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ABSTRACT

Motivation: Recent advancements in sequencing technology have led
to a drastic reduction in the cost of sequencing a genome. This
has generated an unprecedented amount of genomic data that must
be stored, processed, and transmitted. To facilitate this effort, we
propose a new lossy compressor for the quality values presented in
genomic data files (e.g., FASTQ and SAM files), which comprise
roughly half of the storage space (in the uncompressed domain). Lossy
compression allows for compression of data beyond its lossless limit.
Results: The proposed algorithm QVZ exhibits better rate-distortion
performance than the previously proposed algorithms, for several
distortion metrics and for the lossless case. Moreover, it allows the
user to define any quasi-convex distortion function to be minimized,
a feature not supported by the previous algorithms. Finally, we
show that QVZ-compressed data exhibits better performance in
the genotyping than data compressed with previously proposed
algorithms, in the sense that for a similar rate, a genotyping closer to
that achieved with the original quality values is obtained.
Availability: QVZ
from https://github.com/mikelhernaez/qvz.

is written in C and can be downloaded
Contact:

{gmalysa, mhernaez, iochoa, milind, karthik3, tsachy}@stanford.edu

1 INTRODUCTION

There has been a recent explosion of interest in genome
sequencing, driven by advancements in the sequencing
technology. While early sequencing technologies required

genomic datasets could present, compression of the raw data
generated by sequencing machines has become an important
topic.

The output data of the sequencing machines is generally
stored in the widely accepted FASTQ format (Metzker,
2010). A FASTQ file dedicates four lines to each fragment of a
genome (a “read”) analyzed by the sequencing machine. The
first line contains a header with some identifying information,
the second lists the nucleotides in the read, the third is
similar to the first one, and the fourth lists a “quality
value” (also referred to as quality score) for each nucleotide.
The quality values are generally stored using the Phred
score, which corresponds to the particular number @ =
—10log,q P, where P is an estimate (calculated by the base
calling software running on the sequencing machine) of the
probability that the corresponding nucleotide in the read is in
error. These scores are commonly represented in the FASTQ
file with an ASCII alphabet [33 : 73] or [64 : 104], where
the value corresponds to @ + 33 or @ + 64, respectively. In
addition, the information contained in the FASTQ files is
also found in the SAM files (Li et al., 2009), which store the
information pertaining to the alignment of the reads to a
reference.

Quality values, which comprise more than half of the
compressed data, have proven to be more difficult to
compress than the reads (Bonfield and Mahoney, 2013).
Thus, generating better compression tools for quality
values is crucial for reducing the storage required for
large files. Unlike nucleotide information, the quality
values generated by sequencing machines tend to exhibit

years to capture a 3 billion nucleotide genome (Schatz and Langmprédictable behavior within each read. Strong correlations

2013), genomes as large as 22 billion nucleotides are now
being sequenced within days (Zimin et al., 2014) using
Next Generation Sequencing (NGS) technologies (Metzker,
2010).  Further, the cost of sequencing a human-
length genome has dropped from billions of dollars to
merely $4000 (http://systems.illumina.com/systems/hiseq-
x-sequencing-system.ilmn) within the past 15 years (Hayden,
2014). These developments in efficiency and affordability
have allowed many to envision whole genome sequencing as
an invaluable tool to be used in both personalized medical
care and public health (Berg el al., 2011). In anticipation of
the storage challenges that increasingly large and ubiquitous

*to whom correspondence should be addressed.

exist between adjacent quality values as well as the
trend that quality values degrade drastically as a read
progresses (I{ozanitis et al., 2011). There is also evidence
that quality values are corrupted by some amount of
noise introduced during sequencing (Bonficld and Mahoney,
2013). These features are well explained by imperfections in
the base-calling algorithms which estimate the probability
that the corresponding nucleotide in the read is in
error (Das and Vikalo, 2012). Further, applications which
operate on reads (referred to as “downstream applications”)
often make use of the quality values in a heuristic
manner. This is particularly true for sequence alignment
algorithms (Langmead et al., 2009; Li and Durbin, 2009)
and Single Nucleotide Polymorphism (SNP) calling (Li, 2011;
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DePristo et al., 2011), the latter having been shown to be
resilient to changes in the quality values (in the sense that,
in general, little is compromised in performance when quality
values are modified (Ochoa et al,, 2013; Yu el al, 2014)

QualComp (Ochoa et al., 2013) applied rate-distortion
theory as a framework for designing a lossy compression
algorithm when mean-squared error is the distortion

measure. Quality value data is first clustered using a

(http://www.illumina.com/documents/products/whitepapers/ wlkitepaper _digadohmpressioh. sti€)). an optimization problem

Based on these observations, lossy (as opposed to
lossless) compression of quality values emerges as a natural
candidate for significantly reducing storage requirements
while maintaining adequate performance of downstream
applications. While rate-distortion theory provides a
framework to evaluate lossy compression algorithms, the
criterion under which the goodness of the reconstruction
should be assessed is a crucial question. It makes sense to pick
a distortion measure by examining how different distortion
measures affect the performance of downstream applications,
but the abundance of applications and variations in how
quality values are used makes this choice too dependent on
the specifics of the applications considered.

These trade-offs suggest that an ideal lossy compressor
for quality values should not only provide the best possible
compression and accommodate downstream applications,
but it should provide flexibility to allow a user to pick a
desired distortion measure and/or rate.

In this work, we present such a scheme which we call
QVZ (“Quality Values Zip”), which achieves significantly
better rate-distortion performance than any of the existing
algorithms. Specifically, the proposed algorithm obtains up
to 4 times better compression than previously proposed
algorithms for the same average distortion. In addition, QVZ
achieves lossless compression. Moreover, we analyze the effect
of QVZ on the genotyping and show that better results
are obtained than with the previously proposed algorithms.
Finally, we present some preliminary results that suggest that
lossy compression could potentially improve the genotyping
with respect to the uncompressed data. This may be due to
the inherently noisy nature of the quality values, in ways that
will be thoroughly investigated in future work.

Survey of Lossy Compressors for Quality Values

Lossy compression for quality values has recently started
to be explored. Slimgene (Kozanitis et al., 2011) fits fixed-
order Markov encodings for the differences between adjacent
quality values and compresses the prediction using a Huffman
code (ignoring whether or not there are prediction errors). Q-
Scores Archiver (Wan el al., 2012) quantizes quality values
via several steps of transformations, and then compresses the
lossy data using an entropy encoder.

Fastgz (Bonfield and Mahoney, 2013) uses a fixed-length
code which represents quality values above 30 using a specific
byte pattern and quantizes all lower quality values to 2.
Scalce (Hach et al., 2012) first calculates the frequencies of
different quality values in a subset of the reads of a FASTQ
file. Then the quality values which achieve local maxima in
frequency are determined. Anytime these local maximum
values appear in the FASTQ file, the neighboring values
are shifted to within a small offset of the local maximum,
thereby reducing the variance in quality values. The result is
compressed using an arithmetic encoder.

is solved in order to minimize mean-squared error of
the compressed output with respect to a rate constraint.
BEETL (Janin et al., 2013) first applies the Burrows-
Wheeler Transform (BWT) to reads and uses the same
transformation on the quality values. Then, the nucleotide
suffixes generated by the BWT are scanned. Groups of
suffixes which start with the same k bases while also
sharing a prefix of at least k bases are found. All of the
quality values for the group are converted to a mean quality
value, taken within the group or across all the groups.
RQS (Yu el al., 2014) first generates off-line a dictionary of
commonly occurring k-mers throughout a population-sized
read dataset of the species under consideration. It then
computes the divergence of the k-mers within each read to
the dictionary, and uses that information to decide whether
to preserve or discard the corresponding quality values.
PBlock (Canovas et al., 2014) allows the user to determine a
threshold for the maximum per-symbol distortion. The first
quality value in the file is chosen as the first ‘representative’.
Quality values are then quantized symbol-by-symbol to the
representative if the resulting distortion would fall within
the threshold. If the threshold is exceeded, the new quality
value takes the place of the representative and the process
continues. The algorithm keeps track of the representatives
and run-lengths, which are compressed losslessly at the end.
RBlock (Canovas et al., 2014) uses the same process, but the
threshold instead sets the maximum allowable ratio of any
quality value to its representative as well as the maximum
value of the reciprocal of this ratio. (Canovas et al., 2014)
also compared the performance of existing lossy compression
schemes for different distortion measures.

Finally, Illumina proposed a new binning scheme
for reducing the size of the quality wvalues. This
binning scheme has been implemented in the state-of-
the-art compression tools CRAM (Iritz et al., 2011) and
DSRC2 (Roguski and Deorowicz, 2014).

To our knowledge, and based on the results of (Canovas et al.,
2014), RBlock, PBlock, and QualComp provide the best rate-
distortion performance among existing lossy compression
algorithms for quality values that do not use any extra
information. For this reason, in Section 3 we use RBlock,
PBlock, and QualComp as a representation of the existing
state-of-the-art when comparing with QVZ, together with
CRAM and DSRC2, which apply Illumina’s binning scheme.
For completeness, we also compare the lossless performance
of QVZ with that of CRAM, DSRC?2 (in their lossless mode)
and gzip.

2 METHODS

As described previously, we seek to compress the quality scores
presented in the genomic data. Let N be the number of quality
score sequences to be compressed. The proposed algorithm
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assumes that all the quality score sequences are of the same
length L (for trimmed or hard-clipped reads, please refer to the
Supplementary Data). Each sequence consists of ASCII characters
representing the scores, belonging to an alphabet X, for example
X = [33: 73]. These quality score sequences are extracted from the
genomic file (e.g., FASTQ and SAM files) prior to compression.

We model the quality score sequence X = [X1, X2,...,X] by
a Markov chain of order one: we assume the probability that X;
takes a particular value depends on previous values only through
the value of X;_;. We further assume that the quality score
sequences are independent and identically distributed (i.i.d.). We
use a Markov model based on the observation that quality scores
are highly correlated with their neighbors within a single sequence,
and we refrain from using a higher order Markov model to avoid
the increased overhead and complexity this would produce within
our algorithm.

The Markov model is defined by its transition probabilities
P(X;|X;-1), for i € 1,2,...,L, where P(X1|Xo) = P(X1).
QVZ finds these probabilities empirically from the entire data
set to be compressed and uses them to design a codebook. The
codebook is a set of quantizers indexed by position and previously
quantized value (the context). These quantizers are constructed
using a variant of the Lloyd-Max algorithm (Lloyd, 1982). After
quantization, a lossless, adaptive arithmetic encoder is applied to
achieve entropy-rate compression.

In summary, the steps taken by QVZ are:

1. Compute the empirical transition probabilities of a Markov-1
Model from the data.

2. Construct a codebook (section 2.2) using the Lloyd-Max
algorithm (section 2.1).

3. Quantize the input using the codebook and run the arithmetic
encoder over the result (section 2.3).

2.1 Lloyd-Max quantizer

Given a random variable X governed by the probability mass
function P(-) over the alphabet X of size K, let D € REXK be a
distortion matrix where each entry Dy , = d(z,y) is the penalty
for reconstructing symbol x as y. We further define ) to be the
alphabet of the quantized values of size M < K.

Thus, a Lloyd-Max quantizer, denoted hereafter as LM(-),
is a mapping X — ) that minimizes an expected distortion.
Specifically, the Lloyd-Max quantizer seeks to find a collection
of boundary points by € X and reconstruction points yr € Y,
where k € {1,2,..., M}, such that the quantized value of symbol
x € X is given by the reconstruction point of the region to which
it belongs (see Fig. 1). For region k, any = € {by_1,...,bx — 1}
is mapped to yr, with by being the lowest score in the quality
alphabet and bj; the highest score plus one. Thus the Lloyd-Max
quantizer aims to minimize the expected distortion by solving

bj—1

M
{bk,yk}ﬁilzargmin Z Z P(x)d(z,y;)- (1)

by Yk =1 a=b,

In order to approximately solve Eq. (1), which is an integer
programming problem, we employ an algorithm which is initialized
with uniformly spaced boundary values and reconstruction points
taken at the midpoint of these bins. For an arbitrary D and
P(-), this problem requires an exhaustive search. We assume
that the distortion measure d(z,y) is quasi-convex over y with
a minimum at y = z, 7.e., when x < y1 <y or y2 < y1 < w,
d(z,y1) < d(x,y2). If the distortion measure is quasi-convex, an
exchange argument suffices to show the optimality of contiguous
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Fig. 1. Example of the boundary points and reconstruction points
found by a Lloyd-Max quantizer, for M = 3.

quantization bins and a reconstruction point within the bin. The
following steps are iterated until convergence:

1. Solving for yi: We first minimize Eq. (1) partially over
the reconstruction points given boundary values. The
reconstruction points are obtained as,

b —1
Y = argmin Z P(x)d(z,y), Vk=1,2,..., M.
y={bx—1,.-,bp—1} .

(2

2. Solving for by: This step minimizes Eq. (1) partially over

the boundary values given the reconstruction points. by

could range from {yx + 1,...,yx+1} and is chosen as the

largest point where the distortion measure to the previous

reconstruction value yy, is lesser than the distortion measure
to the next reconstruction value yj41, i.e.,

by, = max {966 {ye + 1, yps1} - P(x)d(z, yr) <

P(z)d(z,yk+1)} Vk=1,2,...,M—1.  (3)

Note that this algorithm, which is a variant of the Lloyd-Max
quantizer, converges in at most K steps.

Given a distortion matrix D, the defined Lloyd-Max quantizer
depends on the number of regions M and the input probability
mass function P(-). Therefore we denote the Lloyd-Max quantizer
with M regions as LML (-), and the quantized value of a symbol
Tz € X as LMIICI(JJ).

An ideal lossless compressor applied to the quantized values can
achieve a rate equal to the entropy of LMAI; (X), which we denote
by H(LMF (X)). For a fixed probability mass function P(-), the
only varying parameter is the number of regions M. Since M
needs to be an integer, not all rates are achievable. Because we are
interested in achieving an arbitrary rate R, we define an extended
version of the LM quantizer, denoted as LM E. The extended
quantizer consists of two LM quantizers with the numbers of
regions given by p and p + 1, each of them used with probability
1 —r and 7, respectively (where 0 < r < 1). Specifically, p is given
by the maximum number of regions such that H(LM;D (X)) <R
(which implies H(LM;LA(X)) > R). Then, the probability r is
chosen such that the average entropy (and hence the rate) is equal
to R, the desired rate. More formally,

p _ LMPE (z), w.p. 1 —7,
LMEBg(@) = {LM%+1(JJ), w.p. T,
p = max{ze{l,...,K}: HLMEI (X)) <R}
B R—H(LM} (X)) @
- H(LM) (X)) - H(LME (X))
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2.2 Codebook generation

Because we assume the data follows a Markov-1 model, for a given
position ¢ € {1,..., L} we design as many quantizers Qfl as there
were unique possible quantized values ¢ in the previous context
i—1. This collection of quantizers forms the codebook for Q VZ. For
an unquantized quality score X; we denote the quantized version
as Qi, so Q = [Q1,Q2,...,QL] is the random vector representing
a quantized sequence. The quantizers are defined as

1 _ P(X1)
Q' = LMELGY, (5)
i _ P(X;|Qi—1=q) .
Q, = LMEaH(Xi\Qi,lzq)’ fori=2,...,L (6)
where o € [0,1] is the desired compression factor. a = 0
corresponds to 0 rate encoding, o = 1 to lossless compression,

and any value in between scales the input file size by that
amount. Note that the entropies can be directly computed from
the corresponding empirical probabilities.

Next we show how the probabilities needed for the LMEs are
computed.

Computation of the probability P

In order to compute the quantizers defined above, we require
P(Xi+1 | Qi), which must be computed from the empirical
statistics P(X;4+1 | X;) found earlier. The first step is to calculate
P(Qi | X;) recursively, and then to apply Bayes rule and the
Markov Chain property to find the desired probability:

P(Qi| X;) = Z P(Qi,Qi—1 | X4)

Qi-1
= Z P(Qi | Xi,Qi-1) Z P(Qi-1,Xi—1 | X3)
Qi-1 Xi—1
= Z P(Qi | Xi,Qi-1) Z P(Qi—1 | Xi—1, Xi)P(Xi—1 | Xi)
Qi-1 Xi—1
= D P@QilXi,Qim1) > P(Qict | Xim))P(Xim1 | X3) (7)
Qi-1 Xi-1

Eq. (7) follows from the fact that Q;—1 +> X;—1 <> X; form a
Markov chain. Additionally, P(Q; | X;,Qi—1 = q) = P(sz(Xi) =
Qi), which is the probability that a specific quantizer produces
Qi given previous context ¢. This can be found directly from r
(defined in Eq. (4)) and the possible values for g. We now proceed
to compute the required conditional probability as

P(Xit1]Q:) = ZP(Xi | Qi)P(Xit1 | X4, Qi)
X
= > P(Xi | QP(Xis1 | X) (8)
X
- 55 2P XOPUXL Xer), )

where Eq. (8) follows from the same Markov chain as earlier. Terms
in Eq. (9) are: i) P(Xj;, X;41): joint pmf computed empirically
from the data, ii) P(Q; | X;): computed in Eq. (7), and iii) P(Q;):
normalizing constant given by

P(Qi=q)= ) P(Qi=aql|Xi)P(Xi).

X

The steps necessary to compute the codebook are summarized
in Algorithm 1. Note that support(X) denotes the support of the

random variable X or the set of values that X takes with non-zero
probability.

Algorithm 1 Generate codebook
Input: Transition probabilities P(X; | X;_1), compression
factor a
Output: Codebook: collection of quantizers {Qfl}
P+ P(X1)
Compute and store Q' based on P using Eq. (5)
for all columns i =2 to L do
Compute P(Q;—1 | X;—1 = x) Vz € support(X;_1)
Compute P(X; | Qi—1) Yq € support(Qi—1)
for all g € support(Q;—1) do
P«PXi|Qi-1=9)
Compute and store Q; based on P using Eq. (6)
end for
end for

2.3 Encoding

The encoding process is summarized in Algorithm 2. First, we
generate the codebook and quantizers. For each read, we quantize
all scores sequentially, with each value forming the left context
for the next value. As they are quantized, scores are passed to an
adaptive arithmetic encoder, which uses a separate model for each
position and context. For a detailed explanation of the arithmetic
encoder we refer the reader to the Supplementary Data.

Algorithm 2 Encoding of quality scores

Input: Set of N reads {X }Jlil
Output: Set of quantizers {Q.} (codebook) and
compressed representation of reads
Compute empirical statistics of input reads
Compute codebook {Q}} according to Algorithm 1
for all j =1to N do

[Xl,...,XL] (—Xj

Q1+ Q'(X1)

for all i =2 to L do

Qi + Qp, ,(Xi)
end for

Pass [Q1,. ..
end for

, Q1] to arithmetic encoder

2.4 Clustering

The performance of the compression algorithm depends on the
conditional entropy of each quality score given its predecessor.
Earlier we assumed that the data was all i.i.d., but it is more
effective to allow each read to be independently selected from one
of several distributions. If we first cluster the reads into C clusters,
then the variability within each cluster may be smaller. In turn,
the conditional entropy would decrease and fewer bits would be
required to encode X; at a given distortion level, assuming that
an individual codebook is available unique to each cluster.

Thus QVZ has the option of clustering the data prior
to compression. Specifically, it uses the K-means algorithm
(MacQueen et al., 1967), initialized using C quality value
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sequences chosen at random from the data. It assigns each
sequence to a cluster by means of euclidean distance. Then,
the centroid of each cluster is computed as the mean vector of
the sequences assigned to it. Due to the lack of convergence
guarantees, we have incorporated a stop criterion that avoids
further iterations once the centroids of the clusters have moved
less than U units (in euclidean distance). The parameter U is set
to 4 by default, but it can be modified by the user. Finally, storing
which cluster each read belongs to incurs a rate penalty of at most
log, (C')/L bits per symbol, which allows QVZ to reconstruct the
series of reads in the same order as they were in the uncompressed
input file.

3 RESULTS AND DISCUSSION

In order to assess the performance of the proposed algorithm
QVZ, we compare it with the state of the art lossy
compression algorithms PBlock, RBlock (Canovas el al.,
2014), and QualComp (Ochoa et al., 2013). We also consider
CRAM (Fritz et al.,2011), DSRC2 (Roguski and Deorowicz,
2014) and gzip. In this assessment, we focus on two aspects
that we believe are important: the rate-distortion curve
and the behavior in genotyping. The rate-distortion curve
provides a framework for comparison that is independent
of the downstream applications, which vary significantly
in their use of quality scores. It also gives a measure of
fidelity for each of the algorithms: how similar are the
reconstructed quality scores to the original values? On the
other hand, examining the behavior in genotyping aims to
provide a comparison on how the different lossy compressors
affect the downstream applications, which are widely used
in practice. Specifically, we focus on SNP (Single Nucleotide
Polymorphism) calling, because analyzing the effects of lossy
compression on this application is of significant importance
in practice.

The data set used for our analysis is the NA12878. HiSeq.
WGS.bwa. cleaned.recal.hg19.20.bam, which corresponds to
the chromosome 20 of a H. Sapiens individual. We

3.1 Rate-Distortion analysis

First, we describe the options used to run each algorithm.
QVZ was run with the default parameters, multiple rates
and different number of clusters. PBlock and RBlock
(http://tiny.cc/kgd9tx) were run with different values of
p and 7, respectively, and with m = 1 (the default value).
QualComp (http://tiny.cc/9b49tx) was run with three
clusters and multiple rates, and CRAM and DSRC2 were
run with the lossy mode that implements Illumina’s proposed
binning scheme. Finally, we also run each of the mentioned
algorithms in the lossless mode, except QualComp, since it
does not support lossless compression. We refer the reader to
the Supplementary Data for more details.

QVZ can minimize any quasi-convex distortion, if the
corresponding matrix is provided, or any of the following
three built-in distortion metrics: i) the average Mean Squared
Error (MSE), where d(z,y) = |z — y|?; ii) the average L1
distortion, where d(z,y) = |z — y|; and iii) the average
Lorentzian distortion, where d(z,y) = logy(1 + |z — yl).
Hereafter we refer to each of them as QVZ-M, QVZ-A and
QVZ-L, respectively. QVZ can also perform clustering prior
to compression —similar to QualComp— using a user-specified
number of clusters, so we ran it with 1, 3, and 5 clusters for
each distortion metric to examine the effects of clustering on
the rate-distortion curve.

Assuming N reads of length L each, the distortion D used
to compare the different algorithms is computed as

N L
D= 57 03 dla(h). (k) (10)

where x;(k) denotes the quality score value of read k at
position 4, y; (k) the corresponding reconstructed value (after
lossy compression), and d(-,-) the distortion metric under
consideration. Since QVZ can select to optimize for MSE,
L1 or Lorentzian distortions, we provide results for all three.
Any other distortion metric can be used for comparison, but
we limit our attention to these three due to space constraints,
and refer the reader to the Supplementary Data for results

downloaded it from the GATK bundle (http://tiny.cc/3149tx).on other distortion metrics. As a measure of rate, we use the

This data set pertains to one of the most studied
human individuals in the literature (Zook et al., 2014;
DePristo et al.,, 2011), making it a suitable baseline for
comparison. We generated the SAM file from the BAM file
and then extracted the quality score sequences from it. The
data set contains 51, 585, 658 sequences, each of length 101.
We consider four more data sets for our study, namely, the
chromosome 20 of the H. Sapiens dataset SRR622/61, the
whole genome of a S. Cerevisiae (SRR1179906), and two
ChIP-Seq datasets from a M. Musculus (SRR32209) and a D.
Melanogaster (ERR011354). Due to space constraints their
analyses are presented in the Supplementary Data.

The machine used to perform the experiments has the
following specifications: 39 GB RAM, Intel Core i7-930 CPU
at 2.80GHz x 8 and Ubuntu 12.04 LTS.

The next two subsections report on the results of our
study as they pertain to rate-distortion and genotyping,
respectively.

final size of the quality score sequences after compression.
The results are presented in Fig. 2.

As can be seen in Fig. 2, QVZ outperforms the previously
proposed algorithms for all three choices of distortion metric.
Furthermore, whereas QualComp reconstructs the quality
score sequences in a different order, QVZ maintains the
original order. This is achieved by storing the cluster to
which each quality score sequence belongs, in contrast to
QualComp which produces one file per cluster. Note that
storing this information for C' clusters would incur a cost of
approximately N log, C bits, assuming uniform distribution
of sequences across the clusters, which is not included for
QualComp in Fig. 2.

The lossy modes of CRAM and DSRC?2 can each achieve
only one rate-distortion point, and both are outperformed
by QVZ. We further observe that although QualComp
outperforms RBlock and PBlock for low rates (in all three
distortions), the latter two achieve a smaller distortion
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Fig. 2. Rate-Distortion curves of PBlock, RBlock, QualComp and
QVZ, for MSE, L1 and Lorentzian distortions. In QVZ, c1, ¢3 and
c5 denote 1, 3 and 5 clusters, respectively.

for higher rates. @QVZ however outperforms all previously
proposed algorithms in both low and high rates. QVZ’s
advantage becomes especially apparent for distortions other
than MSE.

It is also significant that QQVZ achieves a zero distortion
at a rate at which the other lossy algorithms exhibit
positive distortion. In other words, QVZ achieves lossless
compression faster than QualComp, RBlock, or PBlock. In
fact, due to its design, QualComp cannot achieve lossless
compression, even for very high rates. Moreover, QVZ also
outperforms the lossless compressors CRAM and gzip, and
achieves similar performance to that of DSRC2 (see Table
1).
Finally, we observe that applying clustering prior to
compression in QVZ is especially beneficial at low rates. For
higher rates, the performance of 1, 3 and 5 clusters is almost
identical. Therefore we recommend using multiple clusters at
low rates for better distortion and 1 cluster at high rates for
faster compression.

The results obtained from this analysis are in line with
the ones presented in the Supplementary Data for the other
studied data sets.

QVZ PBlock DSRC2 CRAM  gzip
(3 clusters) RBlock
Size [MB] 1,632 3,229 1,625 2,000 1,999

Table 1. Lossless results of the different algorithms for the
NA12878 data set.

QVZ compares favorably with the other schemes insofar
as running times are concerned. For example, it requires
approximately 13 minutes to compress the analyzed dataset
with one cluster, and 12 minutes to decompress it. If three
clusters are used instead, the compression time increases
to 18 minutes. QualComp, on the other hand, takes more
than 1 hour to cluster the data (if more than one cluster
is used): around 90 minutes to compute the necessary
statistics, and 20 minutes to finally compress the quality
scores. The decompression is done in 15 minutes. DSRC2
requires 20 minutes to compress and decompress, whereas
CRAM employs 14 minutes to compress and 4 minutes to
decompress. Finally, both Pblock and Rblock take around 4
minutes to compress and decompress, being the algorithms
with the least running times among those that we analyzed.
The running times of gzip to compress and decompress are 7
and 30 minutes, respectively.

In terms of memory usage, QVZ uses 5.7 GB to compress
the analyzed data set and less than 1 MB to decompress,
whereas QualComp employs less than 1 MB for both
operations. Pblock and Rblock have more memory usage than
QualComp, but this is still below 40 MB to compress and
decompress. DSRC2 uses 3 GB to compress and 5 GB to
decompress, whereas CRAM employs 2 GB to compress and
3 GB to decompress. Finally, gzip uses less than 1 MB for
both operations.

3.2 Genotyping analysis

In order to perform the genotyping analysis, and following
a similar analysis to the one presented in (Cdnovas et al.,
2014), we compare the SNP calling of the original SAM file
with that obtained when the quality values are replaced with
the reconstructed quality values. Note that we replace the
quality scores directly in the SAM file: we do not regenerate
the SAM file by running an alignment program. The reason
is that similarly to SNP calling, the alignment program uses
quality values (in general) to generate the alignment, and
thus by running both it will become impossible to separate
the effect that quality scores have on SNP calling from
alignment. Note that if the alignment program does not
use the quality values (e.g., BWA (Li and Durbin, 2009)),
modifying them in the original SAM file is equivalent to
re-running the alignment program.

We use the programs provided by the HTS library
(http://www.htslib.org) to perform SNP calling, with the
parameters and commands suggested by the SNP calling
workflow therein (exact commands can be found in the
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Fig. 3. SNP calling results of the original SAM file (NA12878),
denoted as uncompressed, and those generated with the different
lossy compression algorithms. Note that the y-axis refers to the
F.N.s times minus one.

Supplementary Data). Any SNP calling program could have
been used for this purpose.

Fig. 3 shows the number of False Negatives (F.N.)
versus the number of False Positives (F.P.) with respect to
the uncompressed version. The point (0,0) corresponds to
lossless compression. We chose to show the performance of
QVZ-M with three clusters for the sake of clarity, although
similar performance was obtained for the other configurations
of QVZ (see the Supplementary Data). As shown previously
in the Rate-Distortion analysis, QVZ achieves lossless
compression, and thus same genotyping as the uncompressed
version, with a file size of only 1,626 MB, while RBlock needs
3,229 MB. On the other hand, QualComp behaves similarly
to QVZ, although its files are generally larger for the same
genotyping results. Moreover, QualComp cannot achieve the
same genotyping as the uncompressed version as it cannot
generate a lossless file. When comparing with Illumina’s
binning, we observe that QQVZ achieves a similar point in
the genotyping with 491 MB, whereas DSRC2 and CRAM
need 646 MB and 980 MB, respectively.

The differences in convergence to the lossless genotyping
between QVZ (and QualComp) and both PBlock and RBlock
for this data set are very interesting. While the variant
calling of PBlock- and RBlock-reconstructed data does not
generate many false positives, it misses several SNPs (that
is, it generates more false negatives) before achieving perfect
genotyping. On the other hand, using QVZ- and QualComp-
reconstructed data seems to result in more calls with higher
compression ratios. This behavior makes the number of
false positives increase as the file size decreases, while the
number of true positives remains almost constant for different
sizes. Even with a high compression ratio (small size), the
observed number of true positives is nearly identical to the
uncompressed version. Similar results are observed in the
extra analyses provided in the Supplementary Data.

This observation provided the motivation for our next
experiment. Specifically, we wanted to explore whether
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Fig. 4. SNP calling results of the original SAM file (NA12878),
denoted as uncompressed, and those generated with the different
lossy compression algorithms.

among the false positives called with QVZ (especially
for low rates), there were actually true positives that
were missed with the original SAM file. This situation is
conceivable, as the quality scores are inherently noisy, so
their lossy compression may serve to denoise them as well,
thereby boosting the inferential power of the downstream
applications. In order to verify if this was the case, we
compared the SNP calling generated with the modified
SAM files with what we refer to as the “ground truth”.
In particular, the “ground truth” corresponds to the SNPs
called over the same individual after following the Best
Practices workflow for SNP calling provided by the Broad
Institute. The corresponding VCF file containing the SNPs
can be found in the Broad Institute Resource Bundle. Note
that the SAM file used for this purpose has been previously
pre-processed according to the Best Practices provided by
the Broad Institute, thus removing most of the false positives
introduced by duplicates and bad alignments around indels.

Fig. 4 shows the difference between the number of T.P.s
and F.P.s called with the uncompressed version and the
different lossy versions with respect to the “ground truth”.
A similar convergence to the lossless case can be seen, just
as before when comparing to the unmodified SAM file. In
the case of PBlock and RBlock, no new T.P.s are found. This
seems to be a consequence of the fact that fewer SNPs are
called than with the uncompressed version. Moreover, fewer
false positives are also called than with the uncompressed
version, as shown in the lower-left quadrant of the figure. We
also observe that with QVZ fewer F.P.s and more T.P.s are
obtained than those obtained with the Illumina’s binning,
while achieving more compression.

The upper-left quadrant deserves special attention. It
contains those cases where not only are more true positives
achieved, but there are also fewer false negatives. This
means that in these cases the genotyping improves over
the uncompressed version. It is intriguing to observe that
all the files above 700 MB generated with our proposed
algorithm QVZ are in this quadrant. A similar behavior
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is also observed when the “ground truth” is chosen as the
one provided by the NIST Proposed Standard, as shown in
the Supplementary Data. This is a very interesting finding,
as it seems to suggest that the proposed lossy compressor
can potentially be used not only as a means to reduce the
storage requirements but also for improving the downstream
analysis performed on the data. These preliminary findings
are admittedly anecdotal. However, they provide a glance
of the potential of applying lossy compression for genotype
improvement. Further analysis in this direction is left for
future research.

4 CONCLUSION

In this work we have presented () VZ, a new lossy compression
algorithm for quality scores in genomic data. The proposed
algorithm can work for several distortion metrics, including
any quasi-convex distortion metric provided by the user, a
feature not supported by the previously proposed algorithms.
Moreover, it exhibits better rate-distortion performance.
Unlike some of the previously proposed algorithms, QVZ
also allows for lossless compression, and a seamless transition
from lossy to the lossless with increasing rate. Moreover, we
have shown that in comparison to previously proposed lossy
algorithms, using @ VZ-compressed data achieves genotyping
performance closer to that obtained with uncompressed
quality values, for similar compression rates.

Finally, we have obtained some preliminary and promising
results which suggest that lossy compression could be
beneficial not only for storage and transmission, but also
for boosting performance in downstream applications. The
extent of this phenomenon, the relation between the
distortion criterion, the compression rate, the characteristics
of the noise in the quality values, and the resulting
performance boosts, are due further investigation.
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