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Abstract

This paper presents an algorithm for solving nonlinear dynamic
stochastic models that computes value function by simulations. We
argue that the proposed algorithm can be a useful alternative to the
existing methods in some applications.
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1 Introduction

The study of dynamic economies often requires finding solutions to stochas-

tic infinite-horizon optimization problems with continuous state and action

spaces. The existing computational methods, typically, either solve for a

value function satisfying the Bellman equation or compute decision rules

satisfying first-order conditions (Euler equations).1 In the paper, we develop

a simple algorithm, which combines both approaches. It parametrizes value

function, simulates time series satisfying first-order conditions and uses the

resulting series to minimize the difference between the two sides of the Bell-

man equation. The algorithm is similar to Marcet’s (1988) version of the

Parameterized Expectations Algorithm (PEA) in that it uses Monte Carlo

simulations for evaluating the conditional expectations. We argue that the

algorithm proposed can be a useful alternative to the existing methods in

some applications.

2 The problem

We focus on the class of stochastic infinite-horizon optimization problems

in which both state and control variables can take a continuum of possible

1Rust (1996) and Marimon and Scott (1999) provide reviews of numerical methods
used in economic dynamics.

2



values. We assume that the problem has a recursive formulation, so that its

solution satisfies the Bellman equation:

V (zt, ut) = max
xt
{r (zt, ut, xt) + δEt [V (zt+1, ut+1)]} (1)

s.t. zt+1 = g (zt, ut, xt) , (2)

Π (ut+1 = u0 | ut = u) for all u0, u ∈ U ⊆ Rnu , (3)

where (z0, u0) is given; Et [·] ≡ E [· | ut] denotes the conditional expectation;

δ ∈ (0, 1) is the discount factor; zt, ut and xt are vectors of nz endogenous

state variables, nu exogenous state variables and nx control variables, respec-

tively; V is the value function; r is the return function; g is the transition

equation for a vector of endogenous state variables; and finally, Π is the tran-

sitional probability function, associated with a first-order Markov process for

the vector of exogenous state variables. We assume that r is concave and that

g is such that the set {(zt+1, zt) : zt+1 = g (zt, ut, xt) , xt ∈ Rnx, ut ∈ Rnu} is

convex and compact.

We assume that a solution to the problem (1)−(3) exists, and also that it

is interior and unique. As such, an optimal allocation satisfies the first-order

condition

∂r (zt, ut, xt)

∂xt
+

∂g (zt, ut, xt)

∂xt
· δEt

∙
∂V (zt+1, ut+1)

∂zt+1

¸
= 0. (4)
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By the envelope theorem, we have

∂V (zt, ut)

∂zt
=

∂r (zt, ut, xt)

∂zt
+

∂g (zt, ut, xt)

∂zt
· δEt

∙
∂V (zt+1, ut+1)

∂zt+1

¸
. (5)

Substituting Et

h
∂V (zt+1,ut+1)

∂zt+1

i
from (4) to (5), updating the resulting condi-

tion and combining it with (4) yields

∂r (zt, ut, xt) /∂xt
∂g (zt, ut, xt) /∂xt

=

δEt

∙
∂r (zt+1, ut+1, xt+1)

∂zt+1
+

∂g (zt+1, ut+1, xt+1)

∂zt+1
· ∂r (zt+1, ut+1, xt+1) /∂xt+1
∂g (zt+1, ut+1, xt+1) /∂xt+1

¸
.

(6)

Condition (6) is the so-called Euler equation.

There are two general approaches to solving the problem (1)−(3). One is

the value-iterative approach in which the optimal value function is computed

with the Bellman equation (1). The other is the Euler equation approach,

in which the optimal decision rules are calculated from the Euler equation

(6) without computing the value function. The method we propose here

combines both approaches. Specifically, it searches for the optimal decision

rules satisfying first-order condition (4) and uses the Bellman equation (1)

as a criterion for the accuracy of the solution. The formal description of the

method is provided in the following section.
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3 The algorithm

We approximate the true value function V (z, u) by a parametric function

W (z, u; β) , β ∈ Rv. Our objective is to find a vector of coefficients β∗ such

that W (z, u; β∗) is the best approximation to V (z, u) given the functional

form chosen, i.e.

β∗ = argmin
β∈Rv

kW (z, u; β)− V (z, u)k .

We solve for β∗ by using Monte Carlo simulations.

• Step 1. For an initial iteration i = 0, fix β = β (0) ∈ Rv. Fix initial

conditions z0 and u0; draw and fix for all simulations a random series

{ut}Tt=1 by using (3). Replace ∂V (zt+1,ut+1)
∂zt+1

in (4) by the approximation

∂W (zt+1,ut+1;β)
∂zt+1

and solve (2) and (4) with respect to zt+1 and xt. We

assume that a solution to (2), (4) exists and that it is unique.

• Step 2. Given β ∈ Rv, recursively calculate {zt+1 (β) , ut+1, xt (β)}Tt=1.

• Step 3. Construct the variable {wt (β)}Tt=1 such that

wt ≡ r (zt (β) , ut, xt (β)) + δE [W (zt+1 (β) , ut+1;β) | ut]

and run a nonlinear least-square regression of this variable on explana-

tory function W (zt (β) , ut; ξ) to estimate the vector of parameters ξ.
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Call the result G (β)

G (β) = argmin
ξ∈Rv

kwt −W (zt (β) , ut; ξ)k .

• Step 4. Compute the vector β (i+ 1) for the next iteration

β (i+ 1) = (1− µ)β (i) + µG (β (i)) ,

where µ ∈ (0, 1) is the updating parameter.

Iterate on Steps 2− 4 until β∗ = G (β∗) for all t.

The simulation procedure underlying our algorithm is similar to the one

used in a version of the PEA, developed by Marcet (1988).2 The difference

is that under Marcet’s PEA, simulations are employed for computing the

equilibrium law of motion of the conditional expectation in the Euler equation

(6), whereas, in our method, simulations are used to solve for value function.

Unfortunately, our method does not necessarily guarantee finding a solu-

tion. This drawback, however, is common to all numerical algorithms iter-

ating on first-order conditions. The failure might occur if the approximation

happens to be far away from the true solution. The simulated series then

become highly non-stationary, so that the regression delivers meaningless re-

sults. To rule out explosive (implosive) strategies, we restrict the endogenous
2Marcet and Lorenzoni (1999) and Christiano and Fisher (2000) describe the PEA

applications and provide further references.
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state variables within a certain range zt+1 ∈ [z, z] for all t.3 This range is cho-

sen so that the restriction can bind the simulated series on initial iterations

when the solution is imprecise, however, it becomes completely irrelevant

when the solution is refined.

4 Example

Consider a version of the two-sector neoclassical growth model with four

types of exogenous shocks, two to technology in two different sectors, one to

preferences and one to the depreciation rate:

max
{ct,kt+1,ht+1}∞t=0

E0

∞X
t=0

δtθ3,t ln (ct) (7)

s.t. ct + kt+1 + ht+1 = (1− θ4,td) (kt + ht) + θ1,tk
α
t + θ2,th

α
t , (8)

where ct, kt and ht are consumption and the capital stocks in the two sectors,

respectively; α ∈ (0, 1); the process for a shock i ∈ {1, ..., 4} is an AR(1),

ln θi,t+1 = ρi ln θi,t + i,t+1 with i,t+1 ∼ N
¡
0, σ2,i

¢
; θ4,t is the shock to the

depreciation rate, d, such that θ4,td ∈ (0, 1); and
¡
k0, h0, {θi,0}4i=1

¢
is given.

Thus, there are two endogenous state variables, kt and ht, and four exogenous

3For the simulation-based PEA, Maliar and Maliar (2003) show that imposing bounds
on the simulated series significantly enhances the convergence properties of the algorithm.
One can also ensure convergence by starting iterations from a good initial guess, such as
a known solution to some related model (see den Haan and Marcet, 1991), or a log-linear
solution to the model in question (see Christiano and Fisher, 2000).
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state variables {θi,t}4i=1.

We approximate the value function by

V
¡
kt, ht, {θi,t}4i=1

¢ 'W
¡
kt, ht, {θi,t}4i=1 ;β

¢
= (9)

β1 + β2 ln kt + β3 lnht + β4 ln θ1,t + β5 ln θ2,t + β6 ln θ3,t + β7 ln θ4,t

+β8 ln θ1,t ln kt + β9 ln θ2,t ln kt + β10 ln θ3,t ln kt + β11 ln θ4,t ln kt

+β12 ln θ1,t lnht + β13 ln θ2,t lnht + β14 ln θ3,t lnht + β15 ln θ4,t lnht

with β =
¡{βi}15i=1¢. Since there are two endogenous state variables, (4) leads

to two intertemporal conditions

θ3,t
ct

= δEt

"
∂W

¡
kt+1, ht+1, {θi,t+1}4i=1 ;β

¢
∂kt+1

#
= (10)

δ

kt+1
(β2 + β8ρ1 ln θ1,t + β9ρ2 ln θ2,t + β10ρ3 ln θ3,t + β11ρ4 ln θ4,t) ,

θ3,t
ct

= δEt

"
∂W

¡
kt+1, ht+1, {θi,t+1}4i=1 ;β

¢
∂ht+1

#
= (11)

δ

ht+1
(β3 + β12ρ1 ln θ1,t + β13ρ2 ln θ2,t + β14ρ3 ln θ3,t + β15ρ4 ln θ4,t) .

By combining (8), (10), (11), we get
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ct =
(1− θ4,td) (kt + ht) + θ1,tk

α
t + θ2,th

α
t

1 + δ(β2+β3+(β8+β12)ρ1 ln θ1,t+(β9+β13)ρ2 ln θ2,t+(β10+β14)ρ3 ln θ3,t+(β11+β15)ρ4 ln θ4,t)

θ3,t

.

Given ct, (10) and (11) identify kt+1 and ht+1, respectively.

As an initial guess, we choose β that matches the non-stochastic steady

state

β1 =
ln (css)

1− δ
− 2β2 ln (kss) , β2 = β3 =

kss
δcss

, β4, ..., β15 = ε,

where ”ss” denotes steady state values, and ε is a small number (we take

ε = 10−5).4 Here, we use the fact that hss = kss.

To simulate the model, we set: α = 0.33, δ = 0.95, d = 0.02, ρi = ρ =

0.95, σ ,i = σ ∈ {0.005, 0.05}, i = 1, ..., 4, ¡k0, h0, {θi,0}4i=1¢ = ¡kss, hss, {1}4i=1¢.
The updating parameter is set at µ = 0.5, and kt and ht are restricted to lie

in the interval [kss/5, 5kss]. The convergence criterion is that the precision

in the coefficient vector is less than 10−5.

As a comparison, we also apply the algorithm for solving the one-sector

neoclassical model where there are shocks only to technology. Table 1 pro-

vides the simulation results under three values of simulation length, T ∈

{1000, 5000, 10000}. Observe that the expense for the two-sector model is
4The MATLAB subroutine ”nlinfit”, which we use to run the nonlinear regression, may

fail to work appropriately if some coefficients are equal to zero.
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about three times as high as that for the one-sector model. The increase in

the computational time is the result of having eleven additional parameters

in the regression. Given that there are two state variables in the one-sector

model and that there are six state variables in the two-sector model, the

proportional three-time increase in the computational expense seems to be

modest.

5 Comparison with other methods

With a large number of state variables, our algorithm can be a cheap alter-

native to the traditional grid-based dynamic programming methods in situ-

ations where value function can be accurately approximated by low-degree

polynomials.

In applications with several endogenous state variables, our algorithm

also has an important advantage over Marcet’s (1988) version of the PEA.

Specifically, the PEA needs to parametrize and approximate as many condi-

tional expectations as there are endogenous state variables in the model.5 For

instance, applying the PEA to the two-sector growth model would require

parametrizing two conditional expectations by two different functions and

computing twice the amount of polynomial coefficients than we did. Three

5For a discussion, see Marcet and Lorenzoni (1999), Example 7.6.
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endogenous state variables would imply three regressions to run and would

triple the number of the coefficients, etc. The need to simultaneously iterate

on more than one decision function can not only increase the computational

expense, but can also complicate the practical implementation of the PEA

and lead to a problem of non-convergence. This does not happen with our

method, in which, independently of the number of endogenous state vari-

ables, there is always just one value function to be approximated.

Our method may also be preferable to the conventional PEA in appli-

cations where value function enters the Euler equation. This can occur in

models with endogenous business cycles, e.g., Andolfatto and MacDonald

(1998), and Freeman, Hong and Peled (1999). The PEA operates on the

Euler equation without calculating value function. Hence, if the PEA is

applied to such a model, it would be necessary to approximate value func-

tion on each PEA’s iteration somehow. In contrast, with our method, the

approximate value function is always known.

6 Final remark

Just as different versions of the PEA exist in the literature (see Christiano and

Fisher, 2000), one can consider different variants of our method. For example,

instead of Monte Carlo simulations, it is possible to seek a solution on a grid
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and use a quadrature integration; the updating can be replaced by a gradient

descendent method; under appropriate collocation of grid points, a nonlinear

least-square regression can be substituted by a linear one. Such modifications

may increase the method’s speed and/or accuracy in some applications.
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Table 1. Computational time for the one- and two-sector neoclassical models.

T=1000 T=5000 T=10000

σ0 =0.005 σ0 =0.05 σ0 =0.005 σ0 =0.05 σ0 =0.005 σ0 =0.05

One-sector model,
time, sec

124 61 383 304 760 653

Two-sector model,
time, sec

351 186 1581 977 2025 1704


