Capacity Formulation for the MT Channel

Let Ak , [(k− 1) · (τx + τn), (k− 1) · (τx + τn) + τx] and
Bk , {[(k − 1) · (τx + τn), k · (τx + τn)] ∪ φ} for k ∈ [K].
We now define a code for the MT channel (2) as follows:

Definition 1 (Code): A (K,R, τx, τn) code for the MT
channel (2), with code length K and code rate R, consists
of a message set W = {1, 2, . . . , 2K(τx+τn)R}, an encoder
function ϕ(K) :W 7→ Am1 ×Am2 × · · · × AmK , and a decoder
function ν(K) : Bm1 × Bm2 × · · · × BmK 7→ W .

Remark 1: Observe that since we consider a timing channel,
similarly to [5], the codebook size is a function of τx + τn,
and K(τx + τn) is the maximal time that it takes to transmit



Fig. 2. Illustration of the encoding procedure of Definition 1 for K = 3
and m = 1. Red pulses correspond to transmission times, while blue pulses
correspond to arrival times at the receiver.

a message using a (K,R, τx, τn) code. Furthermore, note
that the above encoder maps the message W ∈ W into
K m-dimensional vectors of time indices, Tx,k, k ∈ [K],
where Tx,k ∈ Amk , while the decoder decodes the trans-
mitted message using the (sorted) K × m channel outputs
Yk, k ∈ [K], where Yk ∈ Bmk . We emphasize that this
construction prevents intersymbol interference, namely, the m
particles transmitted at the interval Ak either arrive before the
m particles transmitted at the interval Ak+1 or never arrive.
Thus, we obtain K identical and independent channels (per
channel use interval). However, note that within the channel
use interval the arrivals of the m particles are not ordered.
Finally, we note that this construction was not used in [5]
since, when transmitting bits through queues, the channel itself
forces an ordering.

The encoding and transmission through the channel are
illustrated in Fig. 2 for the case of K = 3 and m = 1.
The encoder produces three release times {Tx,1, Tx,2, Tx,3}
which obey Tx,k ∈ Ak, k = 1, 2, 3. In each time index a
single particle is released to the channel which adds a random
delay according to (2). The channel outputs are denoted by
{Y1, Y2, Y3}. It can be observed that while Y1 = Ty,1 =
Tx,1 + Tn,1 and Y2 = Ty,2 = Tx,2 + Tn,2, Y3 = φ since
Tn,3 > τn and therefore the third particle does not arrive.

Definition 2 (Probability of Error): The average probability
of error of a (K,R, τx, τn) code is defined as:

P (K)
e , Pr {ν(Y1,Y2, . . .YK) 6=W} ,

where the message W is selected uniformly from the message
set W .

Definition 3 (Achievable Rate): A rate R is called achievable
if for any ε > 0 and δ > 0 there exists some blocklength
K0(ε, δ) such that for every K > K0(ε, δ) there exists a
(K,R− δ, τx, τn) code with P (K)

e < ε.
Definition 4 (Capacity): The capacity C is the supremum of

all achievable rates.
Remark 2: Note that even though we consider a timing

channel, we define the capacity in terms of bits per time unit
[5, Definition 2]. This is in contrast to the works [8]–[11]
which defined the capacity as the maximal number of bits
that can be conveyed through the channel per channel use.

Note that this definition of capacity C for the MT channels
is fairly general and can be applied to different propagation
mechanism as long as Assumptions A1)–A5) are not violated.
Our objective in this paper is to characterize the capacity of
the MT channel for diffusion-based propagation.

C. The Diffusion-Based MT Channel

In diffusion-based propagation, the released information
particles follow a random Brownian path from the transmitter
to the receiver. In this case, to specify the random additive
noise term Tn,k[i] in (2),we define a Lévy-distributed RV as
follows:

Definition 5 (Lévy Distribution): Let the RV Z be a Lévy-
distributed RV with location parameter µ and scale parameter
c. Then, its PDF is given by

fZ(z) =


√

c
2π(z−µ)3 exp

(
− c

2(z−µ)

)
, z > µ

0, z ≤ µ
, (3)

and its CDF is given by

FZ(z) =

erfc

(√
c

2(z−µ)

)
, z > µ

0, z ≤ µ
. (4)

Throughout the paper, we use the notation Z ∼ L (µ, c) to
indicate a Lévy RV with parameters µ and c.

Let r denote the distance between the transmitter and
the receiver, and d denote the diffusion coefficient of the
information particles in the propagation medium. Following
along the lines of the derivations in [8, Sec. II], and using
[14, Sec. 2.6.A], it can be shown that for 1-dimensional pure
diffusion, the propagation time of each of the information
particles follows a Lévy distribution, and therefore the noise
in (2) is distributed as Tn,k ∼ L (0, c) with c = r2

2d . In this
case, we call the diffusion-based MT channel in (2) the DBMT
channel.

Remark 3: In [15] it is shown that for an infinite, three-
dimensional homogeneous medium without flow, and a spher-
ically absorbing receiver, the first arrival time follows a scaled
Lévy distribution. Thus, the results presented in this paper can
be extended to 3-D space.

III. THE CAPACITY OF THE DBMT
CHANNEL WITH DIVERSITY

In [3], we defined the capacity of the MT channel, for m =
1, and provided upper and lower bounds on the capacity for
this case. In this section, we extend the results of [3] to the
case where m > 1. To simplify the analysis, we consider the
special case wherein every symbol interval has all its particles
released simultaneously. In this case the lack of intra-symbol
ordering has no effect.

A natural question that arises from the work [3] is: Can the
capacity be increased by releasing multiple particles, namely,
using m > 1? and, if the answer is positive then how does
the capacity scale with m? In [10, Sec. IV.C] and [16, Sec.
IV] it is shown that by releasing multiple particles one can
reduce the probability of error; yet, it is not clear if and how
the capacity scales with the number of particles which are
simultaneously released in each transmission interval Ak (see
Section II-B for detailed definitions). We note that the highest
possible scaling is linear, as the capacity in the considered
setting is upper bounded by the the setup in which the particles
are distinguishable.



Cm(τn) = max
τx,F(τx)

 1

τx + τn

∑
J=[m̄]:m̄∈[m]

I
(
Tx[J ];Ty[J ]

∣∣Tn[J ] ≤ τn
)
· v(p,m, |J |)

 . (6)

We begin our analysis by noting that as the particles are
released simultaneously, we have Tx,k[i] = Tx,k, i ∈ [m], k ∈
[K]. We further define the set Jk , {j : Tn,k[j] ≤ τn}, k ∈
[K], which is the set of the indices of all particles which
arrive within the interval [(k − 1) · (τx + τn), k · (τx + τn)].
Clearly, |Jk| ≤ m. Note that if there exists l ∈ [m] such that
l /∈ Jk, then the output of the channel for the lth particle by (2)
is φ, and therefore this particle does not convey information
over the channel. More precisely, let Yk,Jk

denote the vector
Yk[j], j ∈ Jk, and Yk,J c

k
denote the vector Yk[l], l /∈ Jk.

We now write:

I(Tx,k;Yk) = I(Tx,k;Yk,Jk
,Yk,J c

k
)

= I(Tx,k;Yk,Jk
).

Since all the particles are statistically indistinct, the term
I(Tx,k;Yk,Jk

) depends on |Jk| and not on the specific indices
of the set Jk. In fact, one can re-label the transmitted particles
such that the first |Jk| are the particles that arrive within the in-
terval [(k−1)·(τx+τn), k·(τx+τn)]. Therefore, in the following
we slightly abuse the notation and let Jk = {1, 2, . . . , |Jk|}.
We define Ty,k[Jk], [Ty,k[1],Ty,k[2], . . . ,Ty,k[|Jk|]], while
Tn,k[Jk] is defined in a similar manner. Finally, we define
Tx,k[Jk] to be a vector of length |Jk| with all its elements
equal to the repeated values Tx,k. With this notation we now
define a channel equivalent to (2):

Yk =

{
φ, |Jk| = 0

Ty,k[Jk]=Tx,k[Jk]+Tn,k[Jk], |Jk| > 0
. (5)

Let Cm(τn) denote the capacity of the DBMT channel with
diversity in (2), and therefore also the capacity of the channel
(5). In addition, let p , FTn

(τn), and define the function
v(p,m, i) ,

(
m
i

)
pi(1−p)m−i, i ∈ [m]. The following theorem

characterizes Cm(τn):
Theorem 1: Cm(τn) is given by (6) at the top of the page,

where the condition Tn[J ] ≤ τn reads Tn[j] ≤ τn,∀j ∈
J ,Tn[l] > τn,∀l /∈ J .

Proof: Based on the proof of [3, Theorem 1], one can
show that the capacity of the channel (2), and therefore also
the channel (5), in bits per second, is given by:

C(τn) = max
τx,F(τx)

I(Tx;Y)

τx + τn
.

Next, we note that since the propagation of the different
particles is independent, see assumption A3), |J | follows a
binomial distribution, i.e., |J | ∼ B(m,FTn

(τn)).
Furthermore, as |J | is a function of only the received

symbol set Y, we have the Markov chain Tx ↔ Y ↔ |J |.

Thus, we write:

I(Tx;Y) =I(Tx;Y) (7)
=I(Tx;Y, |J |) (8)

=I(Tx;Y
∣∣|J |) (9)

=

M∑
j=0

Pr{|J |=j}·I(Tx[J ];Ty[J ]
∣∣|J |=j)

=

M∑
j=1

Pr{|J |=j}·I(Tx[J ];Ty[J ]
∣∣|J |=j), (10)

where (7) follows from the fact that Tx is simply a vector
which contains Tx multiple times; (8) follows from the Markov
chain Tx ↔ Y ↔ |J |; (9) follows from the fact that Tx is
independent of |J |; and, (10) follows by noting that when
|J | = 0 no information goes through the channel.

Finally, we note that the condition Tn[J ] ≤ τn, |J | =
j is equivalent to the condition |J | = j, and since |J | ∼
B(m,FTn

(τn)) then Pr{|J | = j} = v(p,m, j).
Similarly to the single-particle case studied in [3], obtaining

an exact expression for the capacity is highly complicated,
thus, we present an upper bound and outline two different
approaches for obtaining a lower bound. Let X be a contin-
uous RV with PDF fX(x) and CDF FX(x), and let τ be a
real constant. In [3, Thm. 2] we provide a general expression
for h(X|X ≤ τ). For the specific case of a Lévy-distributed
RV, h(X|X ≤ τ) can be calculated using the result of [3,
Lemma 1].
The upper bound on capacity is now given in the following
theorem.

Theorem 2: The capacity of the DBMT channel with diver-
sity is upper bounded by Cm(τn) ≤ Cub

m(τn), where Cub
m(τn)

is given by:

Cub
m(τn),m·FTn(τn)max

τx

log(τx + τn)−h(Tn|Tn ≤ τn)
τx + τn

.

(11)

Remark 4: Note that for m=1 the upper bound of Thm. 2
specialize to the upper bound presented in [3, Thm. 3].

Proof: First, we note that the conditional mutual infor-
mation in (6) can be written as:

I
(
Tx[J ];Ty[J ]

∣∣Tn[J ] ≤ τn
)

= h
(
Ty[J ]

∣∣Tn[J ]≤τn
)
−h
(
Tn[J ]

∣∣Tn[J ]≤τn
)
. (12)

Next, we explicitly evaluate h
(
Tn[J ]

∣∣Tn[J ] ≤ τn
)

and
bound h

(
Ty[J ]

∣∣Tn[J ] ≤ τn
)
. From assumption A3) we



have:

h
(
Tn[J ]

∣∣Tn[J ] ≤ τn
)
=

|J |∑
j=1

h
(
Tn[j]

∣∣Tn[j] ≤ τn
)

= |J | · h (Tn|Tn ≤ τn) . (13)

We now write:

h(Ty[J ]|Tn[J ] < τn) ≤ |J | log(τx + τn), (14)

where (14) is due to the fact that the uniform distribution
maximizes entropy over a finite interval. Therefore, (6) can
be upper bounded by:

m∑
j=1

(log(τx + τn)−h(Tn|Tn ≤ τn))·j ·v(p,m, j). (15)

Finally, using the expression for the mean of a Binomial RV
[17, Ch. 16.2.3.1], we write:

m∑
j=1

j · v(p,m, j) =
m∑
j=1

j ·
(
m

i

)
pi(1− p)m−i = mp. (16)

Combining (16) with (15) and recalling that p = FTn
(τn) we

obtain the upper bound in (11).
The channels (2) and (5) have a single input Tx,k and

multiple outputs Yk. Thus, by simultaneously releasing m > 1
particles we achieve receive diversity. As the propagation of all
particles is independent and identically distributed, the chan-
nel (2) can also be viewed as a single-input-multiple-output
(SIMO) channel in which all the channel outputs experience
an independent and identical propagation law. While the upper
bound in (11) scales linearly with m, we currently do not have
a lower with the same scaling. Thus, a linear scaling cannot
be concluded. In the next paragraphs we outline two plausible
approaches for deriving lower bounds. The exact analysis is
left for future work.

We plan to use two different approaches for deriving lower
bounds on the capacity of the channel in (5). The first approach
is to analyze a receiver that uses a linear combination of the
arrival times to detect the channel input. This case is equivalent
to an additive noise channel, where the channel input is
X = |J |.Tx and the additive noise is N =

∑
i∈J Tn[i]. As

m → ∞, N becomes Gaussian due to central limit theorem
and a lower bound can be formulated.

Another approach is to assume that the receiver detects
based on the first arrival time between all |J | arrivals. In this
case the channel output is mini∈J Ty[i]. In [16], we showed
that the performance of such a detector is very close to the
performance of the maximum likelihood detector. In fact, it
was shown that when the particle lifetime is infinite, the linear
detector would actually degrade the performance compared to
choosing any single arrival times at random. This is due to
the heavy tails associated with the Lévy distribution. Although
with a finite particle life time it is not clear if the first arrival
detector would still outperform the linear one, we believe that
such a lower bound can be useful. The main challenge in this
approach is deriving an expression for the noise term which
is given by N = mini∈J Tn[i].

IV. CONCLUSIONS
In this work we considered MT channels, where the infor-

mation is modulated on the release time of multiple indistin-
guishable particles. We presented the capacity expression for
the case when the particles are all released simultaneously,
and derived an upper bound on the capacity of this channel.
We showed that the upper bound increases linearly with the
number of released particles for the DBMT channel. This is
analogous to receive diversity as each particle propagates to
the receiver independently. We also outlined two different ap-
proaches to finding a lower bound on the capacity using linear
and first arrival detector. As part of future work, we intend
to derive these lower bounds and investigate which detector
performs better for channels with finite particle lifetime. We
also plan to find tighter upper bounds on the capacity and
explore how capacity scales with the number of particles.
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