Cost

Multi-Stage Stochastic Programming

Example: Hydro-Thermal Scheduling

Over 24 hours, ateach hour

* we need to satisfy a known demand D ;

* we can use fuel (p;) for aprice C or

* we can use (y;) or store in a dam (x;) of max. capacity W a random amount
of rainr(&,).

The problem is to meet all the demand at the smallest mean cost.

At each time t, the subproblem, looking at the future, can be formulated as

Vic1(xX¢—1) = min Cp; + Vi (x;)

Xt,Yt,.Dt
st. x;, <W

Xt = Xpoq — Ve +7($e)
P +ye =D

X, Yo, Py 2 0
with 7(&;) the random rain, where x;_; is given and V, is the expected cost of the

remaining stages as a function of x;.

To represent time and uncertainty we use a Lattice.

>

Rain level 7(&;)

Time t

We could model this as a plain Linear Program but there would be an exponential
number of constraints and variables, due to the high number of possible paths in
the Lattice.

Nested Decomposition + Monte-Carlo
Estimates = SDDP

A key fact is that V; is convex. We can thus approximate it using supporting hyper-
planes (or cuts, or subgradients). This can be done by solving the individual
subproblem (+ already existing cuts approximating V,(x;)) and using the dual

information to build a new cut.

Guess Improve
approximation
some Xx; of V,

N

Decision variables

We can then recursively apply this idea to approximate the V;(x;) at each node in
the Lattice.

This would unfortunately require traversing all the paths of the lattice. To avoid
this, we use Monte-Carlo estimates and we traverse only a few paths in the lattice.
This is the idea of SDDP (Stochastic Dual Dynamic Programming).

FAST, Finally An SDDP Toolbox

The first (free) Matlab toolbox to solve Multi-Stage Stochastic Programs using SDDP

Léopold Cambier

Built-In Modeling

The toolbox, solving thus general Multi-Stage Stochastic Programs using SDDP,
includes a modeling part to easily describe the subproblems, almost copy-pasting
the equations ! (Compare this code to the equations on the left.)

[cntr, obj] = nlds(scenario, X, Yy, D)

C=5; W=28; D=6 ;
t = scenario.time ;
rain = [2 10] ;

t ==
rain effect

X(1l) == - y(1) + mean(rain) ;

rain effect = x(t) == x(t-1) - y(t) + rain(scenario.index) ;

obj = C * p(t) ;

cntr = [x(t) <= W,
rain effect, .
p(t) + y(t) >= D,
xX(t) >= 0,...
y(t) >= 0,...
p(t) >= 0] ;

Simple Interface To Solvers

Once the problem has been modeled, running SDDP can be done in as few as 15
lines of code. The toolbox takes care of everything:

* computing the cuts to approximate V; at each node;

* using Monte-Carlo to avoid the curse of dimensionality ;

* interfacing with the linear solvers (Gurobi, Mosek or Linprog).

Many different options are present to tweak the algorithm.

H = 24 ;
R = 2 ;

lattice = Lattice.latticeEasy(H, R) ;

params = sddpSettings(' 'algo.McCount',100,...
'stop.iterationMax',10,...
'stop.pereiraCoef',1, ...
'solver', 'gurobi') ;

X sddpVar (H) ;

Y sddpvVar (H) ;

p = sddpVar(H) ;

Lattice = ...

compileLattice(lattice,@(scenario)nlds(scenario,Xx,y,p) ,params) ;

output = sddp(lattice,params) ;

plotOutput (output) ;

On the above problem (with approximately 22%* scenarios), it runs an find a
solution within 5% of the optimal solution in 1 minute on a laptop. Increasing the
number of Monte-Carlo samples would increase the precision of the output.

> B A
1CIVIE

Institute for Computational

Stanford | & Mathematical Engineering

Easy-to-analyze Output

When the algorithm executes, we can compute

e an approximate upper-bound (the mean cost of the Monte-Carlo estimates),
 an exact lower-bound (the cost at time t = 1)

of the cost. The algorithm terminates when they are close enough.

250

—e— Lower Bound (exact)
—e— Mean Costs (approx.)
—-=—=95% confidence interval

200

150

Cost

100

50

1 1.5 2 2.5 3 3.5 4
lteration

We can then easily analyze using the toolbox:

 the evolution of the mean cost, the lowerbound, confidence intervals ;

* the solution for a given path in the lattice and the optimal policy attime t =1 ;
e the lattice and the dual information ;

* other related quantities: wait-and-see, expected value.

Future Work

Support for feasibility cuts (if the guessed x; is not feasible) ;
e support for more solvers;
 more flexible modeling tools (for instance, easy AR process definition) ;
* parallel version;
e other (free) programming language(s).

References & Links

This toolbox has been developed in collaboration with Damien Scieur (ENS

Paris/Inria).

The original paper on SDDP is

e M.V.F. Pereira and L.M.V.G. Pinto, Multi-stage stochastic optimization applied to
energy planning, Mathematical Programming, 52, 359-375, 1991.

The toolbox website (with code examples and tutorials) is available at

 www.baemerick.be/fast

The source code is hosted on Github

 www.github.com/leopoldcambier/fast

Publication coming soon ?

