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Abstract—We propose a class of Generalized Two-Ray (GTR)
fading channels that consists of two line of sight (LOS) compo-
nents with random phase and a diffuse component. Observing
that the GTR fading model can be expressed in terms of the
underlying Rician distribution, we derive a closed-form expres-
sion for the moment generating function (MGF) of the signal-to-
noise ratio (SNR) of this model. We then employ this approach
to compute the ergodic capacity with receiver side information.
The impact of the underlying phase difference between the LOS
components on the average SNR of the signal received is also
illustrated.

Index Terms—Envelope statistics, fading channels, hyper-
Rayleigh fading, moment generating function, multipath prop-
agation, Rician fading, small-scale fading, Two Ray.

I. INTRODUCTION

We consider a class of fading channels where the fading
amplitude is built from two line of sight (LOS) components
and multiple non-LOS (NLOS) components. The arriving
LOS components can be regarded as individual multipath
waves with constant amplitude and random phase, whereas the
multiple NLOS components can be grouped into an aggregate
diffuse component [1]. We will denote this general class
of fading channels as Generalized Two-Ray (GTR) fading
models and specify the phase distribution between the LOS
components when used in the analysis.

When uniformly distributed phases for the LOS compo-
nents are assumed, the resultant GTR fading model (GTR-
U) reduces to the Two Wave with Diffuse Power (TWDP)
model proposed by Durgin, Rappaport and de Wolf as a
generalization of the Rayleigh and Rician fading models [2].
This model was shown to closely match field measurements
in indoor scenarios [3]. By varying the power of the LOS and
NLOS components, the TWDP fading model encompasses the
Rayleigh and Rician models along with the LOS case with no
diffuse components (i.e., a two-ray model). Another fading
behavior that TWDP fading can model is when the fading is
more severe than Rayleigh fading [4]. This regime, termed
hyper-Rayleigh fading, has been observed in wireless sensor
networks deployed in cavity structures such as an aircraft or
a bus [5], or in vehicle-to-vehicle communication links [6].

Other distributions, such as the κ-µ extreme distribution, have
been proposed to model hyper-Rayleigh fading behavior [7].

Although this fading model can indeed suit a variety of
propagation conditions, its complicated statistical characteri-
zation has been its main drawback. The original pdf in [2]
is given in integral form, which has hindered the wireless
system performance analysis using this model. To circumvent
this issue, an approximate closed-form pdf was proposed in
[2] to facilitate obtaining analytical results for this channel.
This approximate TWDP fading pdf has been widely used
to characterize the performance of wireless communication
systems in TWDP fading, in terms of the bit error rate (BER)
in single-antenna and multi-antenna reception using various
modulation schemes [8–11], as well as in relay networks
[12, 13]. Other performance metrics such as the secrecy
capacity associated with physical layer security have also been
investigated [14]. In [15], alternative exact expressions for the
TWDP fading cdf and pdf were given in terms of infinite series
of Laguerre and Legendre polynomials.

In [16], it was observed that the pdf of the GTR-U fading
model conditioned on the phase difference α between the LOS
components resulted in the Rician pdf. This implied that any
performance metric that is a linear functional of the envelope
statistics of the GTR-U fading model can be expressed as a
finite integral of the corresponding metric for Rician fading. As
a key result, the Moment Generating Function (MGF) of the
GTR-U fading model was obtained as well as statistics such
as the Amount of Fading and the level crossing rate (LCR).

Inspired by the connection between the Rician and GTR-
U fading unveiled above, in this work we show that the
statistical properties of the phase difference between the two
LOS components α have an impact on the fading experienced
by the signal. Allowing this phase difference α to be arbitrarily
distributed, we analyze a more general fading propagation
condition: the GTR fading model with arbitrary phase. We will
show that this additional degree of freedom models a much
larger range of fading behavior, and hence can be useful to
characterize hyper-Rayleigh fading in more severe scenarios
than the ones considered in [4–6].

Interestingly, we also obtain a closed-form expression for



the MGF of the GTR fading model when the phase difference
is distributed according to the von Mises (or circular normal)
distribution [17, 18], which includes the uniform distribution
as a particular case. The analysis in this new general scenario
is of similar complexity to the conventional GTR-U fading
case. With the MGF in closed-form, we can easily evaluate
the ergodic capacity [19, 20] in GTR-U fading and study its
behavior in asymptotic regimes.

The rest of the paper is organized as follows: in Section II,
the family of GTR fading models is introduced as a natural
generalization of the TWDP fading model. In Section III, the
connection between Rician and GTR fading is unveiled which
allows us to derive closed-form expressions for the MGF of
the GTR fading models. We use the MGF-based approach to
performance analysis in Section IV by analyzing the ergodic
capacity with receiver side information in the GTR fading
channel. The implications for system design enabled by our
analysis are presented in Section V. The main conclusions are
outlined in Section VI.

II. GENERALIZED TWO-RAY FADING MODELS

A. A Brief Description of the GTR Fading Models

As presented in [21], the complex baseband received signal
s(t) in narrowband multipath fading is:

s(t) = <
{
u(t)

∑
n

αne
jφn

}
, (1)

where u(t) is the transmitted signal in baseband, αn and
φn represent the amplitude and phase of the n-th multipath
component and <{.} denotes the real part.

The GTR fading model described in [2, eq. 7] consists of
two specular components and a diffuse component, as

Vr = V1 exp(jφ1) + V2 exp(jφ2) +X + jY, (2)

where Vr is the received signal, components 1 and 2 are
specular components. V1 and V2 are constant and in the diffuse
component X, Y ∼ N (0, σ2). φ1 and φ2 are the phases of the
LOS components with the phase difference α = φ1−φ2 being
an RV arising from distribution fα(.).

The model is conveniently expressed in terms of the param-
eters K and ∆, defined as

K =
V 2

1 + V 2
2

2σ2
, (3)

∆ =
2V1V2

V 2
1 + V 2

2

. (4)

Similar to the Rician parameter, here K represents the ratio
of the power of the specular components to the diffuse power;
∆ is related with the ratio of the peak specular power to the
average specular power and serves as the comparison of the
power levels of the two specular components. We observe that
∆ = 1 only when the two specular components are of equal
amplitude, and ∆ = 0 when either LOS component has zero
power.

In GTR fading with uniform phase (GTR-U), φ1, φ2
i.i.d∼

U(0, 2π) and the model reduces to the TWDP fading model.

Phase difference α ∼ U(0, 2π) [16]. Special cases of the GTR-
U fading model are detailed in [2], encompassing the One
Wave, Two Wave, Rayleigh and Rician fading models. In [4]
it is shown that when K > 0 and ∆ ≈ 1 the channel exhibits
worse fading than Rayleigh, referred to as hyper-Rayleigh
behavior. As K increases, the fading becomes more severe
and with the extreme condition of K → ∞, the most severe
two-wave fading model emerges

B. GTR Fading Model with Arbitrary Phase

In the previous analysis, uniformly and independently dis-
tributed phase difference α between the two LOS components
was considered. While this consideration for the LOS compo-
nents has been verified through field measurements [2], in [4]
it was observed that the uniform phase assumption for α does
not hold in some practical scenarios.

The hyper-Rayleigh behavior exhibited by the GTR-U fad-
ing model when the two LOS components have equal power
(i.e., ∆ = 1) has an intuitive explanation. When α is uniformly
distributed, there is a finite probability that α takes values
close to π, i.e. the LOS components are out of phase and are
cancelled. This is especially important in the simple Two-Ray
(or Two Wave) model, in which the diffuse part is absent;
therefore, even in the presence of two very strong LOS com-
ponents the actual fading behavior is more severe compared
to other NLOS models like Rayleigh. In fact, limiting the
range of valid phases for α caused a worse fading condition
than the Two-Ray model [4]. Based on this observation, we
note that in the limit case where the phase difference is
deterministic α ≡ π we would have total cancellation. Hence,
using a distribution for α that concentrates the probability
close to π would reduce the SNR of the received signal for
the same transmit power as compared to the Two-Ray model.
Our motivation for considering arbitrary distribution for α is
to approximate received signal fading behavior (for constant
transmit power) that ranges from complete cancellation to the
best single ray case.

Although a different distribution for the GTR fading model
arises for any particular choice of fα(α), we will focus
on some specific distributions that can help us model harsh
propagation conditions.

Following this reasoning, we first study GTR fading with
truncated phase (GTR-T), where α ∼ U(π(1− p), π(1 + p)),
and p ∈ (0, 1]. When p = 1, the GTR-T fading model
reduces to the conventional GTR-U fading model, whereas
as p → 0 we observe that the probability of the two LOS
components to cancel each other is increased, causing a
fading worse than hyper-Rayleigh fading. Hence, the GTR-T
fading distribution can model fading from extremely favorable
propagation conditions when ∆ = 0 and K → ∞ to very
severe fading, close to complete cancellation, as p → 0 with
∆ = 1. This is illustrated in Fig. 1, where the cdf of the
GTR-T fading model is represented and compared with Rician,
Rayleigh and Two-Ray fading models. The transmitted signal
envelope amplitude is normalized to

√
γ̄.
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Fig. 1. The cdf of the GTR-T fading model vs. the normalized envelope
amplitude, for different values of the phase truncation parameter p. Parameter
values for GTR-T fading are ∆ = 1 and K →∞ as in the Two Ray model
(obtained for p = 1). Shaded regions correspond to (a) Rician fading, (b)
Hyper-Rayleigh fading, (c) Hyper Two-Ray fading.

The GTR-T fading model provides for a simple way to
characterize a variety of fading behavior. However, it may be
argued that a truncated model for the phase α might not occur
in practice. For this reason, we now present another alternative
for the family of GTR fading models.

Assume that α is distributed according to the von Mises
(VM) distribution [17] with pdf given by

fVM
α (α) =

exp (η cos(α− ϕ))

2πI0(η)
, α ∈ [0, 2π], (5)

where η ≥ 0 and ϕ ∈ R are usually referred to as concentra-
tion and centrality parameters respectively. This distribution,
also known in the literature as the circular normal distribution
or Tikhonov distribution, is widely used in different appli-
cations in communications (see [22] and references therein).
In particular, it is used to describe the statistics of angles of
arrival in wireless systems, or phase error in phased-locked
loops (PLLs) just to name a few examples. This model also
includes the uniform phase as a particular case when η = 0.

Since we are interested in modeling hyper-Rayleigh behav-
ior, the centrality parameter is set to ϕ = π. Thus, for η 6= 0
the probability of α taking values close to π increases as η
increases. The behavior of the GTR fading model with VM
distributed phase (GTR-V) is shown in Fig. 2. We observe that
as η grows and ∆ = 1, the fading falls in the region beyond
the Two Ray model; hence, it is also suitable for characterizing
very severe propagation conditions.

III. CONNECTION BETWEEN RICIAN AND GTR FADING

The approach described in [16] is employed here to establish
a connection between the GTR and Rician fading. Condi-
tioning the received signal amplitude on the phase difference
between the LOS components we get

Vr = exp(jφ1) (V1 + V2 exp[j(α)]) + Vdiff. (6)
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Fig. 2. The cdf of the GTR-V fading model vs. the normalized envelope
amplitude, for different values of the phase scale parameter η. Parameter
values for GTR-V fading are ∆ = 1 and K →∞ as in the Two-Ray model
(obtained for η = 0). Shaded regions correspond to (a) Rician fading, (b)
Hyper-Rayleigh fading, (c) Hyper Two-Ray fading.

This problem is equivalent to finding the Rician pdf as there is
a single LOS component of phase φ1 and constant amplitude
V̄1 =

√
V 2

1 + V 2
2 + 2V1V2 cosα and K̄ = K (1 + ∆ cosα).

Due to the circular symmetry of Vdiff the envelope statistics of
(6) are independent of the distribution of φ1 and only depend
on the phase difference α [23]. Thus, the GTR fading model
conditioned on the phase difference α results in the Rician
envelope distribution, i.e.

fGTR(r|α) = fRice
(
r; K[1 + ∆ cos(α)]

)
. (7)

The phase difference α could also arise from any arbitrary
distribution with pdf fα(.). The pdf of this GTR fading model
with arbitrary phase is given as

fGTR(r) =

∫ 2π

0

fRice (r; K[1 + ∆ cos(α)]) fα(α)dα (8)

The envelope pdf in GTR-T fading is thus given by

fGTR-T(r) =
1

2πp

∫ π(1+p)

π(1−p)
fRice (r; K[1 + ∆ cos(α)]) dα.

(9)

Also, the pdf of the GTR-V fading model is

fGTR-V(r) =
1

2πI0(η)
× (10)∫ 2π

0

fRice (r; K[1 + ∆ cos(α)]) exp (−η cosα)dα.

The following lemma will be of use in employing the
connection unveiled above to compute metrics of the GTR
fading model:

Lemma 1: Let HR(θ) be a general metric of a fading model
with parameter θ, expressed as a linear function of its envelope



pdf in the form

HR(θ) =

∫ b

a

fR(r)g(r)dr, (11)

where 0 ≤ a ≤ b ≤ ∞ and g(·) is an arbitrary function
defined on R. Then any general metric HGTR(K,∆) of the
GTR fading model with parameters K, ∆ and phase difference
α between the LOS components arising from distribution fα(.)
can be expressed in terms of the same metric of the Rician
fading model HRice(K) as

HGTR(K,∆) =
1

2π

∫ 2π

0

HRice
(
K[1 + ∆ cos(α)]

)
fα(α)dα.

(12)
Proof: This is easily verified by changing the order of

integration in (11).
This simple approach to derive performance metrics and

statistics for the GTR fading model is new in the literature
to the best of our knowledge. We note that a similar con-
nection has been recently established between Rayleigh and
Hoyt (Nakagami-q) NLOS fading models in [24]; however,
in the present work the parameter α has a clear and intuitive
interpretation as it is related to the phase difference between
the two LOS components.

A. MGF of the GTR Fading Model

The MGF of the SNR of a fading model can be expressed
as a linear functional of the envelope pdf [25]. Hence Lemma
1 can be applied to obtain the MGF of the GTR fading models
in terms of the MGF of the Rician distribution. The moment
generating function (MGF) of the SNR for the Rician fading
model is given by

MRice(s) =
1 +K

1 +K − sγ̄ exp

(
Ksγ̄

1 +K − sγ̄

)
. (13)

The MGF of the GTR-U fading model is thus calculated as

MGTR-U(s) =
1

2π

∫ 2π

0

1 +K

1 +K − sγ̄ exp

(
K̄(α)sγ̄

1 +K − sγ̄

)
dα

=
1 +K

1 +K − sγ̄ exp

(
Ksγ̄

1 +K − sγ̄

)
I0

(
Ksγ̄∆

1 +K − sγ̄

)
.

(14)

Interestingly, the MGF of the GTR-V fading model can also
be obtained in closed-form. Using Lemma 1 including the pdf
of the VM distribution in (5) and (13), we directly obtain:

MGTR-V(s) =

1 +K

1 +K − sγ̄ exp

(
Ksγ̄

1 +K − sγ̄

) I0

(
η − Ksγ̄∆

1+K−sγ̄

)
I0(η)

. (15)

Hence, we have found a closed-form expression for the
MGF of the GTR fading model. Even though the GTR fading
pdf cannot be expressed in closed-form, we have shown that
the MGF is characterized by a very simple expression. This
has two direct implications: first, the moments for the GTR
fading model can also be expressed in closed-form, using
Leibniz’s rule for the derivative of products. Secondly, the

MGF is extensively used to characterize performance of digital
communication systems [25]. Therefore, expression (14) is
useful to analyze some of the scenarios considered in the
literature [8–11] without the need for using the approximate
pdf in [2].

B. Impact of Phase Distribution

The distributions in (9) and (10) can model the effect
of a larger cancellation of the LOS components due to the
statistical behavior of the phase difference α. However, we
also note that by simply applying a deterministic shift of value
π to this phase difference, the resulting distributions would be
centered at zero. This implies that the two LOS components
would be cancelled with less probability, and hence the fading
experienced by the signal would be closer to a Rician behavior
than to a hyper-Rayleigh behavior.

This can be seen by deriving the expression for the average
SNR of these models using Lemma 1 and using the expression
for the first moment of the Rician distribution,

EGTR-T(γ) =γ̄

(
1∓∆

K

K + 1
sinc(p)

)
, (16)

EGTR-V(γ) =γ̄

(
1∓∆

K

K + 1

I1(η)

I0(η)

)
, (17)

where the function sinc(p) = sin(πp)/πp and γ̄ is the
average SNR of the conventional GTR fading model. In these
expressions, the negative sign accounts for the cases where the
distribution of α is centered at π, whereas the positive sign
corresponds to the case where the distributions are centered at
zero.

It is interesting to observe how the average received SNR
is in three circumstances: (1) when the two LOS components
tend to have similar magnitudes (i.e. increasing ∆), (2) when
the LOS power is larger (i.e. increasing K) and (3) when the
phase α is more concentrated towards π (i.e. reducing p or
increasing η). It is easy to see how in the limiting cases of
the three parameters (i.e. ∆ → 1, K → ∞ and p → 0 or
η →∞), the average SNR tends to zero. However, by simply
concentrating the phase α towards zero, we cause the average
SNR to be increased by the same magnitude. In the limiting
case previously discussed, we would be increasing the average
SNR by a factor of 2.

IV. ERGODIC CAPACITY

The effect of fading on the maximum rate of data trans-
mission over a wireless link has been a matter of interest
in communication and information theory for many years,
considering different adaptation policies at the transmitter and
receiver, as well as for different configurations in terms of
the number of antennas. Specifically, the work by Alouini
and Goldsmith [26] provided the first analytical results for
the capacity of adaptive transmission with diversity-combining
techniques in Rayleigh fading. However, extensions of these
results to other types of fading are often more challenging and
do not lend themselves to analytically tractable solutions.



TABLE I
ASYMPTOTIC RESULTS FOR THE ERGODIC CAPACITY IN GTR-U FADING (PERFECT CSI AT THE RECEIVER) IN THE HIGH-SNR REGIME.

Rice Cora|γ̄⇑ ≈ ν · γ̄(dB) + log2 e
{

log
(

K
K+1

)
+ Γ(0,K)

}
GTR-U Cora|γ̄⇑ ≈ ν · γ̄(dB) + log2 e

{
log
(

K
K+1

)
+ log

(
1+
√

1−∆2

2

)
+ J (K,∆)

}
, J (K,∆) =

∫∞
1

e−tK

t
I0(tK∆)dt.

GTR-U(K·∆>>1) Cora|γ̄⇑ ≈ ν · γ̄(dB) + log2 e

{
log
(

K
K+1

)
+ log

(
1+
√

1−∆2

2

)
+
√

2
π

[
e−K(1−∆)
√
K∆

−
√(

1
∆
− 1
)
erfc (K(1−∆))

]}
GTR-U(K>>1,∆=1) Cora|γ̄⇑ ≈ ν · γ̄(dB) + log2 e

{
log
(

K
K+1

)
− log 2 +

√
2
πK

}
C loss GTR-U δC(K,∆) = log2 e

{
Γ(0,K)− log

(
1+
√

1−∆2

2

)
− J (K,∆)

}
C loss Two-Ray δC(K →∞, 1) = 1

Inspired by the general framework for the average error
probability analysis based on the MGF [25], an alternative
formulation for the analysis of the ergodic capacity in fading
channels in terms of the MGF of the received SNR was
recently proposed in [19], and was then further complemented
in [20]. If the MGF of interest has an analytical closed-form
solution, the capacity can be evaluated using a single integral
over the MGF.

As an application of this method for evaluating the Shannon
capacity in fading channels, we will consider an optimal rate
adaptation (ORA) policy with constant transmit power. This
is the capacity of the fading channel when the channel state
information is only available at the receiver side. According to
[19, eq. 7], the capacity per unit bandwidth is given in terms
of the MGF of the SNR at the receiver side as

Cora = log2 e

∫ ∞
0

Ei(−s)M(1)
γ (−s)ds, (18)

where Ei(·) denotes the Exponential integral function [27, eq.
2.325.1] andM(1)

γ (s) indicates the first derivative of the MGF
with respect to s. Assuming a multi-antenna receiver with L
independent branches using MRC detection, we have

M(1)
γ (s) =

L∑
l=1

M(1)
γl

(s)×
L∏

k=1
k 6=l

Mγk(s). (19)

We will, for the remainder of this section focus on the GTR-U
fading model. Since we have a closed-form expression for the
MGF of the received SNR per branch for this model, we can
also compute its first derivative in closed-form as

M(1)
γl

(s) =
(1 +Kl)γ̄l

(1 +Kl − sγ̄l)2
exp

(
Klsγ̄l

1 +Kl − sγ̄l

)
× (20)[

I0

(
Klsγ̄l∆l

1+Kl−sγ̄l

)(
1 + Kl(1+Kl)

1+Kl−sγ̄l

)
+ Kl∆(1+Kl)

1+Kl−sγ̄l I1
(

Klsγ̄l∆l

1+Kl−sγ̄l

)]
where I1(·) is the modified Bessel function of the first kind
and order one. Hence, the expression for the ergodic capacity
in GTR fading channels using ORA policy and MRC detection
can be computed by plugging (20) and (19) into (18).

Using [19, eq. 12], we find a simple asymptotic approxima-
tion for the capacity in the low-SNR regime as

Cora|γ̄⇓ ≈ log2 eM(1)
γ (s)|s=0 = γ̄ log2 e, (21)

where we assumed that the received SNRs per branch are i.i.d.
and γ̄ = Lγ̄l. Interestingly, we observe that (21) is independent
of ∆ for GTR fading.

An asymptotic expression for capacity in the high-SNR1 can
also be obtained from the first derivative of the nth moment
[28, eq. 8] or [29, eq. 22] as

Cora|γ̄⇑ ≈ log2 e ·
∂

∂n
E [γn] |n=0. (22)

In Table I, we summarize the asymptotic results (high-
SNR) for the capacity in GTR fading and a single-branch
receiver. The derivations of these results are omitted due to
space constraints. The asymptotic capacity is given in the form
Cora|γ̄⇑ = ν · γ̄(dB) + µ, where ν = 0.1 log(10) log2(e), µ
is a constant value independent of the average SNR, and the
average SNR γ̄(dB) = 10 log10 γ̄ is given in dB.

The capacity loss or the difference between the asymptotic
capacity of Rice and GTR, given by δC = CRice

ora −CGTR-U
ora , is

δC(K,∆) = log2 e
{

Γ(0,K)− log
(

1+
√

1−∆2

2

)
− J (K,∆)

}
.

(23)

It is easy to verify that δC > 0. In the hyper-Rayleigh zone
of the GTR fading model, we have that the capacity loss is

δC(K →∞,∆ = 1) = 1 (24)

with respect to the AWGN case (i.e. Rician with K → ∞).
This implies that the capacity loss in the most severe fading
condition modeled by GTR fading is only 1 bps/Hz with
respect to the AWGN case (i.e. no fading).

V. IMPLICATIONS FOR SYSTEM DESIGN

The preceding analysis allows us to gain new insights on
the behavior of the GTR fading model. In this section, we
evaluate the derived expressions for the Shannon capacity in
GTR fading channels with perfect CSI at the receiver in some
scenarios of interest using (18) and (19). We will consider that
α is uniformly distributed in [0, 2π].

First, we consider an L-branch receiver with MRC recep-
tion, and we assume a LOS power ratio K = 10. In Fig. 3,

1Note that at high-SNR, the capacity with ORA policy is the same as
the capacity with optimal power and rate allocation (OPRA) policy, which
considers that CSI is available at both the transmitter and receiver sides [26].
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we represent the ergodic capacity as a function of the average
SNR per branch γ̄l for different values of the parameter ∆. For
the sake of simplicity, we assume i.i.d. fading on the receive
branches.

We notice that the capacity is reduced as ∆ grows, leading
to a gap for high SNR of around 2 dB when single antenna
reception is used. However, as the number of receive antennas
is increased, we see that the capacity is barely affected by the
value of ∆. Hence, in very severe fading conditions the use
of diversity reception techniques allows for an increase in the
capacity.

We now study the behavior of capacity in the low-SNR and
high-SNR regimes. First, in Fig. 4 we investigate the capacity
in the low-SNR regime using the asymptotic approximation
given in (21), as a function of the average SNR γ̄ with
L = 1. In the low-SNR regime, we observe that the capacity
is asymptotically independent of K and ∆, as suggested by
equation (21).
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Fig. 5. Capacity vs average SNR γ̄ in the high-SNR regime, for different
fading conditions. Markers indicate the asymptotic result given by (22).
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Fig. 6. Capacity loss in GTR-U fading with respect to Rician fading, as a
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evaluation of J (K,∆) for large K ·∆, and dotted lines correspond to the
asymptotic case of K →∞.

In Fig. 5, the high-SNR regime is considered. The asymp-
totic capacity results are given by (22) and the expressions are
summarized in Table I. We see that the asymptotic capacity
(represented with markers) is very tight for values of γ̄ > 15
dB and is even more accurate for low values of ∆.

Fig. 6 represents the asymptotic capacity loss of GTR fading
channels with respect to the case of Rician fading (i.e., ∆ = 0).
This metric δC(K∆) is independent of γ̄, and indicates how
the capacity is reduced due to the non-zero probability of the
two LOS components partially cancelling, dependent on the
parameter ∆. We represent this capacity loss as a function of
the LOS power ratio parameter K, for different values of ∆.

As K is increased, the capacity loss grows to a maximum
degradation value given by

δC(K →∞,∆) = 1− log2

(
1 +

√
1−∆2

)
(25)



that corresponds to the capacity reduction with respect to the
AWGN case. We see how the approximate expression for
J (K,∆) is very accurate for reasonably large values of K ·∆.
In the limiting case of the hyper-Rayleigh fading condition (i.e.
K →∞ and ∆ = 1), we see that the capacity loss is only 1
bps/Hz.

VI. CONCLUSION

We have provided an analytical approach to the characteri-
zation of Generalized Two Ray fading channels, and systems
operating over them. The class of GTR fading models was
proposed as a natural generalization of TWDP fading. This
model considers an arbitrary phase difference between the
LOS components, can characterize a wider set of propagation
conditions than previous models. By observing that the GTR
fading conditioned on the difference in phase between the two
LOS components results in Rician fading, any linear metric of
the GTR fading can be expressed in terms of a simple finite
integral of the corresponding metric of the Rice fading model.
This simple yet powerful approach has allowed us to derive a
closed-form expression for the MGF of the GTR fading model.

We then used this general MGF-based technique to inves-
tigate the capacity limits of communication systems affected
by GTR-U fading and observed that the asymptotic capacity
penalty per unit bandwidth in the extreme case of hyper-
Rayleigh fading with respect to the AWGN case is only 1
bps/Hz in the high-SNR regime, when perfect CSI is available
at the receiver. The empirical validation of this new model
with field measurements, as well as the performance limits of
communication systems in the new extremely-severe fading
condition denoted as hyper-Two Ray fading, will be a matter
of future work.
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