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cloud systems are connected
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cloud systems are dynamic
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We want to characterize normal  
operating conditions and recognize changes
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step 1: instrumentation
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step 2: model construction
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step 3: judge health
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step 4: problem remediation
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instrumentation, though difficult, largely addressed by prior work
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model construction is difficult, our focus



33

judge health via anomaly detection
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can not experiment, only unsupervised data
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remediate problems with help from anomaly localization
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not all joint anomalies are marginal anomalies
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need to model spatial associations
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Can undirected graphical models 
characterize cloud telemetry?

Our question
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we give a data model and positive preliminary results

Our question
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unlabeled correlated signals

We have…
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unlabeled correlated signals

high-dimensional and spatial
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We have…
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unlabeled correlated signals

high-dimensional and spatial

arriving in real-time

not normally distributed!

We have…
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Data model: intution
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Data model: intuition
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vector of measurements 

Data model
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one component

Data model



48

the other components

Data model
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assume exists

Data model
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can approximately predict each component from others

Data model
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take the difference

Data model
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call it the deviation

Data model
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model deviations as mean-zero Gauss-Markov random field

Data model
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covariance of deviations accounts for spatial associations

Data model
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normality an approximation, more practical for residuals

Data model
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Data model: anomaly detection and localization

joint anomalies — use a chi-squared test on vector of deviations 
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Data model: anomaly detection and localization

 individual anomalies — chi-squared test on conditional distribution
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Data model: anomaly detection and localization

detection and localization are simple and fast
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need predictor parameters

Data model: parameterization
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need predictor parameters

and covariance of residuals

Data model: parameterization



61

need predictor parameters

and covariance of residuals

estimate by approximate maximum likelihood

Data model: parameterization
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need predictor parameters

and covariance of residuals

we solve two convex programs, which is fast

Data model: parameterization
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Model interpretation
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latency

Model interpretation
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latency

 request rate

Model interpretation
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Model interpretation
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measurement

Model interpretation
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measurement

Model interpretation
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request rate increases so too does latency

Model interpretation
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request rate increases so too does queue

Model interpretation
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system sheds load

Model interpretation
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but suppose we (poorly) change configuration

Model interpretation
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and increase load again

Model interpretation
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latency and queue length increase

Model interpretation
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large deviations from predictorModel interpretation
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collect recent data

Model construction
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collect recent data build predictors

Model construction
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collect recent data build predictors

Model construction

estimate covariance
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collect recent data build predictors

we use general additive models with splines

Model construction

estimate covariance
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collect recent data build predictors

impose sparsity since we know which processes communicate

Model construction

estimate covariance
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collect recent data build predictors estimate covariance

impose conditional independence on deviation covariance

Model construction
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collect recent data build predictors estimate covariance

impose conditional independence on deviation covariance

Model construction



83

Numerical experiments

synthetic two-process model
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Numerical experiments

synthetic two-process model

mongo database instance
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Numerical experiments

synthetic two-process model

mongo database instance

lacking full-scale cloud experiment; future work
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Numerical experiments: synthetic environment

two input stochastic processes
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Numerical experiments: synthetic environment

nine output stochastic processes
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Numerical experiments: synthetic environment

metrics related functionally to those with arrows
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Numerical experiments: synthetic environment

we collect normal data, then change parameter on edge 6 to 7
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Numerical experiments: synthetic environment
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Numerical experiments: synthetic environment

system changes at time 2000
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Numerical experiments: synthetic environment
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Numerical experiments: synthetic environment

deviations get bigger at time step 2000
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Numerical experiments: synthetic environment
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Numerical experiments: synthetic environment

the system begins to look jointly anomalous
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Numerical experiments: synthetic environment
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Numerical experiments: synthetic environment

localize to metric 7 and 8
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recall we changed 7, and 7 affects 8

Numerical experiments: synthetic two-process environment
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Numerical experiments: mongo database instance
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Numerical experiments: mongo database instance

increase latency around sample 750, change configuration around sample 900
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Numerical experiments: mongo database instance
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Numerical experiments: mongo database instance
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Numerical experiments: mongo database instance

we see anomalies
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Numerical experiments: mongo database instance
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Numerical experiments: mongo database instance
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first detection excludes internal counter, may indicate input change

Numerical experiments: mongo database instance
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Numerical experiments: mongo database instance
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second detection includes counter, internal change

Numerical experiments: mongo database instance
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Residual Gauss-Markov random field

Our data model localizes potential problem sources
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Residual Gauss-Markov random field

Thank you!

Our data model localizes potential problem sources


