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Abstract—Direction finding based on array elements capable
of acquiring only non-coherent or phaseless measurements is
considered. Fundamental limits on the angle estimation error for
a finite number of planar wavefronts impinging on the array as a
function of the number of antennas are derived through a charac-
terization of the Fisher information matrix. The performance of
sparsity-based computationally efficient algorithms for direction
finding from recent advances in the phase retrieval literature are
also presented. Estimation error under both coherent and non-
coherent measurements is shown to decrease as the cube of the
number of antennas when this number is large, with a small gap
in performance for the non-coherent case.

I. INTRODUCTION

Multiple-antenna technology offers many performance ben-
efits in wireless communications, and hence has been widely
deployed in both cellular and WiFi systems. Coherent
multiple-antenna systems typically employ an all-digital ar-
chitecture where each antenna element in the antenna array is
connected to a coherent radio chain or an antenna port. Cost
and complexity constraints, however, often preclude having
a separate coherent radio chain for each antenna element.
This is especially the case when there is a large excess of
antenna elements or for radio systems operating at a large
carrier frequency.

In this work we investigate an all-digital architecture for
large antenna arrays which do not have a phase-coherent
reference, either because it is too costly or it is infeasible
for the wavelength of operation. We assume that only non-
coherent measurements are possible at each antenna element.
With such a system, it may still be of interest to extract the
directions of arrival of incoming wavefronts. In a communica-
tion system application, this direction finding may be a step in
the extraction of channel parameters; whereas in a localization
application, it may be related to accurate positioning. The
direction finding problem in the context of coherent antenna
arrays with phase measurements has been well studied in prior
work (classic references include [1], [2]).

Our focus in this work is direction finding in a non-coherent
system. This problem has been well studied in literature
focused on imaging and optics applications, where coherent
measurements are difficult if not impossible. In the imaging
and optics literature, this problem is commonly referred to as
the phase retrieval problem [3]. We revisit the phase retrieval
problem in the context of a radio system with a large number

of antenna elements, and seek to characterise its fundamental
performance limits in this setting.

Specifically, we consider the problem of direction finding in
a receiver with a large antenna array based on phaseless energy
measurements. This is relevant not only for situations where
having a coherent phase reference at each antenna element
is difficult to guarantee due to a large number of antenna
elements, but also where the wavelength of operation precludes
any phase acquisition due to the difficulty of building sys-
tems at large carrier frequencies. Direction finding with non-
coherent measurements is also related to channel estimation
because, when the far-field propagation assumptions hold, the
channel response is completely specified by the complex gain,
and the angle of arrival of each of the wavefronts hitting
the antenna element. With phaseless measurements we cannot
hope to retrieve the phase factor but with a large enough
number of antenna elements, we may still be able to resolve
both the gain and the angles of arrival.

In order to characterize the limit of statistical error in
retrieving the angles of arrival under coherent or non-coherent
measurements, we characterize the leading order terms in the
asymptotic expansion of the Fischer information matrix (FIM)
in a uniform linear array with a large number of elements. This
is a measure of the performance of all unbiased estimators for
the direction of arrival. We subsequently perform a numerical
comparison of the performance of different direction of arrival
estimation algorithms for both coherent and non-coherent
measurements. We find that even though coherent direction
finding may have better performance for a certain number
of antenna elements in terms of having a lower squared er-
ror, non-coherent direction finding exhibits little performance
degradation compared to the coherent case. With an increasing
number of antennas, the squared error decreases in both cases
with the cube of the number of antennas.

The rest of the paper is organized as follows. We present
the signal model in Section II, followed by an overview of
prior work on direction finding both with phase-coherent and
non-coherent measurements in Section III. In Section IV we
present a derivation of the Fischer information matrix for the
unknown angle parameters for a finite number of antenna
elements. We subsequently present an asymptotic analysis of
performance in the limit of a large number of antennas which



gives us tractable expressions and allows us to make direct an-
alytical observations independent of the underlying numerical
algorithm chosen. In Section V we present numerical results
for the performance achievable with a representative numbers
of antenna elements and SNRs. Finally, we conclude in Section
VL

II. SYSTEM MODEL

We assume L planar wavefronts impinging on a uniformly
linear antenna array with co-located antenna elements. These
wavefronts may arise as multipath components of a single
source or entirely different sources. Wavefront k& has an
amplitude gain g, € R™T, the physical angle of arrival 6, and
a constant phase offset of ¢j. In this work, we also consider
pr. = msin(fy), which can be thought of as the angle of arrival
in the beamspace. We assume that the joint distribution on
{prx}£=4 is such that

« the minimum separation between the differences between

any two random angles of arrival is greater than €, and
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The second assumption is to resolve the inherent ambiguity
in the angles of arrival introduced by discarding the phase

information at the receiver.
th

The phaseless noisy received signal at the *" antenna
element is given by
L—1 2
Yi = Z gkejcf)keﬂﬂpk + v (1)
k=0

for i € [0, N—1], where N is the number of antenna elements.
The additive noise v; is assumed to be A(0,1).

When the measurements have complete phase information
at the receiver, we have the following model.

L-1
Ji= Y gee?Prel T 4 i )
k=0

The additive noise has been assumed to be distributed as
an unit energy complex Gaussian CA(0, 1). Furthermore, for
simplicity, we assume in this work that g; = %

The particular form (in (1)) of the phaseless measurements
considered in this work assumes that the additive noise
is added after the energy detecting front-end. Since a fair
comparison of the direction finding capabilities of phaseless
and with-phase measurements needs to ensure comparable
operating signal to noise ratios, in our formulation we have
that the average detected signal energy at each antenna element
is equal to 1, and that the additive noise power is the same,
ie., E[|]?] = E[|%]?].

III. PRIOR WORK

The study of recovering the angle parameters from mea-
surements with phase has a rich history in the spectral
estimation literature. Spectral estimation is defined as the
problem of estimating frequency tones of a multi-tone signal

from a noisy time series. Research in spectrum estimation

has developed both fundamental theory as well as practical
algorithms that are robust to noise and applicable under various

modeling assumptions. Common approaches to spectrum esti-
mation include the discrete Fourier transform, signal subspace
methods, (such as Capon beamforming [4], the Pisarenko
method [5], the MUSIC [6] and ESPRIT [7] algorithms),
and approaches that solve the maximum likelihood parameter
estimation problem in a computationally efficient manner (e.g.
using algorithms such as SAGE [8]). There have also been
works on characterizing the fundamental limits on direction of
arrival estimation. In particular, [9] and related works study the
statistical efficiency of the MUSIC algorithm in terms of the
Cramer Rao bound. In a work very closely related to the results
in this paper, [10] characterizes the properties of the Fischer
information matrix for a large antenna array. This then yields
the Cramer Rao bound, which serves as a universal bound on
the performance of all unbiased estimators of the direction of
arrival.

There has also been a lot of interest in phase retrieval
algorithms for applications that are limited to phaseless mea-
surements, such as crystallography, electron microscopy and
optical imaging (an overview of this work can be found in
[11]). Much recent interest has focused on exploiting prior
knowledge about the signal structure (such as sparsity) to
reduce the number of measurements needed for practical phase
retrieval ([12]).

IV. FISCHER INFORMATION MATRIX CHARACTERIZATION

The Fischer information matrix for the joint estimation of
p from measurements y or y depends on the log likelihood
function of the measurements given p. The (s,?)!" element of
the Fischer information matrix Z is defined as
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We start with the likelihood function for the signal model
considered in (2). The log-likelihood function for the system
with phase measurements is given by

Is,t =

N-1 L1
log(f(F:p)) == > _ 16 — Y _ gee’” e "**[> — Nlog(m)
i=0 k=0

N-1 L-1 '
== |F@)i— D gne’®s(i, pr)]* — Nlog(r)
i=0 k=0

3)

The second step follows from taking a Fourier transform across
the antenna array. F(¥) is the Fourier transform of y; the i'"
component of which is defined as

N—-1
F@)i= Y e 2N,
s=0 \/N

Since the transform is unitary, the squared norm in the second
step of (3) stays the same. S is defined through the following:
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Z ejlpke—jli27r/N (4)
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We now observe that:

L-1

=Y ke s (i, i)

k=0

,_A

®)

L-1 L-1

where c is a constant as shown in Appendix VII-A. When
g = \F the Fischer information matrix Z for the variables

{px}rZ; is given by the following:

_ le|N? p o
Is,t:{ L ifs t’ (9)

0 otherwise.

This completes the derivation of the Fischer information
matrix for the measurements with phase information.

The Fischer information matrix for the phaseless measure-
ments case has a derivation very similar to the above; with
a major difference in the analog of step (8). Before we

= |7l* +1 Z gk€j¢k3(i,0k)| — 2Re(y; Z gkem’fs(z pk)))describe that, we observe that the squared energy operation

k=0 k=0
This implies
L-1

02 :
Ellg; — JPk o 2
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(6)

where the last step follows by taking the expectation over
the distribution of the random additive noise in the transform
domain.

For large N, both S(7, py) and its second derivative have
a significant value only in a neighborhood of size ©(1/N)
around py. This and the smoothness of the function S(i, py,)
with respect to p; makes it possible for us to focus only on
values of ¢ such that 27ri/N is near py, i.e., it is within ©(1/N)
of pi. This allows us, in a limit of a large enough N, and under
the assumption that the pys are separated by at least €, to make
the following approximate equivalence. The expressions are
exact up to the highest order term as N becomes larger and
larger.

92 N= L-1

Dpdpn Z 15: — > gre?®*s(i, pr) ]

=0 k=0

ap o Z > lgre?s(i, pr) |,

k=0 ieN}

(7

where N, refers to a ©(1/N) neighborhood of pj. Observe
that as N — oo, there are a countable number of terms in AV}.
From this expression we observe that the Fischer information
matrix for the measurements with phase is diagonal, ignoring
lower order terms. The diagonality indicates that the estimation
errors of one of the angles of arrival in our problem is
independent from estimation errors of other angles of arrival.

Moreover we can show that
2 L—1
oyt 2 2 ke s Gl
S k=0 ieEN}
N— . 2
Z 2 51n( (pS/Q—WZ/N)) =c|g |2N3
= sin(ps/2 — wi/N) s ’

®)

is equivalent to a convolution in the beamspace domain. To
see this, observe that the energy at the i*" antenna for the
phaseless measurements can be written as

L-1
S greiteedion
k=0

— Z gkglej(tﬁk*tﬁl)eji(ﬂk*m) .
kol

2

(10)

Thus, if the actual signal in the angle of arrival domain
corresponding to the coherent measurements is

L1
= gre?*8(p — pr),

k=0

then losing the phase information leads to the following signal
instead:

— (3" )d(0)+

> (grg1€’* =26 (p — pi, + pu)-
(L,k):1£k,0<1,k<L—1

(1)

We can now make the following observations:

o The number of non-zero elements in the angle of arrival
domain increases with phaseless measurements.

e There is a coupling between the estimation errors of
the angles of arrival introduced by the loss of phase
information at the antenna elements. In other words, even
in the limit of a large number of antennas, the Fischer
information matrix is no longer diagonal.

To characterize the Fischer information matrix for this
system, we start with the likelihood function. From the system
model (1), we have that the log-likelihood function is given
by

L—1
log(f( Z 0.5|y; — Z gkglej(fi?k*(bl)eji(f)k*m)|2
k,1=0
—0. 5N log(2m)
L-1

:—ZO5|}'

- 0.5N log(27).

k=0

(12)

=Y gkgie? s (i, pr, — i)



The remaining steps are very similar to the corresponding steps
(6) to (7) for the system with phase measurements. However,
the double derivative of step (6) evaluates to a different value
in this case. In particular, the double derivative of step (6) for
the case of phaseless measurements is given by
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where the last approximation uses the assumption that the
differences pi — p; have a minimum separation independent
of N. Thus we have

55— k 18]
) g [lyi — g:og g

Bp aptz Z 91915 (i, o — p1) [

=200, px — o))

22

k#l 1€Nkz
Z Z g giS (i, pr. — p1)[*
8'05(% k#l i=0
_ Zz;&s |9sg1|*|c|N®  when s =t
—|gsgt|?|c| N3 otherwise,

(14)

where J\/M is a collection of indices ¢ such that 27i/N is
within ©(1/N) of (pr — p;) mod 2w, and ¢ is the same
constant that has been derived in Appendix VII-A.

When g;, = the Fischer information matrix is given by

f’
—1 A3
N fs=t,
Toy = 12L;3 if s ! (15)
oz otherwise.

Before we go on to the numerical section, we comment
here that the above analysis is not sensitive to the assumption
about whether g, or ¢, are known perfectly or not. Lack of
perfect knowledge of these parameters will only have second
order effects (in V) in terms of the error in the angle of arrival
estimation.

V. NUMERICAL RESULTS

In this section, we look at two scenarios. In the first, we
corroborate the inverse Fischer matrix estimates obtained with
maximum likelihood estimates. In the second, we look at
practical sparsity based approaches.

A. Maximum Likelihood Estimates and the Fisher Information
Matrix

From results obtained in section IV, we can obtain the
leading terms of the Fischer information matrix and invert this
to obtain the Cramer-Rao bound.

We compare this to maximum likelihood estimates obtained
by solving the following problems in the phased and phaseless

case
min Z 19: — ngeﬂ’“ B

9k Pk

min Z Zyl - |§:gke””’c |2

9k Pk

2

These are non-convex optimization problems. As the num-
ber of sources increases in number, this amounts to performing
a search over a high-dimensional grid, making it impractical.

In Fig. 1, we compare the inverse Fischer matrix and MLE
estimates when we have 3 sources, only one of which is
unknown. It can be verified that the behaviors of the inverse
Fischer estimates and the MLE estimates follow a similar trend
of decreasing as N 3. Pertinently, the gap in performance
between the phased and phaseless case is small and further
decreases as the number of antennas increases.

B. Practical Sparsity Based Approaches

Sparsity based methods form a large grid of size m for
values of p [13]. It is assumed that there are a small number
of active sources from this large grid. Let x € C™ be a vector
whose i" dimension holds the amplitude and phase of the
wavefront from direction p = 27i/m.

When we have measurements with phase, we can write

y= Az +n,
where A;, = eJ2mik/N When we wish to recover sparse x
from measurements ¢, we minimize the number of non-zero
components or its convex envelope, ||z||; while ensuring that
|g—Ax||2 < e. This amounts to solving the following efficient
lasso optimization problem for an appropriate A:

min |5 — Az3 + Al
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Fig. 1. Comparison of mean squared error obtained with maximum likelihood
as well as the limits indicated by the inverse Fischer information matrix for
the case with 3 sources (1 being unknown) as the number of antennas vary.
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Fig. 3. The performance of sparsity based schemes as the number of antennas
increases for 10 sources.

In the phaseless measurements scenario, we follow the
approach of Phaselift [14]. Our measurements § are

9i = |Asx|* +n
= AT AT +n = A, X AT +n,

where A; is the i row of matrix A. In this case, we find a
sparse and single rank X = xz” where Y, (9; — A; X AT)? <
€. Searching in the space of single rank matrices is a non-
convex problem, hence we look at its convex envelope and
minimize the nuclear norm of X, which amounts to minimiz-
ing its trace. This is equivalent to solving the following convex
program:

min

min D (i — AiXAT? + \MTr(X) + A > X5
> —

i
Ideally, the solution to the program would be a single rank
matrix, but in the presence of noise, we may not be guaran-
teed this and hence estimate x by taking the leading eigen-

dimension. In [14], the authors show that this procedure
recovers z in the noiseless case, and is stable in the presence
of noise.

We assume that two components are known (i.e. p = 0, /2
is known) which introduces additional equality constraints in
the optimization routines. The adjustment of parameters A, A\j,
and Ao plays a crucial role in obtaining good results. In our
simulations, to compare the cases of measurements with and
without phase, we do not optimize these parameters. In Fig. 2,
we see an example of what the algorithms produce. There is a
fairly close match of the support or directions of sources with
both phased and phaseless measurements, however, for the
case of phaseless measurements there are more components
with small values. The number of non-zero values can be
refined by performing the optimization over a grid of values
of A\; and \g; the optimal values for these parameters would
depend on the number of wavefronts and number of antennas.

From results such as those seen in Fig. 2, we obtain the
directions of the sources by finding the components with
largest magnitudes that are well separated. We now compare
the directions obtained to the actual sources on the grid to
obtain Fig. 3 which shows the impact of the number of
antennas. What can be observed is that there is a gap in
performance between phased and phaseless measurements and
this gap narrows in the large antenna regime but does not
decrease below a constant MSE.

VI. CONCLUSIONS

We have characterized the fundamental limits on the an-
gle of arrival estimation error from phaseless energy mea-
surements as a function of the number of antennas in a
large antenna array. Our analysis characterizes the leading
order term in the Fischer information matrix for the joint
estimation problem; therefore it is applicable to all unbiased
estimators. Our results show that, similar to known results
for measurements with phase, for a large number of antenna
elements, the mean squared error in the unbiased estimation

of the angles of arrival from noisy energy measurements
goes down as the inverse cube of the number of antenna

elements. We also present numerical plots which corroborate
these trends and compare them with the performance from
practical sparsity-based parameter estimation algorithms from
the spectral estimation and phase retrieval literature.

Our results suggest that, in wireless systems where acquiring
phase information or achieving phase coherence is difficult,
discarding phase information altogether may not incur much
loss in optimality. We have shown in particular that the
performance loss without phase information in retrieving the
angle of arrival parameters of incoming wavefronts is small,
especially when there is a large excess of antenna elements.



VII. APPENDIX
A. Derivation of the constant c
When x # 2a, we have,
9% (sin(N(z/2 —a))\’
Ox? sin(x/2 — a)
N2
- 2sin(a — x/2)?

1 (sin(N(z/2—a))\” 1 2 4]
* 2 ( sin(z/2 — a) > (sin(a —1x/2)? + (tan(a — x/2))2>[5]
N sin(N(z — 2a))

~ tan(z/2 — a)sin®(z/2 — a)’

[1]

[2]

cos(N(z — 2a))

[3]

[61
(16)

When x = 2a, the above expression simplifies to —%N (N2~
1).

Let = be such that 5~ is rational. Using (16), we can verify
that

[7]

[8]

92 [sin(N(z/2 — mi/N))\ 2 . . (9]
; 2 ( sin((z/2 — 7i/N)) ) = eN"+o(NT), (D)
[10]
where
c:—LriZUk2 18y 1
6 2x2
k=1
1 1 72 -1
6T T 12 (19 2
When x/27 is not rational, the same argument above can be
applied to each point in a sequence of increasingly accurate [13]
rational approximations to it; thereby establishing the result
for all real z. [14]
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