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Appendix A. Turnpike theorem with Markov terminal
condition

In this section, we introduce notation, provide several relevant de�nitions about random processes
and elaborate the proof of Theorem 2 (turnpike theorem) formulated in Section 3. The turn-
pike literature normally assumes a zero terminal capital for the �nite-horizon economy, which
is a convenient assumption for showing asymptotic convergence results. However, in applica-
tions, it is more e¤ective to choose a terminal condition which is as close as possible to the
in�nite-horizon solution at T . This choice will make the �nite-horizon approximation closer
to the in�nite-horizon solution. (In fact, if we guess the "exact" terminal condition on the
in�nite-horizon path, then the in�nite- and �nite-horizon trajectories would coincide). Hence,
we show our own version of the turnpike theorem for the growth model which holds for an ar-
bitrary Markov terminal condition of the type kT+1 = KT (kT ; zT ), which extends the turnpike
literature that focus on a zero terminal condition kT+1 = 0.
Appendices A1 and A2 contain notations, de�nitions and preliminaries. The proof of The-

orem 2 relies on three lemmas presented in Appendices A3-A5. In Appendix A3, we construct
a limit program of a �nite-horizon economy with a terminal condition kT+1 = 0; this construc-
tion is standard in the turnpike analysis, see Majumdar and Zilcha (1987), Mitra and Nyarko
(1991), Joshi (1997), and it is shown for the sake of completeness. In Appendix A4, we prove
a new result about convergence of the optimal program of the T -period stationary economy
with an arbitrary terminal capital stock kT+1 = KT (kT ; zT ) to the limiting program of the
�nite-horizon economy with a zero terminal condition kT+1 = 0. In Appendix A5, we show
that the limit program of the �nite-horizon economy with a zero terminal condition kT+1 = 0 is
also an optimal program for the in�nite-horizon nonstationary economy; in the proof, we also
follow the previous turnpike literature. Finally, in Appendix A6, we combine the results of Ap-
pendices A3-A5 to establish the claim of Theorem 2. Thus, our main theoretical contribution
is contained in Appendix A4.

Appendix A1. Notation and de�nitions

Our exposition relies on standard measure theory notation; see, e.g., Stokey and Lucas with
Prescott (1989), Santos (1999) and Stachurski (2009). Time is discrete and in�nite, t = 0; 1; :::.
Let (
;F ; P ) be a probability space:
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a) 
 = �1t=0
t is a space of sequences � � (�0; �1:::) such that �t 2 
t for all t, where 
t
is a compact metric space endowed with the Borel ���eld Et. Here, 
t is the set of all
possible states of the environment at t and �t 2 
t is the state of the environment at t.

b) F is the ��algebra on 
 generated by cylinder sets of the form �1�=0A� , where A� 2 E�
for all � and A� = 
� for all but �nitely many � .

c) P is the probability measure on (
;F).

We denote by fFtg a �ltration on 
, where Ft is a sub ���eld of F induced by a partial
history up of environment ht = (�0; :::; �t) 2 �t�=0
� up to period t, i.e., Ft is generated by
cylinder sets of the form �t�=0A� , where A� 2 E� for all � � t and A� = 
� for � > t. In
particular, we have that F0 is the course ���eld f0;
g, and that F1 = F . Furthermore,
if 
 consists of either �nite or countable states, � is called a discrete state process or chain;
otherwise, it is called a continuous state process. Our analysis focuses on continuous state
processes, however, can be generalized to chains with minor modi�cations.
We provide some de�nitions that will be useful for characterizing random processes; these

de�nitions are standard and closely follow Stokey and Lucas with Prescott (1989, Ch. 8.2).

De�nition A1. (Stochastic process). A stochastic process on (
;F ; P ) is an increasing se-
quence of ��algebras F1 � F2 � ::: � F ; a measurable space (Z;Z); and a sequence of functions
zt : 
! Z for t � 0 such that each zt is Ft measurable.

Stationarity or time-homogeneity is an assumption that is commonly used in economic litera-
ture.

De�nition A2. (Stationary process). A stochastic process z on (
;F ; P ) is called stationary
if the unconditional probability measure, given by

Pt+1;:::;t+n (C) = P (f� 2 
 : [zt+1 (�) ; :::; zt+n (�)] 2 Cg) ; (1)

is independent of t for all C 2 Zn, t � 0 and n � 1.

A related notion is stationary (time-homogeneous) transition probabilities. Let us denote by
Pt+1;:::;t+n (Cjzt = zt; :::; z0 = z0) the probability of the event f� 2 
 : [zt+1 (�) ; :::; zt+n (�)] 2 Cg,
given that the event f� 2 
 : zt = zt (�) ; :::; z0 = z0 (�)g occurs.

De�nition A3. (Stationary transition probabilities). A stochastic process z on (
;F ; P ) is
said to have stationary transition probabilities if the conditional probabilities

Pt+1;:::;t+n (Cjzt = zt; :::; z0 = z0) (2)

are independent of t for all C 2 Zn, � 2 
, t � 0 and n � 1.

The assumption of stationary transition probabilities (2) implies stationarity (1) if the corre-
sponding unconditional probability measures exist. However, a process can be nonstationary
even if transition probabilities are stationary, for example, a unit root process or explosive
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process is nonstationary; see Stokey and Lucas with Prescott (1989, Ch 8.2) for a related
discussion.
In general, Pt+1;:::;t+n (C) and Pt+1;:::;t+n (Cj�) depend on the entire history of the events up

to t (i.e., the stochastic process zt is measurable with respect to the sub ���eld Ft). However,
history-dependent processes are di¢ cult to analyze. The literature distinguishes some special
cases in which the dependence on history has relatively simple and tractable form. A well-known
case is a class of Markov processes.

De�nition A4. (Time-inhomogeneous Markov process). A stochastic process z on (
;F ; P )
is (�rst-order) Markov if

Pt+1;:::;t+n (Cjzt = zt; :::; z0 = z0) = Pt+1;:::;t+n (Cjzt = zt) , (3)

for all C 2 Zn, t � 0 and n � 1.

The key property of a Markov process is that it is memoryless, namely, all past history (zt; :::; z0)
is irrelevant for determining the future realizations except of the most recent past zt. Note that
the above de�nition does not require the Markov process to be time-homogeneous: it allows
the functions Pt+1;:::;t+n (�) to depend on time, as required by our analysis. Finally, if transition
probabilities Pt+1;:::;t+n (Cjzt = zt) are independent of t for any n � 1, then the Markov process
is time-homogeneous. If in addition, there is an unconditional probability measure (1), the
resulting Markov process is stationary.

De�nition A5. (Stationary Markov process). A stochastic process z on (
;F ; P ) is called
stationary Markov if the unconditional probability measure, given by

Pt+1;:::;t+n (C) = P (f� 2 
 : zt+1 (�) 2 Cg) ; (4)

is independent of t for all C 2 Zn, t � 0 and n � 1.

Thus, time�homogeneous Markov process is stationary if it has time-homogeneous unconditional
probability distribution.

Appendix A2. In�nite-horizon economy

We consider an in�nite-horizon nonstationary stochastic growth model in which preferences,
technology and laws of motion for exogenous variables change over time. The representative
agent solves

max
fct;kt+1g1t=0

E0

" 1X
t=0

�tut (ct)

#
(5)

s.t. ct + kt+1 = (1� �) kt + ft (kt; zt) , (6)

zt+1 = 't (zt; �t+1) , (7)

where ct � 0 and kt � 0 denote consumption and capital, respectively; initial condition (k0; z0)
is given; ut : R+ ! R and ft : R2+ ! R+ and 't : R2 ! R are possibly time-dependent utility
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function, production functions and law of motion for exogenous variable zt, respectively; the
sequence of ut, ft and 't for t � 0 is known to the agent in period t = 0; �t+1 is i.i.d; � 2 (0; 1)
is the discount factor; � 2 [0; 1] is the depreciation rate; and Et [�] is an operator of expectation,
conditional on a t-period information set.
We make standard assumptions about the utility and production functions that ensure the

existence, uniqueness and interiority of a solution. Concerning the utility function ut, we assume
that for each t � 0:

Assumption 1. (Utility function). a) ut is twice continuously di¤erentiable on R+; b) u0t > 0,
i.e., ut is strictly increasing on R+, where u0t � @ut

@c
; c) u00t < 0, i.e., ut is strictly concave on R+,

where u00t � @2ut
@c2
; and d) ut satis�es the Inada conditions lim

c!0
u0t (c) = +1 and lim

c!1
u0t (c) = 0.

Concerning the production function ft, we assume that for each t � 0:

Assumption 2. (Production function). a) ft is twice continuously di¤erentiable on R2+, b)
f 0t (k; z) > 0 for all k 2 R+ and z 2 R+, where f 0t � @ft

@k
, c) f 00t (k; z) � 0 for all k 2 R+

and z 2 R+, where f 00t � @2ft
@k2
; and d) ft satis�es the Inada conditions lim

k!0
f 0t (k; z) = +1 and

lim
k!1

f 0t (k; z) = 0 for all z 2 R+.

We need one more assumption. Let us de�ne a pure capital accumulation process
�
kmaxt+1

	1
t=0

by assuming ct = 0 for all t in (6) which for each history ht = (z0; :::; zt), leads to

kmaxt+1 = ft (k
max
t ; zt) , (8)

where kmax0 � k0. We impose an additional joint boundedness restriction on preferences and
technology by using the constructed process (8):

Assumption 3. (Objective function). E0
�P1

t=0 �
tut
�
kmaxt+1

��
<1.

This assumption insures that the objective function (5) is bounded so that its maximum exists.
In particular, Assumption 3 holds either (i) when ut is bounded from above for all t, i.e.,
ut (c) < 1 for any c � 0 or (ii) when ft is bounded from above for all t, i.e., ft (k; zt) < 1
for any k � 0 and zt 2 Zt. However, it also holds for economies with nonvanishing growth and
unbounded utility and production functions as long as ut

�
kmaxt+1

�
does not grow too fast so that

the product �tut
�
kmaxt+1

�
still declines at a su¢ ciently high rate and the objective function (5)

converges to a �nite limit.

De�nition A6. (Feasible program). A feasible program for the economy (5)�(7) is a pair of
adapted (t-measurable) processes fct; kt+1g1t=0 such that given initial condition k0, they satisfy
ct � 0, kt+1 � 0 and (6) for each possible history h1 = (�0; �1:::).

We denote by =1 a set of all feasible programs from given initial capital k0. We next introduce
the concept of solution to the model.

De�nition A7. (Optimal program). A feasible program
�
c1t ; k

1
t+1

	1
t=0
2 =1 is called optimal
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if

E0

" 1X
t=0

�t fut (c1t )� ut (ct)g
#
� 0 (9)

for every feasible process fct; kt+1g1t=0 2 =1.

Stochastic models with time-dependent fundamentals are studied in Majumdar and Zilcha
(1987), Mitra and Nyarko (1991) and Joshi (1997), among others. The existence results for this
class of models have been established in the literature for a general measurable stochastic envi-
ronment without imposing the restriction of Markov process (7). In particular, this literature
shows that, under Assumptions 1-3, there exists an optimal program

�
c1t ; k

1
t+1

	1
t=0

2 =1 in
the economy (5)�(7), and it is both interior and unique; see Theorem 4.1 in Mitra and Nyarko
(1991) and see Theorem 7 in Majumdar and Zilcha (1987). The results of this literature apply
to us as well.

Appendix A3. Limit program of �nite-horizon economy with a zero
terminal capital

In this section, we consider a �nite-horizon version of the economy (5)�(7) with a given terminal
condition for capital kT+1 = �. Speci�cally, we assume that the agent solves

max
fct;kt+1gTt=0

E0

"
TX
t=0

�tut (ct)

#
(10)

s.t. (6), (7), (11)

where initial condition (k0; z0) and terminal condition kT+1 = � are given. We �rst de�ne
feasible programs for the �nite-horizon economy.

De�nition A8. (Feasible programs in the �nite-horizon economy). A feasible program in the
�nite-horizon economy is a pair of adapted (i.e., Ft measurable for all t) processes fct; kt+1gTt=0
such that given initial condition k0 and any partial history hT = (�0; :::; �T ), they reach a given
terminal condition kT+1 = � at T , satisfy ct � 0, kt+1 � 0 and (6), (7) for all t = 1; :::T .

In this section, we focus on a �nite-horizon economy that reaches a zero terminal condition,
kT+1 = 0, at T . We denote by =T;0 a set of all �nite-horizon feasible programs from given initial
capital k0 and any partial history hT � (�0; :::; �T ) that attain given kT+1 = 0 at T . We next
introduce the concept of solution for the �nite-horizon model.

De�nition A9. (Optimal program in the �nite-horizon model). A feasible �nite-horizon pro-

gram
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 is called optimal if

E0

"
TX
t=0

�t
n
ut(c

T;0
t )� ut (ct)

o#
� 0 (A1)

for every feasible process fct; kt+1gTt=0 2 =T;0.
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The existence result for the �nite-horizon version of the economy (10), (11) with a zero terminal
condition is established in the literature. Namely, under Assumptions A1-A3, there exists an

optimal program
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 and it is both interior and unique. The existence of the

optimal program can be shown by using either a Bellman equation approach (see Mitra and
Nyarko (1991), Theorem 3.1) or an Euler equation approach (see Majumdar and Zilcha (1987),
Theorems 1 and 2).

We next show that under terminal condition kT;0T+1 = kT+1 = 0, the optimal program in the
�nite-horizon economy (10), (11) has a well-de�ned limit.

Lemma 1. A �nite-horizon optimal program
n
cT;0t ; kT;0t+1

oT
t=0

2 =T;0 with a zero terminal con-
dition kT;0T+1 = 0 converges to a limit program

�
climt ; k

lim
t+1

	1
t=0

when T !1, i.e.,

klimt+1 � lim
T!1

kT;0t+1 and climt � lim
T!1

cT;0t , for t = 0; 1; ::: (A2)

Proof. The existence of the limit program follows by three arguments (for any history):
i) Extending time horizon from T to T + 1 increases T -period capital of the �nite-horizon

optimal program, i.e., kT+1;0T+1 > kT;0T+1. To see this, note that the model with time horizon T
has zero (terminal) capital kT;0T+1 = 0 at T . When time horizon is extended from T to T + 1,
the model has zero (terminal) capital kT+1;0T+2 = 0 at T + 1 but it has strictly positive capital
kT+1;0T+1 > 0 at T ; this follows by the Inada conditions�Assumption 1d.
ii) The optimal program for the �nite-horizon economy has the following property of monotonic-

ity with respect to the terminal condition: if
�
c0t; k

0
t+1

	T
t=0

and
�
c00t ; k

00
t+1

	T
t=0

are two optimal
programs for the �nite-horizon economy with terminal conditions �0 < �00, then the respective
optimal capital choices have the same ranking in each period, i.e., k0t � k00t for all t = 1; :::T . This
monotonicity result follows by either Bellman equation programming techniques (see Mitra and
Nyarko (1991, Theorem 3.2 and Corollary 3.3)) or Euler equation programming techniques (see
Majumdar and Zilcha (1987, Theorem 3)) or lattice programming techniques (see Hopenhayn
and Prescott (1992)); see also Joshi (1997, Theorem 1) for generalizations of these results to

nonconvex economies. Hence, the stochastic process
n
kT;0t+1

oT
t=0
shifts up (weakly) in a pointwise

manner when T increases to T + 1, i.e., kT+1;0t+1 � kT;0t+1 for t � 0.
iii) By construction, the capital program from the optimal program

n
cT;0t+1; k

T;0
t+1

oT
t=0
is bounded

from above by the capital accumulation process
�
0; kmaxt+1

	T
t=0

de�ned in (8), i.e., kT;0t+1 � kmaxt+1 <
1 for t � 0. A sequence that is bounded and monotone is known to have a well-de�ned limit.
�

Appendix A4. Limit program of the T -period stationary economy

We now show that the optimal program of the T -period stationary economy, introduced in
Section 4, converges to the same limit program (A2) as the optimal program of the �nite-horizon
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economy (10), (11) with a zero terminal condition. We denote by =T;� a set of all feasible �nite-
horizon programs that attains a terminal condition � 6= 0 of the T -period stationary economy.
(We assume the same initial capital (k0; z0) and the same partial history hT � (�0; :::; �T ) as
those �xed for the �nite-horizon economy (10), (11)).

Lemma 2. The optimal program of the T -period stationary economy
n
cT;�t ; kT;�t+1

oT
t=0

2 =T;�

converges to a unique limit program
�
climt ; k

lim
t+1

	1
t=0

2 =1 de�ned in (A2) as T ! 1 i.e., for
all t � 0

klimt+1 � lim
T!1

kT;�t+1 and climt � lim
T!1

cT;�t : (A3)

Proof. The proof of the lemma follows by six arguments (for any history).
i). Observe that, by Assumptions 1 and 2, the optimal program of the T -period stationary

economy has a positive capital stock kT;�t+1 > 0 at T (since the terminal capital is generated
by the capital decision function of a stationary version of the model), while for the optimal

program
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 of the �nite-horizon economy, it is zero by de�nition, kT;0T+1 = 0.

ii). The property of monotonicity with respect to terminal condition implies that if kT;�T+1 >
kT;0T+1, then k

T;�
t+1 � k

T;0
t+1 for all t = 1; :::; T ; see our discussion in ii). of the proof to Lemma 1.

iii). Let us �x some � 2 f1; :::; Tg. We show that up to period � , the optimal programn
cT;�t ; kT;�t+1

o�
t=0

does not give higher expected utility than
n
cT;0t ; kT;0t+1

o�
t=0
, i.e.,

E0

"
�X
t=0

�t
n
ut

�
cT;�t

�
� ut(cT;0t )

o#
� 0: (A4)

Toward contradiction, assume that it does, i.e.,

E0

"
�X
t=0

�t
n
ut

�
cT;�t

�
� ut(cT;0t )

o#
> 0. (A5)

Then, consider a new process
�
c0t; k

0
t+1

	�
t=0
that follows

n
cT;�t ; kT;�t+1

oT
t=0
2 =T;� up to period ��1

and that drops down at � to match kT;0�+1 of the �nite-horizon program
n
cT;�t ; kT;�t+1

oT
t=0

2 =T;0,

i.e.,
�
c0t; k

0
t+1

	�
t=0

�
n
cT;�t ; kT;�t+1

o��1
t=0

[
n
cT� + k

T
�+1 � k

T;0
�+1; k

T;0
�+1

o
. By monotonicity ii). we have

kT�+1 � k
T;0
�+1 � 0, so that

E0

"
�X
t=0

�t
n
ut (c

0
t)� ut

�
cT;�t

�o#
=

= E0

h
��
n
ut

�
cT� + k

T
�+1 � k

T;0
�+1

�
� ut

�
cT�
�oi

� 0; (A6)

where the last inequality follows by Assumption 1b of strictly increasing ut.

iv). By construction
�
c0t; k

0
t+1

	�
t=0

and
n
cT;0t ; kT;0t+1

o�
t=0

reach the same capital kT;0�+1 at � . Let

us extend the program
�
c0t; k

0
t+1

	�
t=0
to T by assuming that it follows the process

n
cT;0t ; kT;0t+1

oT
t=0
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from the period � + 1 up to T , i.e.,
�
c0t; k

0
t+1

	T
t=�+1

�
n
cT;0t ; kT;0t+1

oT
t=�+1

. Then, we have

E0

"
TX
t=0

�t
n
ut (c

0
t)� ut(c

T;0
t )
o#

= E0

"
�X
t=0

�t
n
ut (c

0
t)� ut(c

T;0
t )
o#

� E0

"
�X
t=0

�t
n
ut

�
cT;�t

�
� ut

�
cT;0t

�o#
> 0; (A7)

where the last two inequalities follow by result (A6) and assumption (A5), respectively. Thus,
we obtain a contradiction: The constructed program

�
c0t; k

0
t+1

	T
t=0

2 =T;0 is feasible in the
�nite-horizon economy with a zero terminal condition, k0T+1 = 0, and it gives strictly higher

expected utility than the optimal program
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 in that economy.

v). Holding � �xed, we compute the limit of (A4) by letting T go to in�nity:

lim
T!1

E0

"
�X
t=0

�t
n
ut

�
cT;�t

�
� ut(cT;0t )

o#
=

lim
T!1

E0

"
�X
t=0

�tut

�
cT;�t

�#
� E0

"
�X
t=0

�tut
�
climt
�#
� 0: (A8)

vi). The last inequality implies that for any � � 1, the limit program
�
climt ; k

lim
t+1

	1
t=0

2 =1

of the �nite-horizon economy
n
cT;0t ; kT;0t+1

oT
t=0

2 =T;0 with a zero terminal condition kT;0T = 0

gives at least as high expected utility as the optimal limit program
n
cT;�t ; kT;�t+1

oT
t=0
2 =T;� of the

T -period stationary economy. Since Assumptions 1 and 2 imply that the optimal program is
unique, we conclude that

�
climt ; k

lim
t+1

	1
t=0
2 =1 de�ned in (A2) is a unique limit of the optimal

program
n
cT;�t ; kT;�t+1

oT
t=0
2 =T;� of the T -period stationary economy. �

Appendix A5. Convergence of the �nite-horizon economy to the
in�nite-horizon economy

We now show a connection between the optimal programs of the �nite-horizon and in�nite-
horizon economies. Namely, we show that the �nite-horizon economy (10), (11) with a zero
terminal condition kT;0T+1 = 0 converges to the nonstationary in�nite-horizon economy (5)�(7) as
T ! 1 provided that we �x the same initial condition k0 and partial history hT = (�0; :::; �T )
for both economies.

Lemma 3. The limit program
�
climt ; k

lim
t+1

	1
t=0

is a unique optimal program
�
c1t ; k

1
t+1

	1
t=0
2 =1

in the in�nite-horizon nonstationary economy (5)�(7).
Proof. We prove this lemma by contradiction. We use the arguments that are similar to those
used in the proof of Lemma 2.
i). Toward contradiction, assume that

�
climt ; k

lim
t+1

	1
t=0

is not an optimal program of the
in�nite-horizon economy

�
c1t ; k

1
t+1

	1
t=0
2 =1. By de�nition of limit, there exists a real number
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" > 0 and a subsequence of natural numbers fT1; T2; :::g � f0; 1; :::g such that
�
c1t ; k

1
t+1

	1
t=0
2

=1 gives strictly higher expected utility than the limit program of the �nite-horizon economy�
climt ; k

lim
t+1

	1
t=0
, i.e.,

E0

"
TnX
t=0

�t
�
ut (c

1
t )� ut(climt )

	#
> " for all Tn 2 fT1; T2; :::g . (A9)

ii). Let us �x some Tn 2 fT1; T2; :::g and consider any �nite T � Tn. Assumptions 1
and 2 imply that k1T+1 > 0 while k

T;0
T+1 = 0 by de�nition of the �nite-horizon economy with a

zero terminal condition. The monotonicity of the optimal program with respect to a terminal
condition implies that if k1T+1 > k

T;0
T+1, then k

1
t+1 � k

T;0
t+1 for all t = 1; :::; T ; see our discussion in

ii). of the proof of Lemma 1.
iii). Following the arguments in iii). of the proof of Lemma 2, we can show that up to period

Tn, the optimal program
�
c1t ; k

1
t+1

	Tn
t=0
does not give higher expected utility than

n
cT;0t ; kT;0t+1

oTn
t=0
,

i.e.,

E0

"
TnX
t=0

�t
n
ut (c

1
t )� ut(c

T;0
t )
o#

� 0 for all Tn. (A10)

iv). Holding Tn �xed, we compute the limit of (A10) by letting T go to in�nity:

lim
T!1

E0

"
TnX
t=0

�t
n
ut (c

1
t )� ut(c

T;0
t )
o#

= E0

"
TnX
t=0

�tut (c
1
t )� �tut

�
climt
�#
� 0 for all Tn. (A11)

However, result (A11) contradicts to our assumption in (A9).
v). We conclude that for any subsequence fT1; T2; :::g � f0; 1; :::g, we have

E0

"
TnX
t=0

�t
�
ut (c

1
t )� ut(climt )

	#
� 0 for all Tn. (A12)

However, under Assumptions 1 and 2, the optimal program
�
c1t ; k

1
t+1

	1
t=0
2 =1 is unique, and

hence, it must be that
�
c1t ; k

1
t+1

	1
t=0

coincides with
�
climt ; k

lim
t+1

	1
t=0

for all t � 0. �

Appendix A6. Proof of the turnpike theorem

We now combine the results of Lemmas 1-3 together into a turnpike-style theorem to show the
convergence of the optimal program of the T -period stationary economy to that of the in�nite-
horizon nonstationary economy. To be speci�c, Lemma 1 shows that the optimal program of

the �nite-horizon economy with a zero terminal condition
n
cT;0t ; kT;0t+1

oT
t=0

2 =T;0 converges to
the limit program

�
climt ; k

lim
t+1

	1
t=0
. Lemma 2 shows that the optimal program of the T -period

stationary economy
n
cT;�t ; kT;�t+1

oT
t=0

also converges to the same limit program
�
climt ; k

lim
t+1

	1
t=0
.
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Finally, Lemma 3 shows that the limit program of the �nite-horizon economies
�
climt ; k

lim
t+1

	1
t=0

is optimal in the nonstationary in�nite-horizon economy. Then, it must be the case that the

limit optimal program of the T -period stationary economy
n
cT;�t ; kT;�t+1

oT
t=0

is optimal in the

in�nite-horizon nonstationary economy. This argument is formalized below.

Proof of Theorem 2 (turnpike theorem). The proof follows by de�nition of limit and Lemmas
1-3. Let us �x a real number " > 0 and a natural number � such that 1 � � <1 and consider
a possible partial history hT = (�0; :::; �T ).

i). Lemma 1 shows that
n
cT;0t ; kT;0t+1

oT
t=0
2 =T;0 converges to a limit program

�
climt ; k

lim
t+1

	1
t=0
as

T !1. Then, de�nition of limit implies that there exists T1 (hT ) > 0 such that
���kT;0t+1 � klimt+1��� <

"
3
for t = 0; :::; � .
ii). Lemma 2 implies that the �nite-horizon problem of the T -period stationary economyn

cT;�t ; kT;�t+1

oT
t=0

also converges to limit program
�
climt ; k

lim
t+1

	1
t=0

as T ! 1. Then, there exists

T2 (hT ) > 0 such that
���klimt+1 � kT;�t+1��� < "

3
for t = 0; :::; � .

iii). Lemma 3 implies the program
n
cT;0t ; kT;0t+1

oT
t=0

2 =T;0 converges to the in�nite-horizon

optimal program
�
c1t ; k

1
t+1

	1
t=0
as T !1. Then, there exists T3 (hT ) > 0 such that

���kT;0t+1 � k1t+1��� <
"
3
for t = 0; :::; � .
iv). Then, the triangular inequality implies���kT;�t+1 � k1t+1��� = ���kT;�t+1 � klimt+1 + klimt+1 � kT;0t+1 + kT;0t+1 � k1t+1���

�
���kT;�t+1 � klimt+1���+ ���klimt+1 � kT;0t+1���+ ���kT;0t+1 � k1t+1��� < "

3
+
"

3
+
"

3
= ",

for T (hT ) � max fT1 (hT ) ; T2 (hT ) ; T3 (hT )g.
v). Finally, consider all possible partial histories fhTg and de�ne T �

�
"; � ; xTT

�
� max

fhT g
T (hT ).

By construction, for any T > T �
�
"; � ; xTT

�
, the result of the theorem holds. �

Remark A1. Our proof of the turnpike theorem addresses a technical issue that does not arise
in the literature that focuses on �nite-horizon economies with a zero terminal condition; see, e.g.,
Majumdar and Zilcha (1987), Mitra and Nyarko (1991) and Joshi (1997). Their construction
relies on the fact that the optimal program of the �nite-horizon economy is always pointwise
below the optimal program of the in�nite-horizon economy, i.e., kT;�t+1 � k1t+1, for t = 1; :::; � ,
and it gives strictly higher expected utility up to T than does the in�nite-horizon optimal
program (because excess capital can be consumed at terminal period T ). This argument does
not directly applies to our T -period stationary economy: our �nite-horizon program can be
either below or above the in�nite-horizon program depending on a speci�c T -period terminal
condition. Our proof addresses this issue by constructing in Lemma 2 a separate limit program
for the T -period stationary economy.
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Appendix B. Implementation of EFP for growth model

In this section, we describe the implementation of the EFP method used to produce the nu-
merical results in the main text.
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Algorithm 1a (implementation):Extended function path (EFP) for the growth model.

The goal of EFP.
EFP is aimed at approximating a solution of a nonstationary model during the �rst � periods,

i.e., it �nds approximating functions
� bK0; :::; bK�� such that bKt � Kt for t = 1; :::� , where

Kt and bKt are a t-period true capital function and its parametric approximation, respectively.
Step 0. Initialization.
a. Choose time horizon T � � for constructing T -period stationary economy.
b. Construct a deterministic path fz�t g

T
t=0 for exogenous state variable fztg

T
t=0 satisfying

z�t+1 = 't (z
�
t ; Et [�t+1]) for t = 0; ::; T .

c. Construct a deterministic path fk�t g
T
t=0 for endogenous state variable fktg

T
t=0 satisfying

u0t(c
�
t ) = �u

0
t(c

�
t+1)(1� � + f 0t+1

�
k�t+1; z

�
t+1

�
).

c�t + k
�
t+1 = (1� �) k�t + ft (k�t ; z�t ) for t = 0; ::; T .

d. For t = 0; :::; T :
Construct a grid f(km;t; zm;t)gMm=1 centered at (k�t ; z�t ).
Choose integration nodes, �j;t, and weights, !j;t for j = 1; :::; J .
Construct future shocks z0m;j;t = 't (zm;t; �j;t).

e. Write a t-period discretized system of the optimality conditions:

i). u0t(cm;t) = �
JP
j=1

!j;t

h
u0t(c

0
m;j;t)

n
1� � + ft+1

�
k0m;t; z

0
m;j;t

�oi
ii). cm;t + k

0
m;t = (1� �) km;t + ft (km;t; zm;t)

iii). c0m;j;t + k
00
m;j;t = (1� �) k0m;t + ft+1

�
k0m;t; z

0
m;j;t

�
iv). k0m;t = bKt (km;t; zm;t) and k00m;j;t = bKt+1 �k0m;t; z0m;j;t� :

d. Assume that the model becomes stationary at T .

Step 1: Terminal condition.
Find bKT = bKT+1 that approximately solves the system i).-iv). on the grid for the T -period
stationary economy fT+1 = fT , uT+1 = uT , 'T+1 = 'T .

Step 2: Backward induction:

a. Construct the function path
� bK0; :::; bKT�1; bKT� that approximately solves the system i).-iv)

for each t = 0; :::; T and that matches the given terminal function bKT constructed in Step 1.
Step 3: Turnpike property.
a. Simulate the process bK0 and use a subset of simulated points as initial conditions (k0; z0).
For each initial condition, draw a history h� = (�0; :::; �� ). Use the decision functions

� bK0; :::; bK��
to simulate the economy�s trajectories (kT0 ; :::k

T
� ). Check that the trajectories converge to

a unique limit lim
T!1

(kT0 ; :::k
T
� ) = (k

�
0; :::k

�
� ) by constructing (K0; :::;KT ) under di¤erent T and KT .

The EFP solution:

Use
� bK0; :::; bK�� as an approximation to (K0; :::;K� ) and discard the remaining T � � functions.
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The EFP method is more expensive than conventional solution methods for stationary
models because decision functions must be constructed not just once but for T periods. We
implement EFP in the way that keeps its cost relatively low: First, to approximate decision
functions, we use a version of the Smolyak (sparse) grid technique. Speci�cally, we use a
version of the Smolyak method that combines a Smolyak grid with ordinary polynomials for
approximating functions o¤ the grid. This method is described in Maliar et al. (2011) who �nd
it to be su¢ ciently accurate in the context of a similar growth model, namely, unit-free residuals
in the model�s equations do not exceed 0.01% on a stochastic simulation of 10,000 observations).
For this version of the Smolyak method, the polynomial coe¢ cients are overdetermined, for
example, in a 2-dimensional case, we have 13 points in a second-level Smolyak grid, and we have
only six coe¢ cients in second-degree ordinary polynomial. Hence, we identify the coe¢ cients
using a least-squares regression; we use an SVD decomposition, to enhance numerical stability;
see Judd et al. (2011) for a discussion of this and other numerically stable approximation
methods. We do not construct the Smolyak grid within a hypercube normalized to [�1; 1]2, like
do Smolyak methods that rely on Chebyshev polynomials used in, e.g., Krueger and Kubler
(2004), Malin et al. (2011) and Judd et al. (2014). Instead, we construct a sequence of
Smolyak grids around actual steady state and thus, the hypercube, in which the Smolyak grid
is constructed, grows over time as shown in Figures 1 and 8.
Second, to approximate expectation functions, we use Gauss-Hermite quadrature rule with

10 integration nodes. However, a comparison analysis in Judd et al. (2011) shows that for mod-
els with smooth decision functions like ours, the number of integration nodes plays only a minor
role in the properties of the solution, for example, the results will be the same up to six digits of
precision if instead of ten integration nodes we use just two nodes or a simple linear monomial
rule (a two-node Gauss-Hermite quadrature rule is equivalent to a linear monomial integration
rule for the two-dimensional case). However, simulation-based Monte-Carlo-style integration
methods produce very inaccurate approximations for integrals and are not considered in this
paper; see Judd et al. (2011) for discussion.
Third, to solve for the coe¢ cients of decision functions, we use a simple derivative-free �xed-

point iteration method in line with Gauss-Jacobi iteration. Let us re-write the Euler equation
i). constructed in the initialization step of the algorithm by pre-multiplying both sides by
t-period capital

bk0m;t = � JX
j=1

�j;t

�
u0t(c

0
m;j;t)

u0t(cm;t)

�
1� � + ft+1

�
k0m;tk

�
t+1; z

0
m;j;tz

�
t+1

�	�
k0m;t: (12)

We use di¤erent notation, k0m;t and bk0m;t, for t-period capital in the left and right side of (12),
respectively, in order to describe our �xed-point iteration method. Namely, we substitute k0m;t
in the right side of (12) and in the constraints ii). and iii). in the initialization step to compute
cm;t and c0m;j;t, respectively, and we obtain a new set of values of the capital function on the

grid bk0m;t in the left side. We iterate on these steps until convergence.
Our approximation functions bKt are ordinary polynomial functions characterized by a time-

dependent vector of parameters bt, i.e., bKt = bK (�; bt). So, operationally, the iteration is
performed not on the grid values k0m;t and bk0m;t but on the coe¢ cients of the approximation
functions. The iteration procedure di¤ers in Steps 1 and 2.

13



In Step 1, we construct a solution to T -period stationary economy. For iteration i, we �x
some initial vector of coe¢ cients b, compute k0m;T+1 = bK (km;T ; zm;T ; b), �nd cm;T and c0m;j;T
to satisfy constraints ii) and iii), respectively and �nd bk0m;T+1 from the Euler equation i). We

run a regression of bk0m;T+1 on bK (km;T ; zm;T ; �) in order to re-estimate the coe¢ cients bb and we
compute the coe¢ cients for iteration i+1 as a weighted average, i.e., b(i+1) = (1� �) b(i)+ �bb(i),
where � 2 (0; 1) is a damping parameter (typically, � = 0:05). We use partial updating instead
of full updating � = 1 because �xed-point iteration can be numerically unstable and using
partial updating enhances numerical stability; see Maliar et al. (2011). This kind of �xed-point
iterations are used by numerical methods that solve for equilibrium in conventional stationary
Markov economies; see e.g., Judd et al. (2011, 2014).
In Step 2, we iterate on the path for the polynomial coe¢ cients using Gauss-Jacobi style

iterations in line with Fair and Taylor (1983). Speci�cally, on iteration j, we take a path for

the coe¢ cients vectors
n
b
(j)
1 ; :::; b

(j)
T

o
, compute the corresponding path for capital quantities

using k0m;t = bKt

�
km;t; zm;t; b

(j)
t

�
, and �nd a path for consumption quantities cm;t and c0m;j;t from

constraints ii) and iii), respectively, for t = 0; :::; T . Substitute these quantities in the right side
of a sequence of Euler equations for t = 0; :::; T to obtain a new path for capital quantities in
the left side of the Euler equation bk0m;t for t = 0; :::; T � 1. Run T � 1 regressions of bk0m;t on
polynomial functional forms bKt (km;t; zm;t; bt) for t = 0; :::; T � 1 to construct a new path for
the coe¢ cients

nbb(j)0 ; :::;bb(j)T�1o. Compute the path of the coe¢ cients for iteration j + 1 as a
weighted average, i.e., b(j+1)t = (1� �) b(j)t + �bb(j)t , t = 0; :::; T � 1, where � 2 (0; 1) is a damping
parameter which we again typically set at � = 0:05. (Observe that this iteration procedure
changes all the coe¢ cients on the path except of the last one b(j)T � b, which is a given terminal
conditions that we computed in Step 1 from the T -period stationary economy).
In fact, the problem of constructing a path for function coe¢ cients is similar to the problem

of constructing a path for variables: in both cases, we need to solve a large system of nonlinear
equations. The di¤erence is that under EFP, the arguments of this system are not variables but
parameters of the approximating functions. Instead of Gauss-Jacobi style iteration on path,
we can use Gauss-Siedel �xed-point iteration (shooting), Newton-style solvers or any other
technique that can solve a system of nonlinear equations; see Lipton et al. (1980), Atolia and
Bu¢ e (2009a,b), Heer and Maußner (2010), and Grüne et al. (2013) for examples of such
techniques.
Let us now �nally provide an additional illustration to the solution shown in Section 3.4.

Speci�cally, in Figure 2, we plot a two-dimensional sequence of capital decision functions under
�xed productivity level z = 1, while here we provide a three-dimensional plot of the same
decision function for adding the productivity level. We again illustrate the capital functions
for periods 1, 20 and 40, (i.e., k2 = K1 (k1; z1), k21 = K20 (k20; z20) and k41 = K40 (k40; z40))
which we approximate using Smolyak (sparse) grids. In Step 1 of the algorithm, we construct
the capital function K40 by assuming that the economy becomes stationary in period T = 40;
and in Step 2, we construct a path of the capital functions that (K1; :::K39) that matches the
corresponding terminal function K40. The Smolyak grids are shown by stars in the horizontal
kt � zt plane. The domain for capital (on which Smolyak grids are constructed) and the range
of the constructed capital function grow at the rate of labor-augmenting technological progress.
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Figure 8. Function path, produced by EFP, for a growth model with technological progress.

Appendix C. Path-solving methods for nonstationary mod-
els

We �rst describe the shooting method of Lipton et al. (1980) for a nonstationary determin-
istic economy, and we then elaborate the extended path (EP) of Fair and Taylor (1983) for a
nonstationary economy with uncertainty.

Shooting methods. To illustrate the class of shooting methods, let us substitute ct and ct+1
from (6) into the Euler equation of (5)�(7) to obtain a second-order di¤erence equation,

u0t((1� �) kt + ft (kt; zt)� kt+1)
= �Et

�
u0t+1((1� �) kt+1 + ft+1 (kt+1; zt+1)� kt+2)(1� � + f 0t+1 (kt+1; zt+1))

�
. (13)

Initial condition (k0; z0) is given. Let us abstract from uncertainty by assuming that zt = 1
for all t, choose a su¢ ciently large T and �x some terminal condition kT+1 (typically, the
literature assumes that the economy arrives in the steady state kT+1 = k�).1 To approximate
the optimal path, we must solve numerically a system of T nonlinear equations (13) with respect
to T unknowns fk1; :::; kTg. It is possible to solve the system (13) by using a Newton-style or
any other numerical solver. However, a more e¢ cient alternative could be numerical methods
that exploit the recursive structure of the system (13) such as shooting methods (Gauss-Siedel
iteration). There are two types of shooting methods: a forward shooting and a backward
shooting. A typical forward shooting method expresses kt+2 in terms of kt and kt+1 using (13)

1The turnpike theorem implies that in initial � periods, the optimal path is insensitive to a speci�c terminal
condition used if � � T .
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and constructs a forward path (k1; :::; kT+1); it iterates on k1 until the path reaches a given
terminal condition kT+1 = k�. In turn, a typical reverse shooting method expresses kt in terms
of kt+1 and kt+2 and constructs a backward path fkT ; :::; k0g; it iterates on kT until the path
reaches a given initial condition k0. A shortcoming of shooting methods is that they tend to
produce explosive paths, in particular, forward shooting methods; see Atolia and Bu¢ e (2009
a, b) for a careful discussion and possible treatments of this problem.

Fair and Taylor (1984) method. The EP method of Fair and Taylor (1983) allows us to
solve nonstationary economic models with uncertainty by approximating expectation functions
under the assumption of certainty equivalence. To see how this method works, consider the sys-
tem (13) with uncertainty and as an example, assume that zt+1 follows a possibly nonstationary
Markov process ln (zt+1) = �t ln (zt)+�t�t+1, where the sequences (�0; �1; :::) and (�0; �1; :::) are
deterministically given at t = 0 and �t+1 � N (0; 1). Again, let us choose a su¢ ciently large T
and �x some terminal condition such as kT+1 = k�, so that the turnpike argument applies. Fair
and Taylor (1983) propose to construct a solution path to (13) by setting all future innovations
to their expected values, �1 = �2 = ::: = 0. This produces a path on which technology evolves
as ln (zt+1) = �t ln (zt) gradually converging to z

� = 1 and the models�s variables gradually con-
verge to the steady state. Note that only the �rst entry k1 of the constructed path (k1; :::; kT ) is
meaningful; the remaining entries (k2; :::; kT ) are obtained under a supplementary assumption
of zero future innovations and they are only needed to accurately construct k1. Thus, k1 is
stored and the rest of the sequence is discarded. By applying the same procedure to next state
(k1; z1), we produce k2, and so on until the path of desired length � is constructed.
However, certainty equivalence approximation of Fair and Taylor (1983) has its limitations.

It is exact for linear and linearized models, and it can be su¢ ciently accurate for models that
are close to linear; see Cagnon and Taylor (1990), and Love (2010). However, it becomes highly
inaccurate when either volatility and/or the degrees of nonlinearity increase; see our accuracy
evaluations in the main text.
Another novelty of the EP method relative to shooting methods is that it iterates on the

economy�s path at once using Gauss-Jacobi iteration. This type of iteration is more stable than
Gauss-Siedel and allows us to avoid explosive behavior. To be speci�c, it guesses the economy�s
path (k1; :::; kT+1), substitute the quantities for t = 1; :::T + 1 it in the right side of T Euler
equations (13), respectively, and obtains a new path (k0; :::; kT ) in the left side of (13); and it
iterates on the path until the convergence is achieved. Finally, Fair and Taylor (1983) propose
a simple procedure for determining T that insures that a speci�c terminal condition used does
not a¤ect the quality of approximation, namely, they suggested to increase T (i.e., extend the
path) until the solution in the initial period(s) becomes insensitive to further increases in T .
We now elaborate the description of the version of Fair and Taylor�s (1983) method used to

produce the results in the main text. We use a slightly di¤erent representation of the optimality
conditions of the model (5)�(7) (we assume � = 1 and u (c) = ln (c) for expository convenience).
The Euler equation and budget constraint, respectively, are:

1

ct
= �Et

�
1

ct+1
(1� � + zt+1f 0(kt+1))

�
;

ct + kt+1 = (1� �) kt + ztf (kt) :
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We combine the above two conditions to get

kt+1 = ztf (kt)�
�
Et

�
�zt+1f

0(kt+1))

zt+1f (kt+1)� kt+2

���1
�

ztf (kt)�
zet+1f (kt+1)� kt+2
�zet+1f

0(kt+1))
; (14)

where the path for zet+1is constructed under the certainty equivalence assumption that �t+1 = 0
for all t � 0. Under the conventional AR(1) process for productivity levels, this means that
ln zet+1 = � ln z

e
t for all t � 0, or equivalently zet+1 = (zet )

�, where ze0 = z0. To solve for the path
of variables, we use derivative-free iteration in line with Gauss-Jacobi method as in Fair and
Taylor (1983):

Algorithm 2. Extended path (EP) framework by Fair and Taylor (1983).

The goal of EP framework of Fair and Taylor (1983).
EFP is aimed at approximating a path for variables satisfying the model�s equations during

the �rst � periods, i.e., it �nds bk0; :::;bk� such that 


kt � bkt


 < " for
t = 1; :::� , where " > 0 is target accuracy, k�k is an absolute value, and kt and bkt are the t-period
true capital stocks and their approximation, respectively.

Step 0: Initialization.
a. Fix t = 0 period state (k0; z0).
b. Choose time horizon T � � and terminal condition bkT+1.
c. Construct and �x

�
zet+1

	
t=0;:::;T

such that zet+1 = (z
e
t )
� for all t, where ze0 = z0.

d. Guess an equilibrium path
nbk(1)t o

t=1;:::;T 0
for iteration j = 1.

e. Write a t-period system of the optimality conditions in the form:bkt+1 = zet f �bkt�� zet+1f(bkt+1)�bkt+2
�zet+1f

0(bkt+1)) ;
where bk0 = k0.

Step 1: Solving for a path using Gauss-Jacobi method.

a. Substitute a path
nbk(j)t o

t=1;:::;T 0
into the right side of (14) to �nd

bk(j+1)t+1 = zet f
�bk(j)t �� zet+1f

�bk(j)t+1��bk(j)t+2
�zet+1f

0(bk(j)t+1)) , t = 1; :::; T

b. End iteration if the convergence is achieved
���bk(j+1)t+1 � bk(j)t+1��� < tolerance level.

Otherwise, increase j by 1 and repeat Step 1.

The EP solution:
Use the �rst entry bk1 of the constructed path bk1; :::;bkT as an approximation
to the true solution k1 n period t = 0 and discard the remaining k2; :::; kT values.

In terms of our notations, Fair and Taylor (1983) use � = 1, i.e., they keep only the �rst

element bk1 from the constructed path �bk1; :::;bkT� and disregard the rest of the path; then, they
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draw a next period shock z1 and solve for a new path
�bk1; :::;bkT+1� starting from bk1 and ending

in a given bkT+1 and store bk2, again disregarding the rest of the path; and they advance forward
until the path of the given length � is constructed. T is chosen so that its further extensions
do not a¤ect the solution in the initial period of the path. For instance, to �nd a solution bk1,
Fair and Taylor (1983) solve the model several times under T + 1; T + 2; T + 3; ::: and check
that bk1 remains the same (up to a given degree of precision).
As is typical for �xed-point-iteration style methods, Gauss-Jacobi iteration may fail to

converge. To deal with this issue, Fair and Taylor (1983) use damping, namely, they update
the path over iteration only by a small amount k(j+1)t+1 = �k

(j+1)
t+1 + (1� �) k(j)t+1 where � 2 (0; 1)

is a small number close to zero (e.g., 0.01).
Steps 1a and 1b of Fair and Taylor�s (1983) method are called Type I and Type II iterations

and are analogous to Step 2 of the EFP method when the sequence of the decision functions is
constructed. The extension of path is called Type III iteration and gives the name to Fair and
Taylor (1983) method.
In our examples, we implement Fair and Taylor�s (1983) method using a conventional New-

ton style numerical solver instead of Gauss-Jacobi iteration; a similar implementation is used
in Heer and Maußner (2010). The cost of Fair and Taylor�s (1983) method can depend consid-
erably on a speci�c solver used and can be very high (as we need to solve a system of equations
with hundreds of unknowns numerically). In our simple examples, a Newton-style solver was
su¢ ciently fast and reliable. In more complicated models, we are typically unable to derive
closed-form laws of motion for the state variables, and derivative-free �xed-point iteration ad-
vocated in Fair and Taylor (1983) can be a better alternative.

Appendix D. Solving the test model using the associated
stationary model

We �rst convert the nonstationary model (5)�(7) with labor-augmenting technological progress
into a stationary model using the standard change of variables bct = ct=At and bkt = kt=At. This
leads us to the following model

max
fbkt+1;bctg

t=0;:::;1

E0

1X
t=0

(��)t
bc1��t

1� � (15)

s.t. bct + 
Abkt+1 = (1� �)bkt + ztbk�t ; (16)

ln zt+1 = �t ln zt + �t�t+1; �t+1 � N (0; 1) ; (17)

where �� � �
1��A . We solve this stationary model by using the same version of the Smolyak
method that is used within EFP to �nd a solution to T -period stationary economy.
After a solution to the stationary model (15)�(17) is constructed, a solution for nonstation-

ary variables can be recovered by using an inverse transformation ct = bctAt and kt = bktAt.
For the sake of our comparison, we also need to recover the path of nonstationary deci-

sion functions in terms of their parameters. Let us show how this can be done under poly-
nomial approximation of decision functions. Let us assume that a capital policy function
of the stationary model is approximated by complete polynomial of degree L, namely, k̂t+1 =

18



PL
l=0

Pl
m=0 bm+ (l�1)(l+2)

2
+1
k̂mt z

l�m
t , where bi is a polynomial coe¢ cient, i = 0; :::; L+

(L�1)(L+2)
2

+1.

Given that the stationary and nonstationary solutions are related by k̂t+1 = kt+1=
�
A0


t+1
A

�
, we

have

kt+1 = A0

t+1
A k̂t+1 = A0


t+1
A

LX
l=0

lX
m=0

b
m+

(l�1)(l+2)
2

+1
k̂mt z

l�m
t =

A0

LX
l=0

lX
m=0


A
1�(m�1)tb

m+
(l�1)(l+2)

2
+1
kmt z

l�m
t : (18)

For example, for �rst-degree polynomial L = 1, we construct the coe¢ cients vector of the
nonstationary model by premultiplying the coe¢ cient vector b � (b0; b1; b2) of the stationary
model by a vector

�
A0


t+1
A ; A0
A; A0


t+1
A

�>
, which yields bt+1 �

�
b0A0


t+1
A ; b1A0
A; b2A0


t+1
A

�
,

t = 0; :::; T , where T is time horizon (length of simulation in the solution procedure). Note that
a similar relation will hold even if the growth rate 
A is time variable.

Appendix E. Sensitivity results for the model with labor-
augmenting technological progress

In this appendix, we provide sensitivity results for the model with labor-augmenting techno-
logical progress. Table 2 contains the results on accuracy and cost of the version of the EFP
method studied in Section 5. We use � = 200 and T = 400 and consider several alternative
parameterizations for f�; ��; 
Ag.
Figure E.1 plots a maximum unit-free absolute di¤erence between the exact solution for

capital and the solution delivered by the EFP at � = 100. The di¤erence between the solutions
is computed across 1,000 simulations. We use T = f200; 300; 400; 500g, � = f1=3; 1; 3g and
decision rules produced by the T -period stationary economy and zero capital assumption as
terminal conditions.

Figure 9. Sensitivity analysis for the EFP method.



Table 1: Sensitivity analysis for the EFP method.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Models 6 Model 7
� 5 5 5 5 0.1 1 10
�� 0.03 0.03 0.03 0.01 0.01 0.01 0.01

A 1.01 1.00 1.05 1.01 1.01 1.01 1.01

Mean errors across t periods in log10 units
t 2 [0; 50] -7.01 -6.67 -7.34 -7.03 -7.03 -6.61 -7.30
t 2 [0; 100] -6.82 -6.44 -7.25 -6.84 6.92 -6.48 -7.08
t 2 [0; 150] -6.73 -6.33 -7.22 -6.76 -6.89 -6.43 -6.98
t 2 [0; 175] -6.70 -6.29 -7.22 -6.74 -6.87 -6.41 -6.95
t 2 [0; 200] -6.68 -6.26 -7.21 -6.72 -6.87 -6.37 -6.93

Maximum errors across t periods in log10 units
t 2 [0; 50] -6.42 -6.31 -7.13 -6.66 -6.08 -6.24 -6.81
t 2 [0; 100] -5.99 -6.12 -7.05 -6.54 -5.97 -6.18 -6.36
t 2 [0; 150] -5.98 -6.04 -7.05 -6.52 -5.97 -6.18 -6.35
t 2 [0; 175] -5.98 -6.01 -7.05 -6.52 -5.97 -6.13 -6.33
t 2 [0; 200] -5.92 -5.99 -7.05 -6.51 -5.96 -5.88 -6.24

Running time, in seconds
Solution 225.9 150.0 193.0 216.98 836.5 300.7 245.9
Simulation 5.6 5.7 5.8 5.66 5.6 5.6 5.7
Total 231.6 155.7 198.8 222.64 842.1 306.3 251.6

Notes: "Mean errors" and "Maximum errors" are, respectively, mean and maximum unit-free absolute di¤erence

between the exact solution for capital and the solution delivered by EFP under the parameterization in the

column. The di¤erence between the solutions is computed across 100 simulations. The time horizon is T=400,

and the terminal condition is constructed by using the T-period stationary economy in all experiments.
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