
FAST,	Finally	An	SDDP	Toolbox
The	first	(free)	Matlab	toolbox	to	solve	Multi-Stage	Stochastic	Programs	using	SDDP

Léopold	Cambier

Multi-Stage Stochastic Programming
Example: Hydro-Thermal Scheduling
Over 24 hours, at each hour
• we need to satisfy a known demand𝐷 ;
• we can use fuel (𝑝E) for a price 𝐶 or
• we can use (𝑦E) or store in a dam (𝑥E) of max. capacity 𝑊 a random amount
of rain 𝑟 𝜉E .

The problem is to meet all the demand at the smallestmean cost.
At each time 𝑡, the subproblem, looking at the future, can be formulated as

𝑉ERS 𝑥ERS = min
UV,WV,XV

𝐶𝑝E + 𝑉E(𝑥E)

s.t.			𝑥E ≤ 𝑊
𝑥E = 𝑥ERS − 𝑦E + 𝑟(𝜉E)

𝑝E + 𝑦E ≥ 𝐷
𝑥E, 𝑦E, 𝑝E ≥ 0

with 𝑟(𝜉E) the random rain, where 𝑥ERS is given and 𝑉E is the expected cost of the
remaining stages as a function of 𝑥E.

To represent time and uncertainty we use a Lattice.

We could model this as a plain Linear Program but there would be an exponential
number of constraints and variables, due to the high number of possible paths in
the Lattice.

Nested Decomposition + Monte-Carlo
Estimates = SDDP
A key fact is that 𝑉E is convex. We can thus approximate it using supporting hyper-
planes (or cuts, or subgradients). This can be done by solving the individual
subproblem (+ already existing cuts approximating 𝑉E 𝑥E) and using the dual
information to build a new cut.

We can then recursively apply this idea to approximate the 𝑉E(𝑥E) at each node in
the Lattice.
This would unfortunately require traversing all the paths of the lattice. To avoid
this, we use Monte-Carlo estimates and we traverse only a few paths in the lattice.
This is the idea of SDDP (Stochastic Dual Dynamic Programming).

Built-In Modeling
The toolbox, solving thus general Multi-Stage Stochastic Programs using SDDP,
includes a modeling part to easily describe the subproblems, almost copy-pasting
the equations ! (Compare this code to the equations on the left.)

Simple Interface To Solvers
Once the problem has been modeled, running SDDP can be done in as few as 15
lines of code. The toolbox takes care of everything:
• computing the cuts to approximate 𝑉E at each node ;
• using Monte-Carlo to avoid the curse of dimensionality ;
• interfacing with the linear solvers (Gurobi, Mosek or Linprog).
Many different options are present to tweak the algorithm.

On the above problem (with approximately 2^_ scenarios), it runs an find a
solution within 5% of the optimal solution in 1 minute on a laptop. Increasing the
number of Monte-Carlo samples would increase the precision of the output.

Easy-to-analyze Output
When the algorithm executes, we can compute
• an approximate upper-bound (the mean cost of the Monte-Carlo estimates),
• an exact lower-bound (the cost at time 𝑡 = 1)
of the cost. The algorithm terminates when they are close enough.

We can then easily analyze using the toolbox:
• the evolution of the mean cost, the lowerbound, confidence intervals ;
• the solution for a given path in the lattice and the optimal policy at time 𝑡 = 1 ;
• the lattice and the dual information ;
• other related quantities: wait-and-see, expected value.

FutureWork
• Support for feasibility cuts (if the guessed 𝑥E is not feasible) ;
• support for more solvers ;
• more flexible modeling tools (for instance, easy AR process definition) ;
• parallel version ;
• other (free) programming language(s).

References & Links
This toolbox has been developed in collaboration with Damien Scieur (ENS
Paris/Inria).
The original paper on SDDP is
• M.V.F. Pereira and L.M.V.G. Pinto, Multi-stage stochastic optimization applied to

energy planning,Mathematical Programming, 52, 359–375, 1991.
The toolbox website (with code examples and tutorials) is available at
• www.baemerick.be/fast
The source code is hosted on Github
• www.github.com/leopoldcambier/fast
Publication coming soon ?

Iteration
1 1.5 2 2.5 3 3.5 4

C
os

t

0

50

100

150

200

250
Lower Bound (exact)
Mean Costs (approx.)
95% confidence interval

function [cntr, obj] = nlds(scenario, x, y, p) % The subproblem
without V nor the cuts
C = 5 ; W = 8 ; D = 6 ;
t = scenario.time ;
rain = [2 10] ; % Rain either low of high
% The rain changes the quantity of water in the reservoir
if t == 1

rain_effect = x(1) == - y(1) + mean(rain) ;
else

rain_effect = x(t) == x(t-1) - y(t) + rain(scenario.index) ;
end
% Objective
obj = C * p(t) ;
% Constraints
cntr = [x(t) <= W, ... % Reservoir level

rain_effect, ... % Influence of rain
p(t) + y(t) >= D, ... % Meet demand
x(t) >= 0,... % Positivity
y(t) >= 0,...
p(t) >= 0] ;

end

Improve	
approximation	

of	𝑉E

Guess	
some	𝑥E

H = 24 ;
R = 2 ;
% Creating a lattice with H stages and R scenarios at each time
lattice = Lattice.latticeEasy(H, R) ;
% Run SDDP
params = sddpSettings('algo.McCount',100,...

'stop.iterationMax',10,...
'stop.pereiraCoef',1,...
'solver','gurobi') ;

x = sddpVar(H) ; % The reservoir level at time t
y = sddpVar(H) ; % How much water we use at time t
p = sddpVar(H) ; % How much fuel we use at time t
Lattice = ...
compileLattice(lattice,@(scenario)nlds(scenario,x,y,p),params) ;
output = sddp(lattice,params) ;
% Visualise output
plotOutput(output) ;

𝑉E

𝑥E
Cut

Co
st

Decision	variables

Time	𝑡Ra
in
	le
ve
l	𝑟
(𝜉
E)

