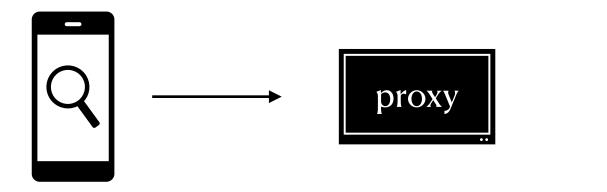
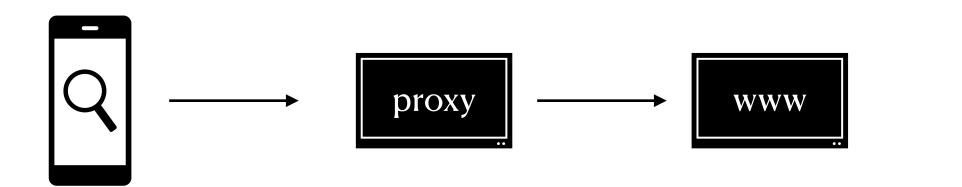
Cloud Telemetry Modeling via Residual Gauss-Markov Random Fields

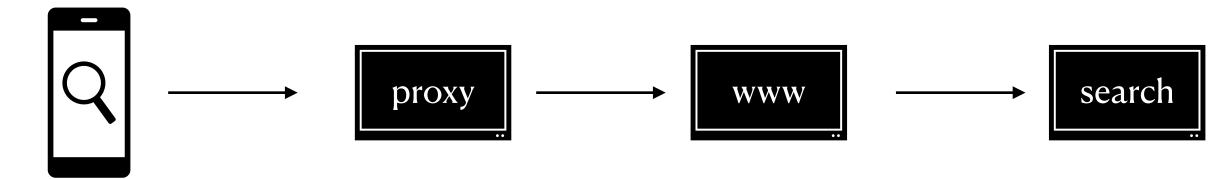
Nick Landolfi, Dan O'Neill, Sanjay Lall

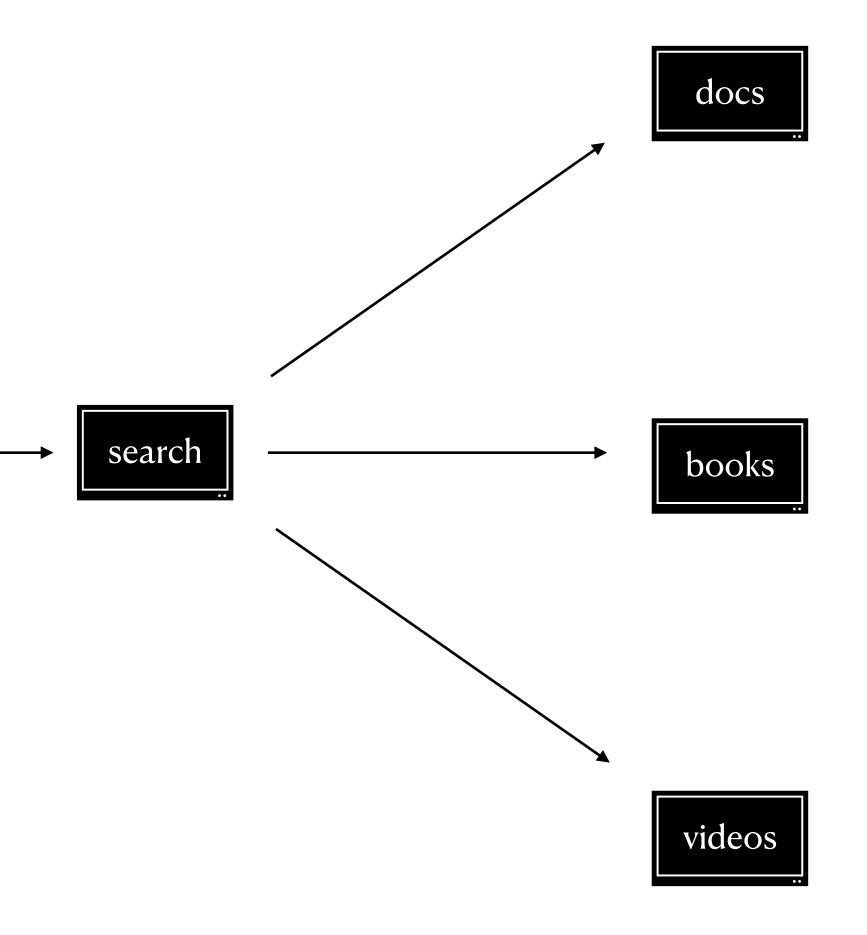
Stanford University

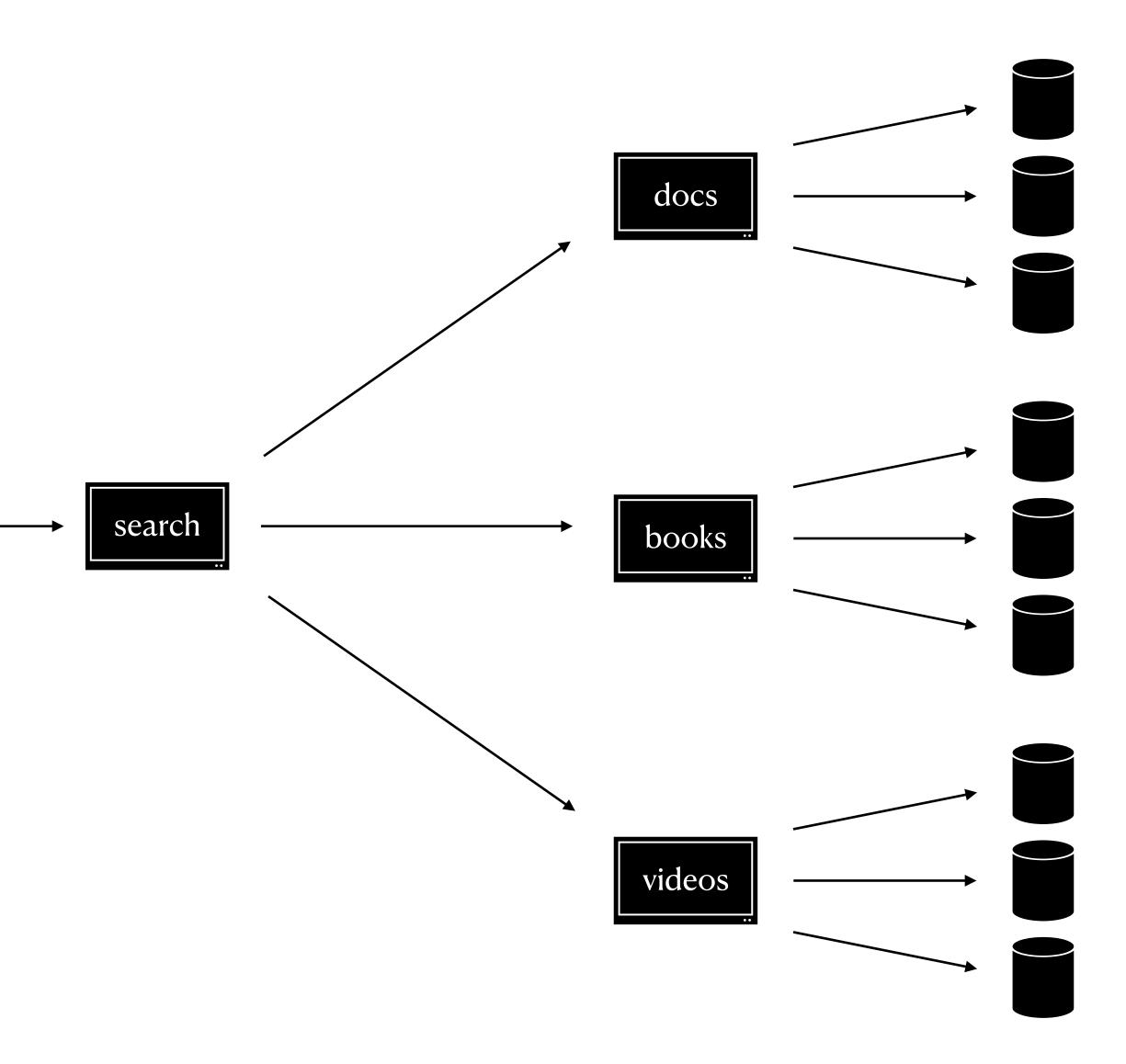
cloud systems are large

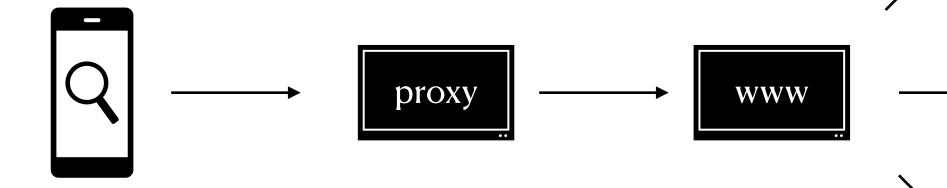


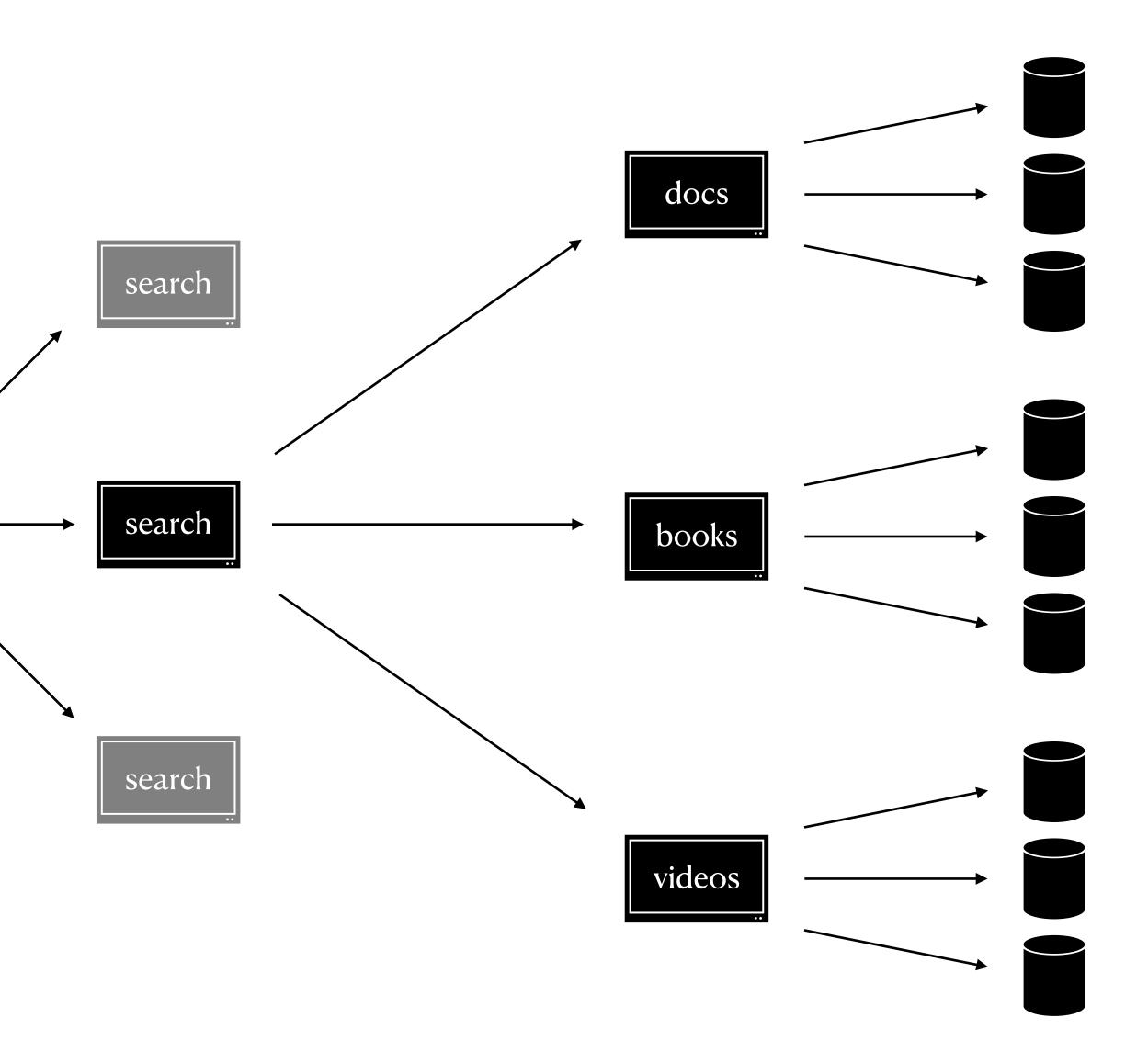


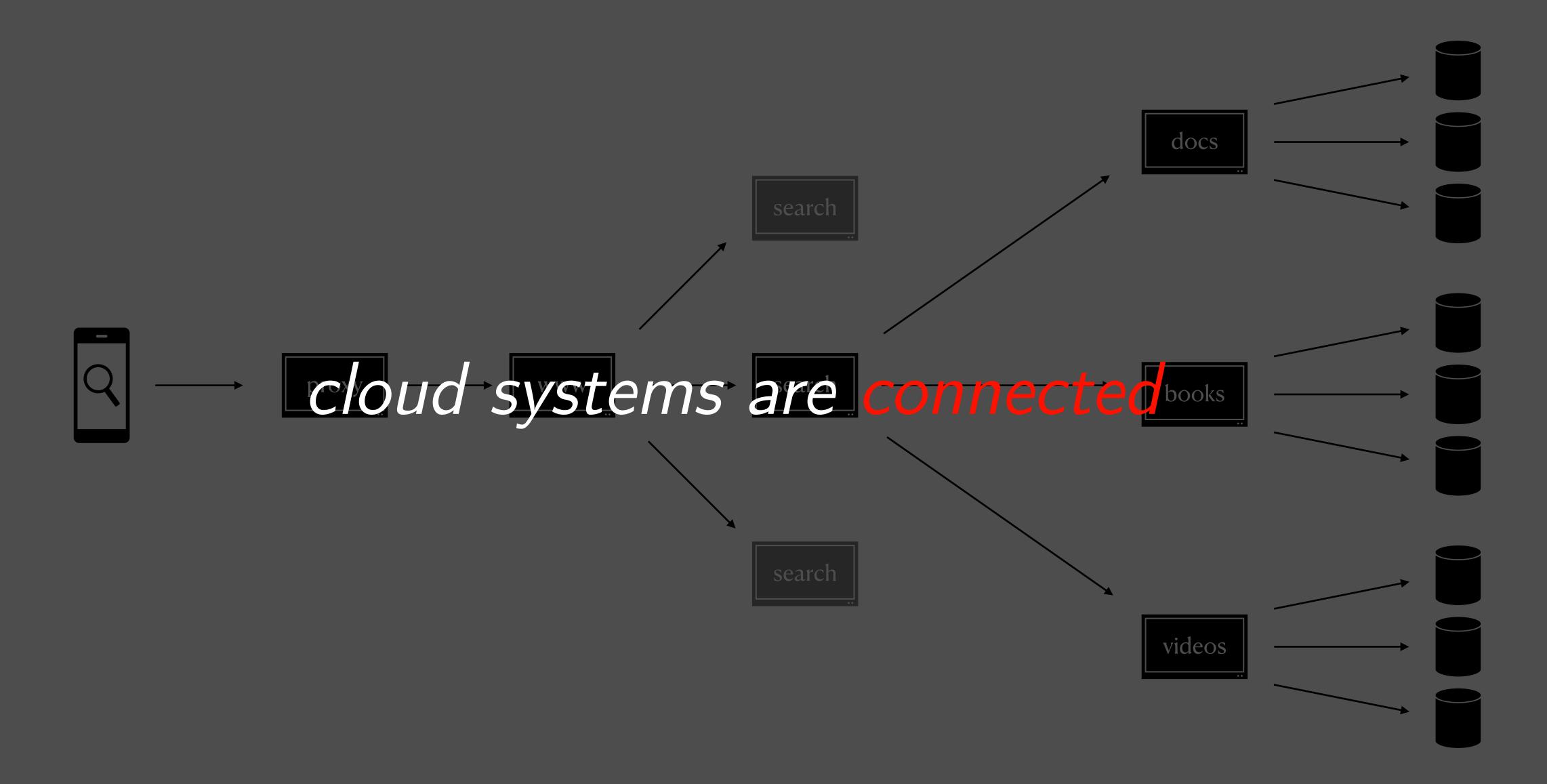




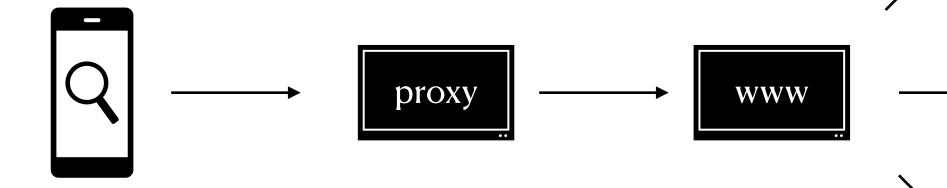


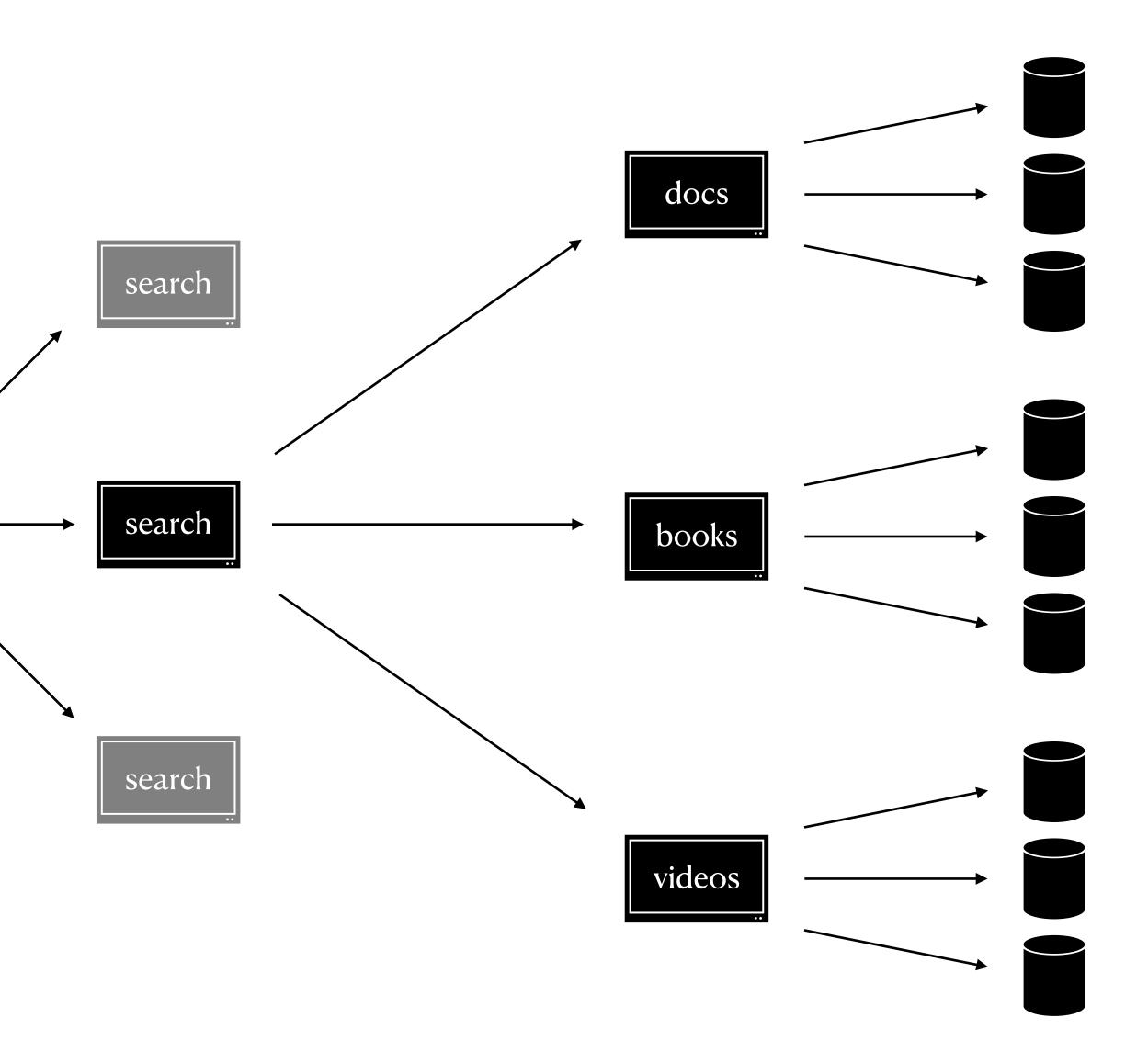


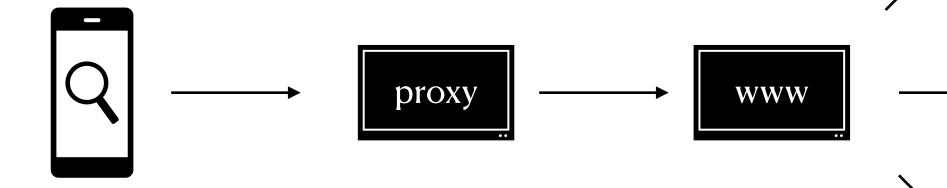


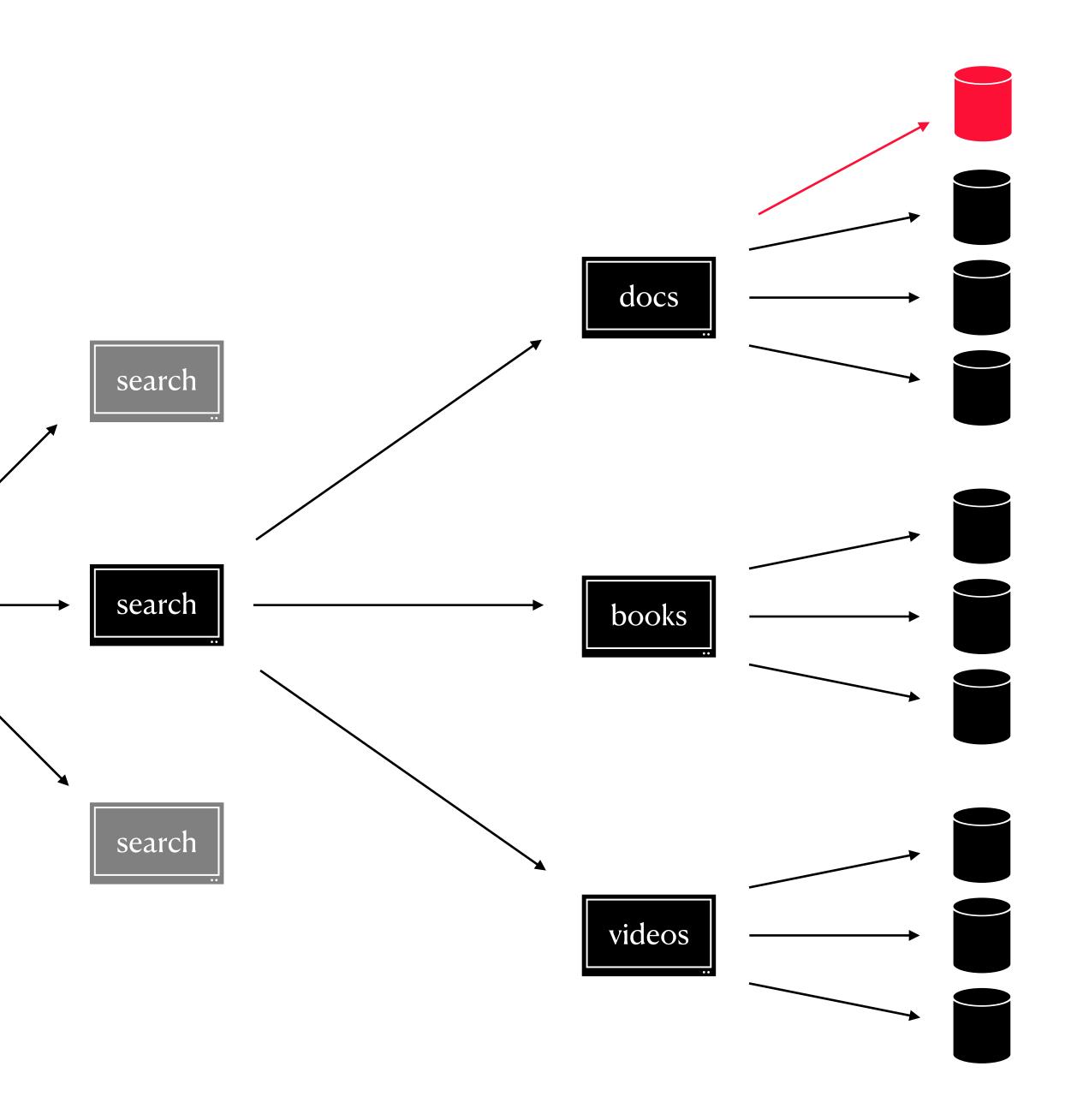


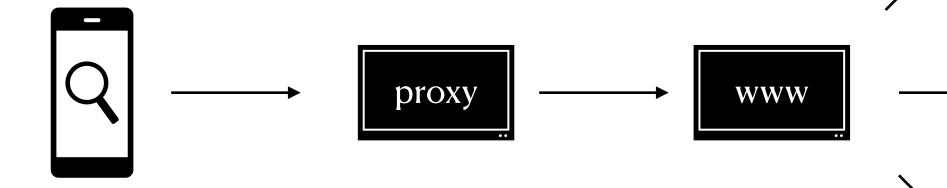
. .

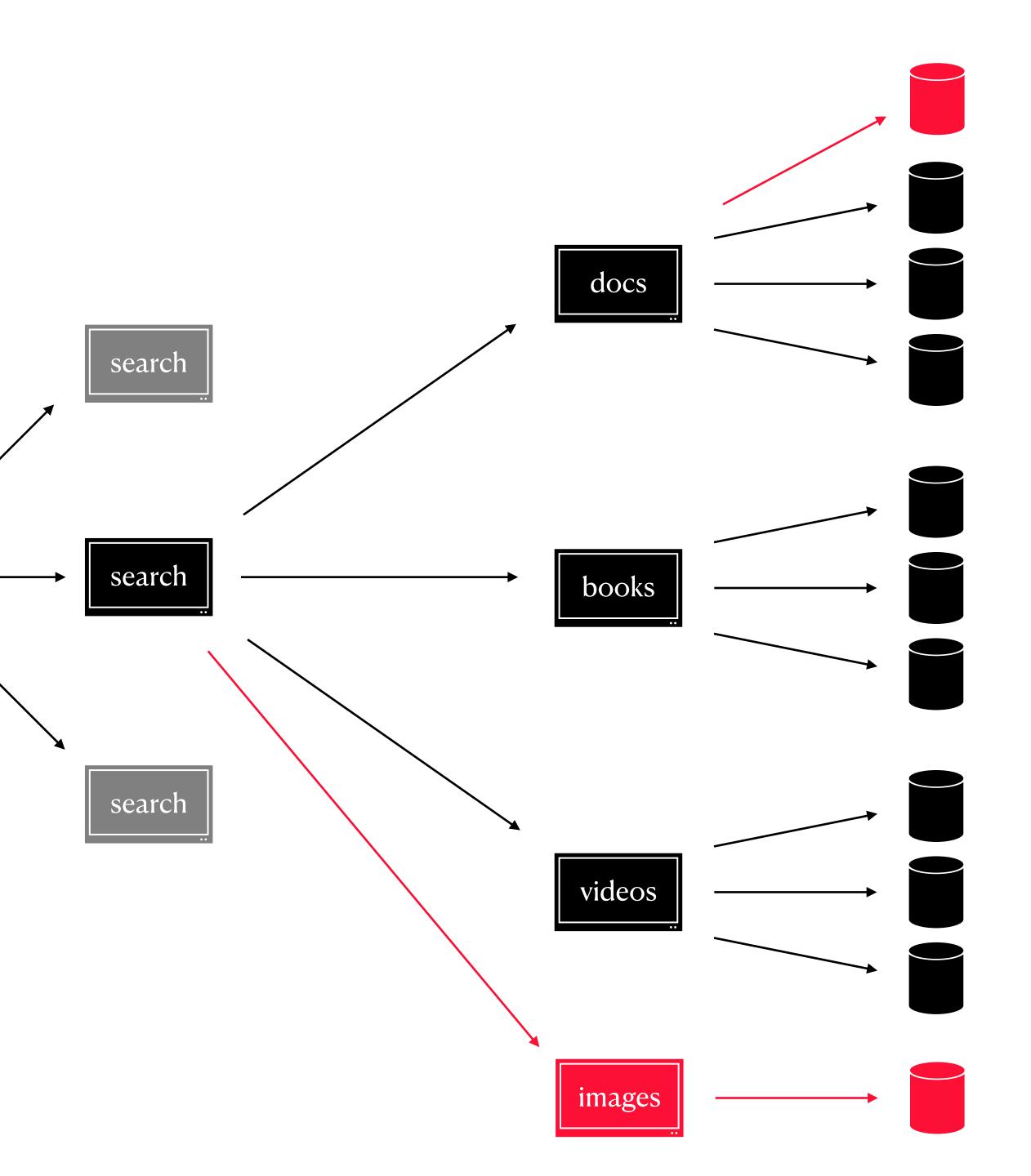


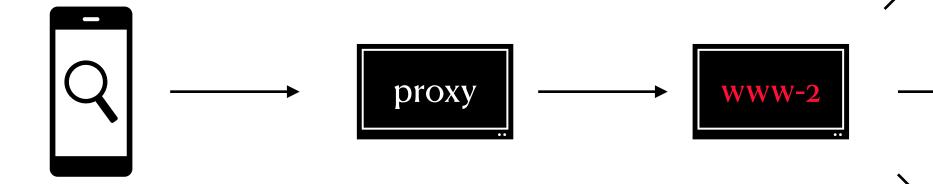


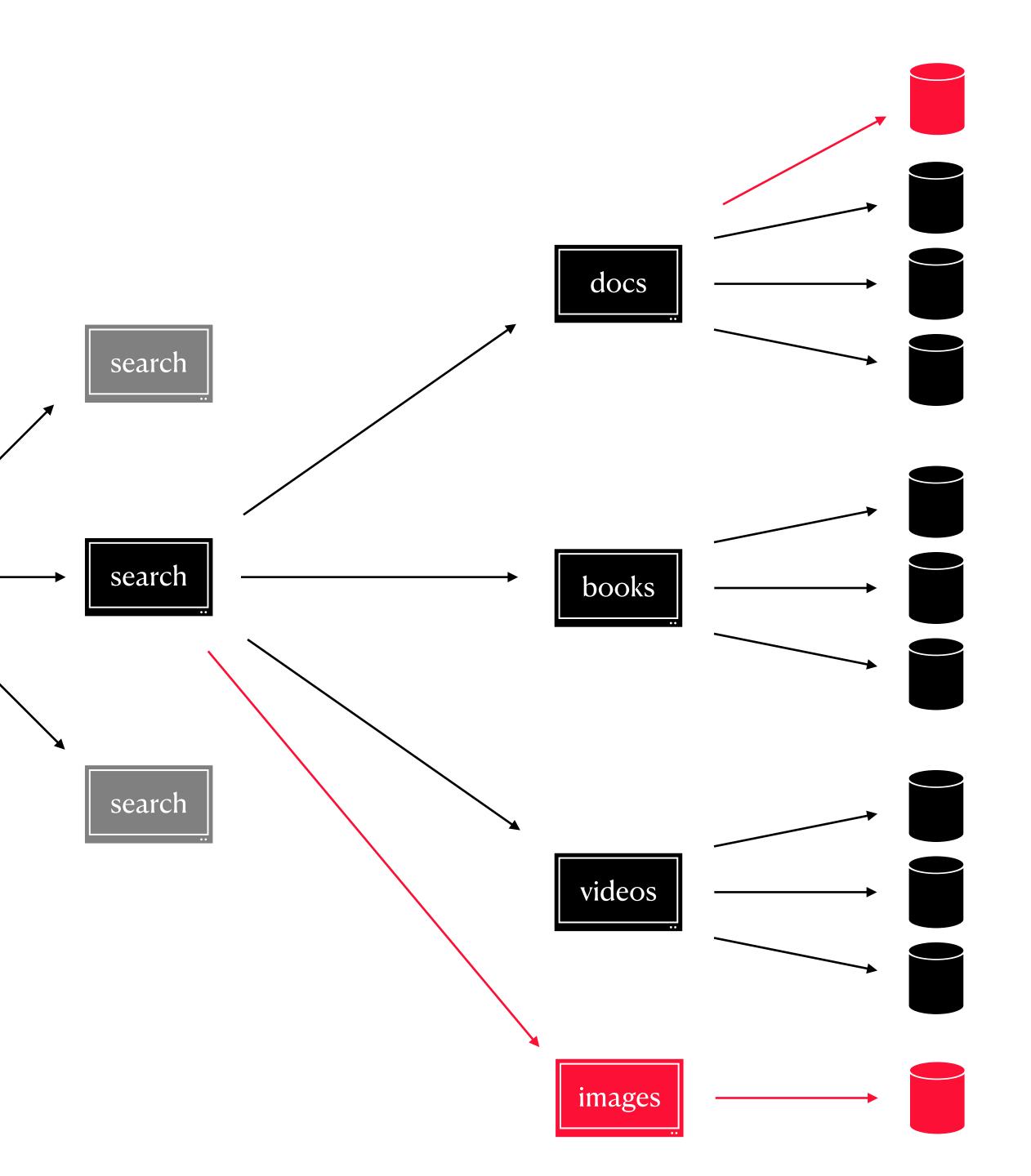


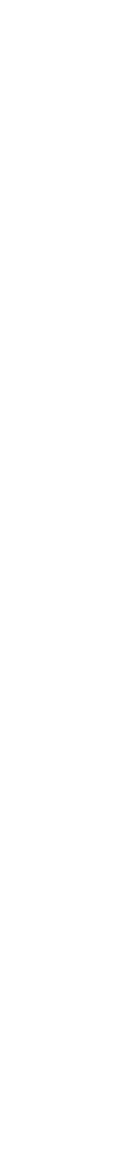


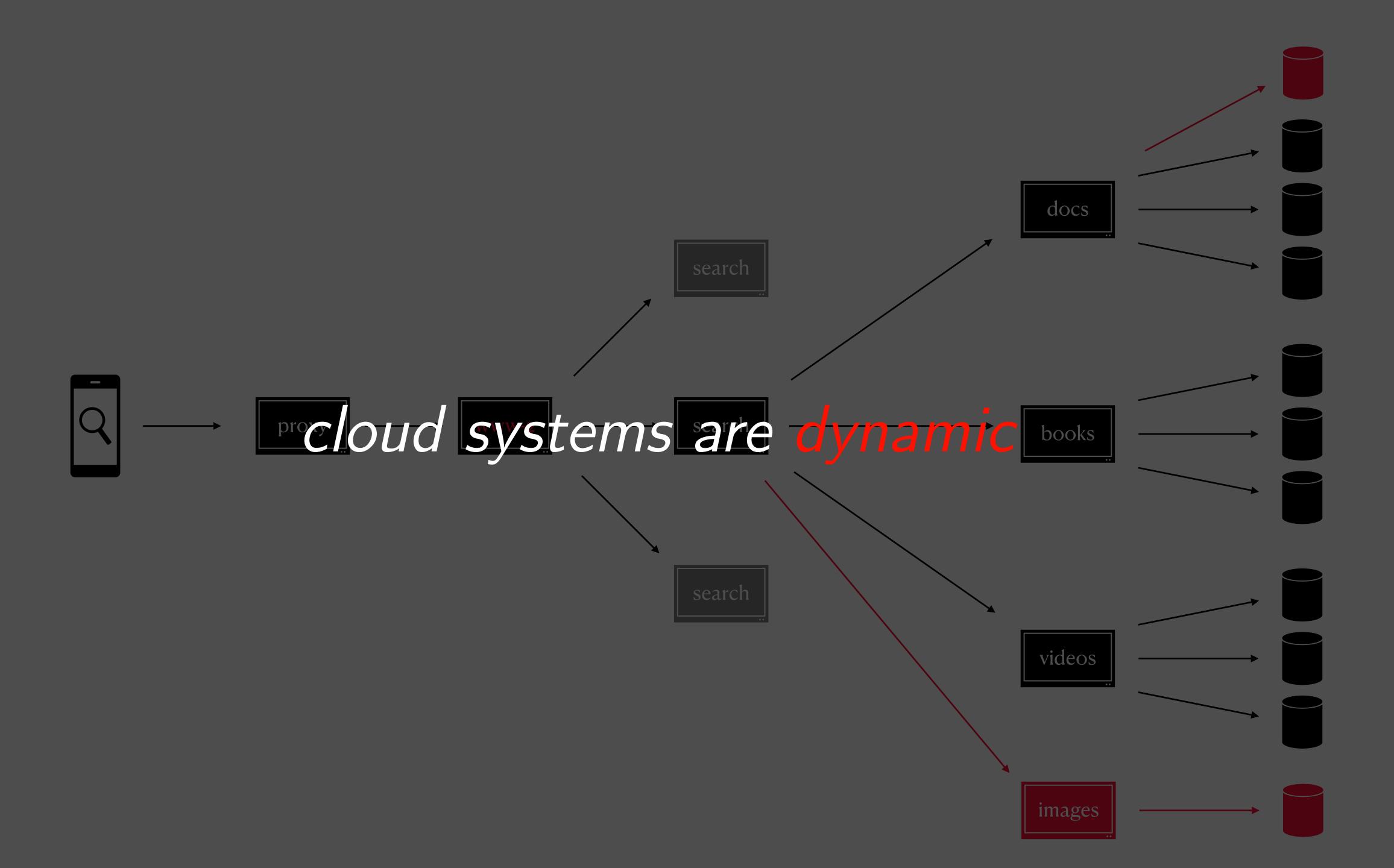






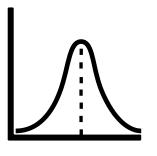






We want to characterize normal operating conditions and recognize changes



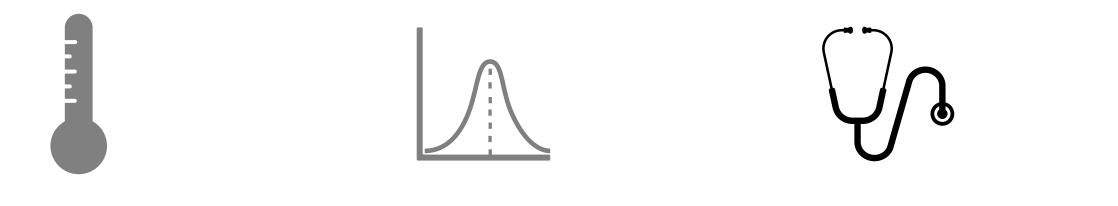


instrumentation, though difficult, largely addressed by prior work

Ĭ

model construction is difficult, our focus

judge health via anomaly detection

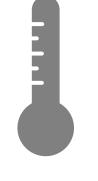


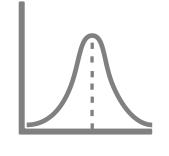
Ĭ

can not experiment, only *unsupervised* data

remediate problems with help from *anomaly localization*

not all joint anomalies are marginal anomalies





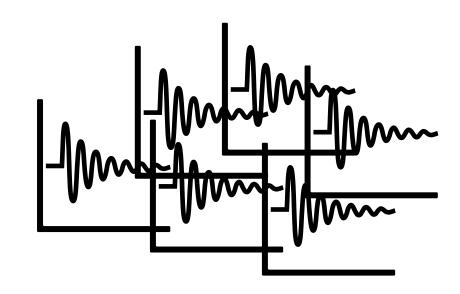
need to model *spatial associations*

Can undirected graphical models characterize cloud telemetry?

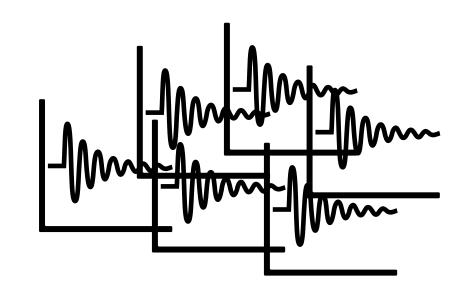
Our question

Can undirected graphical models characterize cloud telemetry?

we give a data model and positive preliminary results

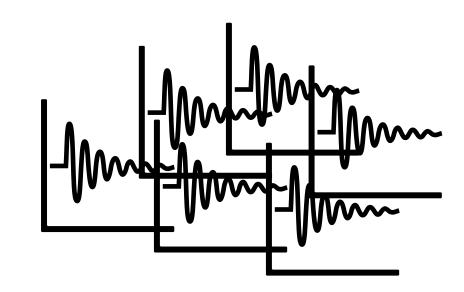


unlabeled correlated signals



unlabeled correlated signals

arriving in real-time

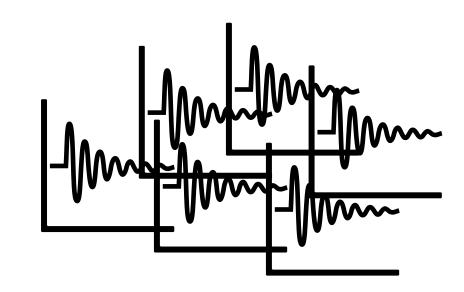


arriving in real-time

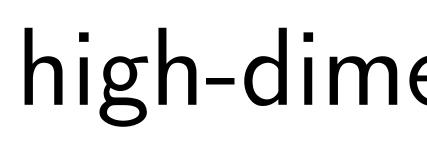
X

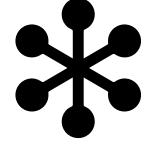
unlabeled correlated signals

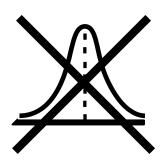
high-dimensional and spatial



arriving in real-time





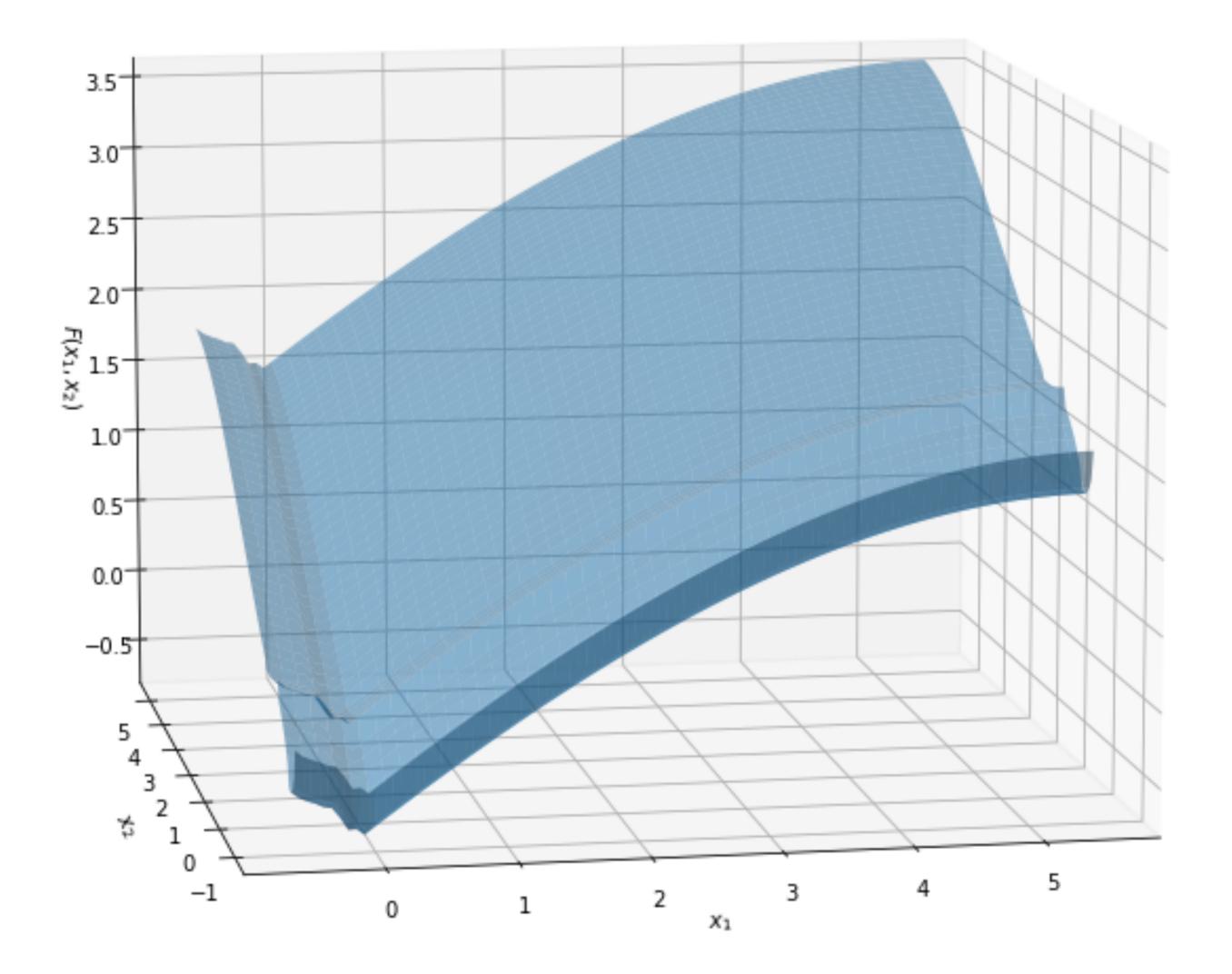


not normally distributed!

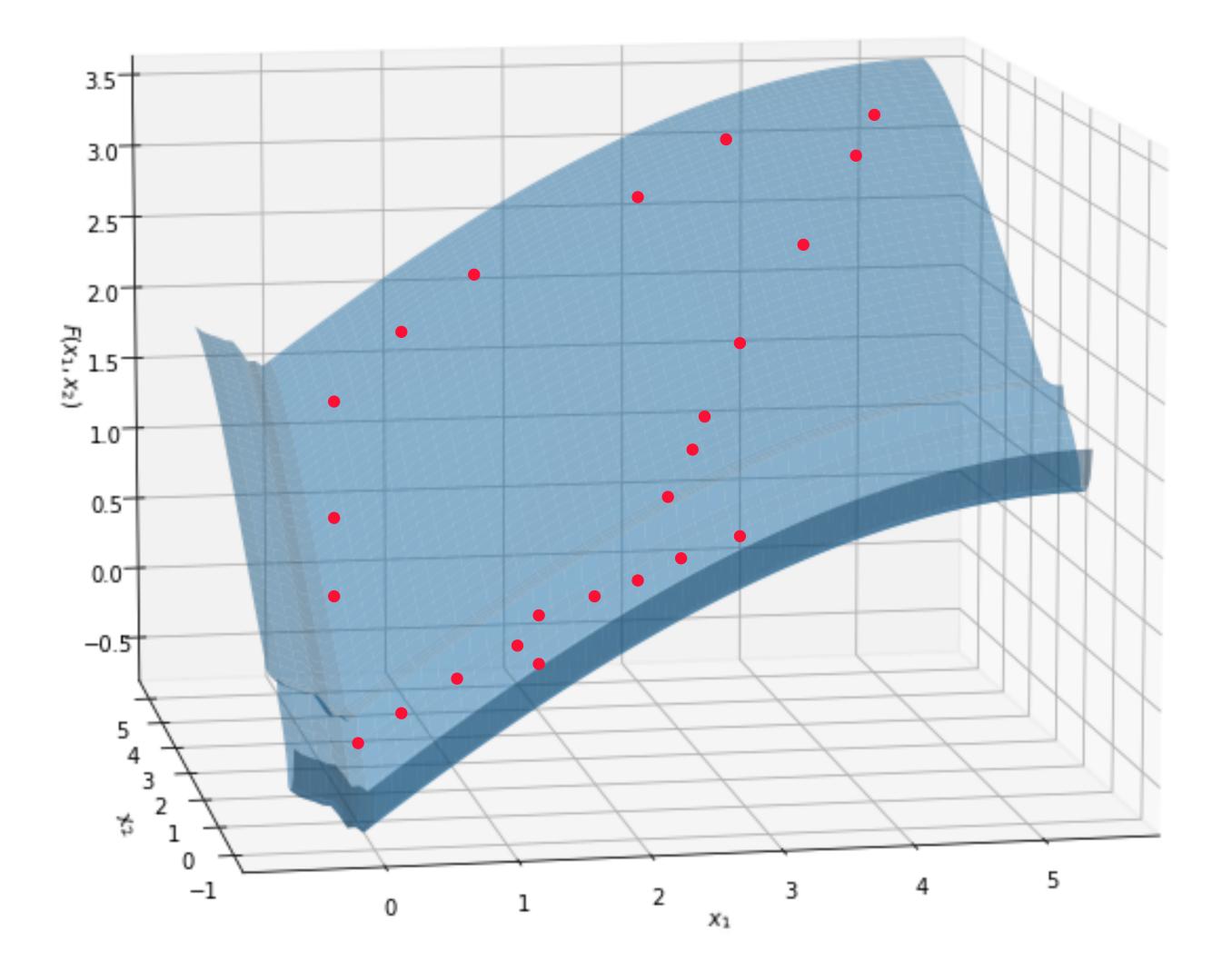
unlabeled correlated signals

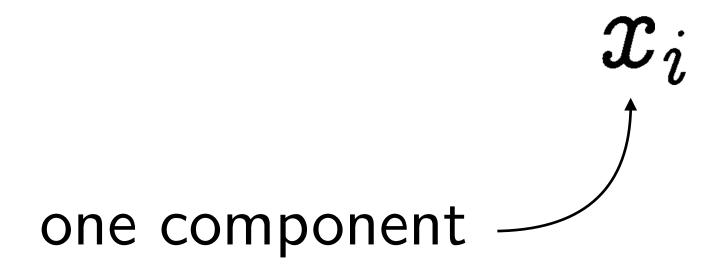
high-dimensional and spatial

Data model: intution

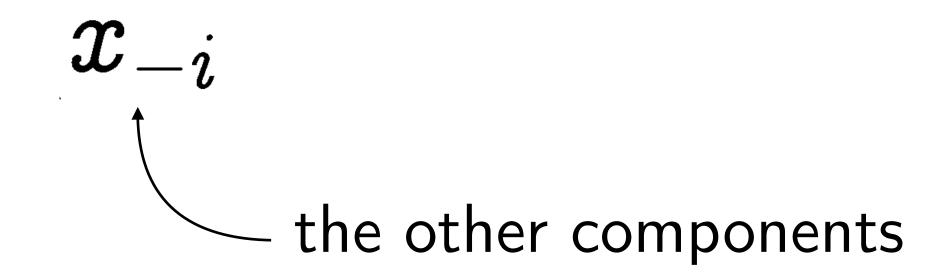


Data model: intuition





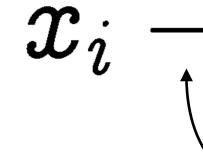
 x_i



assume exists

 $x_i pprox f_i(x_{-i})$

can approximately *predict* each component from others



 $x_i - f_i(x_{-i})$ take the difference

51

call it the deviation $O_i = x_i$

 $\delta_i = x_i - f_i(x_{-i})$

 $\delta_i = x_i - f_i(x_{-i})$

model deviations as mean-zero Gauss-Markov random field

 $\delta_i = x_i - f_i(x_{-i})$

 $\delta_i = x_i - f_i(x_{-i})$

Data model: anomaly detection and localization

joint anomalies — use a chi-squared test on vector of deviations

 $\delta_i = x_i - f_i(x_{-i})$

Data model: anomaly detection and localization

individual anomalies — chi-squared test on conditional distribution

 $\delta_i = x_i - f_i(x_{-i})$

Data model: anomaly detection and localization

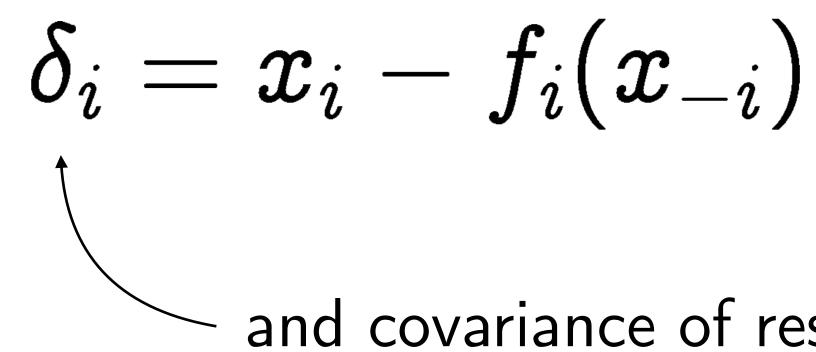
 $\delta_i = x_i - f_i(x_{-i})$

need predictor parameters $\delta_i = x_i - f_i(x_{-i})$

 $\delta_i = x_i - f_i(x_{-i})$

need predictor parameters

and covariance of residuals



estimate by approximate *maximum likelihood*

need predictor parameters

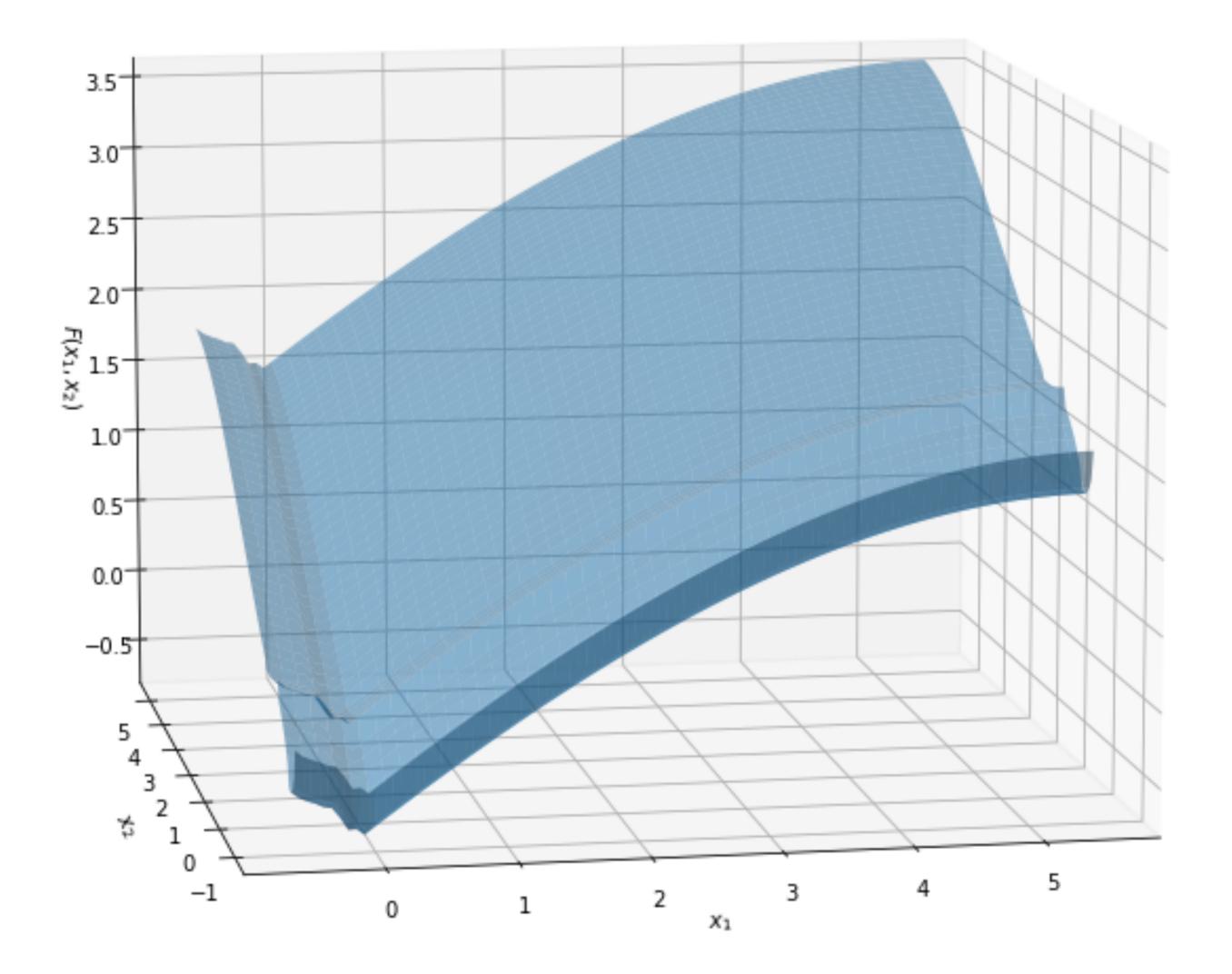
and covariance of residuals

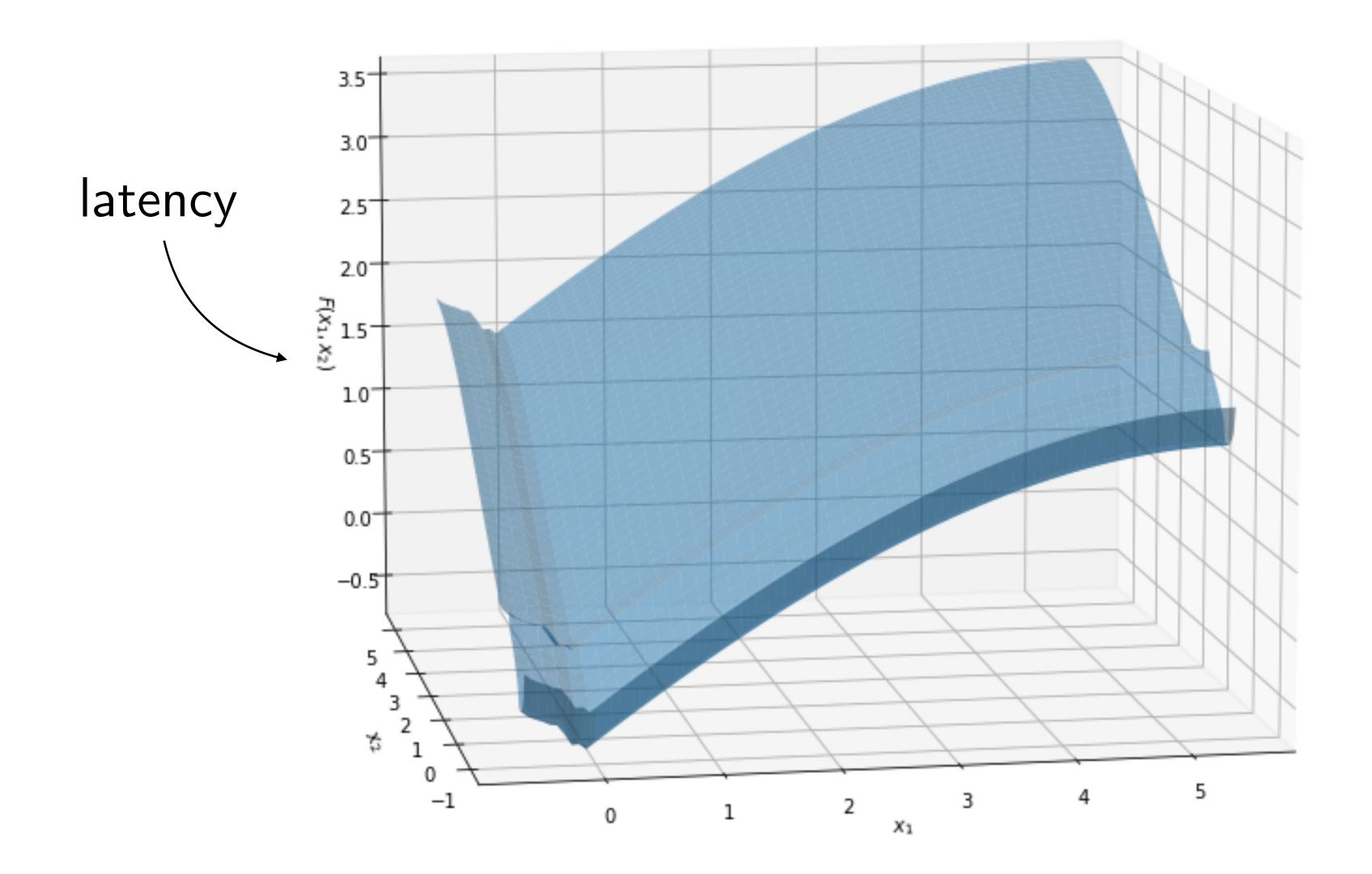
$\delta_i = x_i - f_i(x_{-i})$

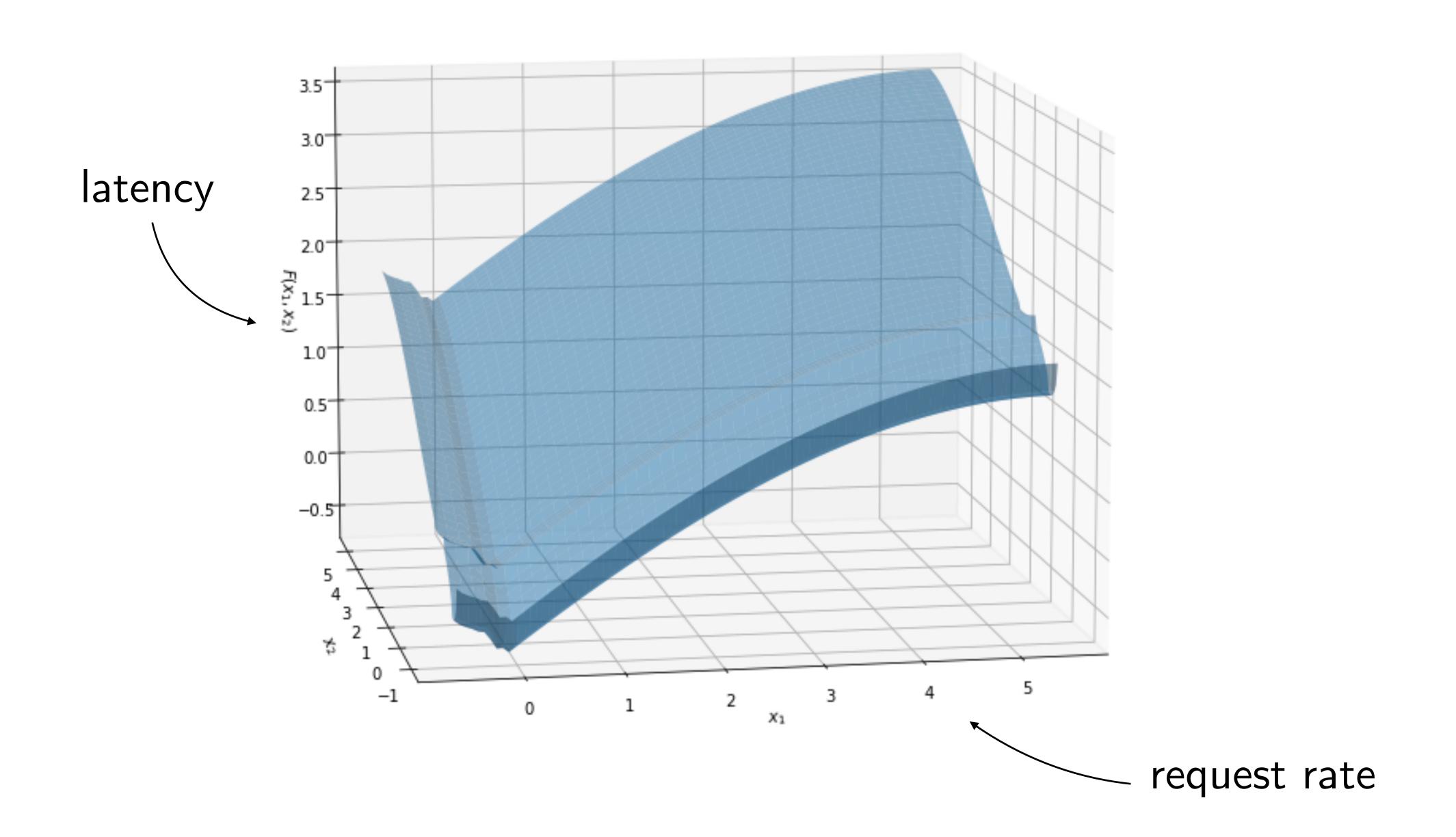
we solve two *convex programs*, which is fast

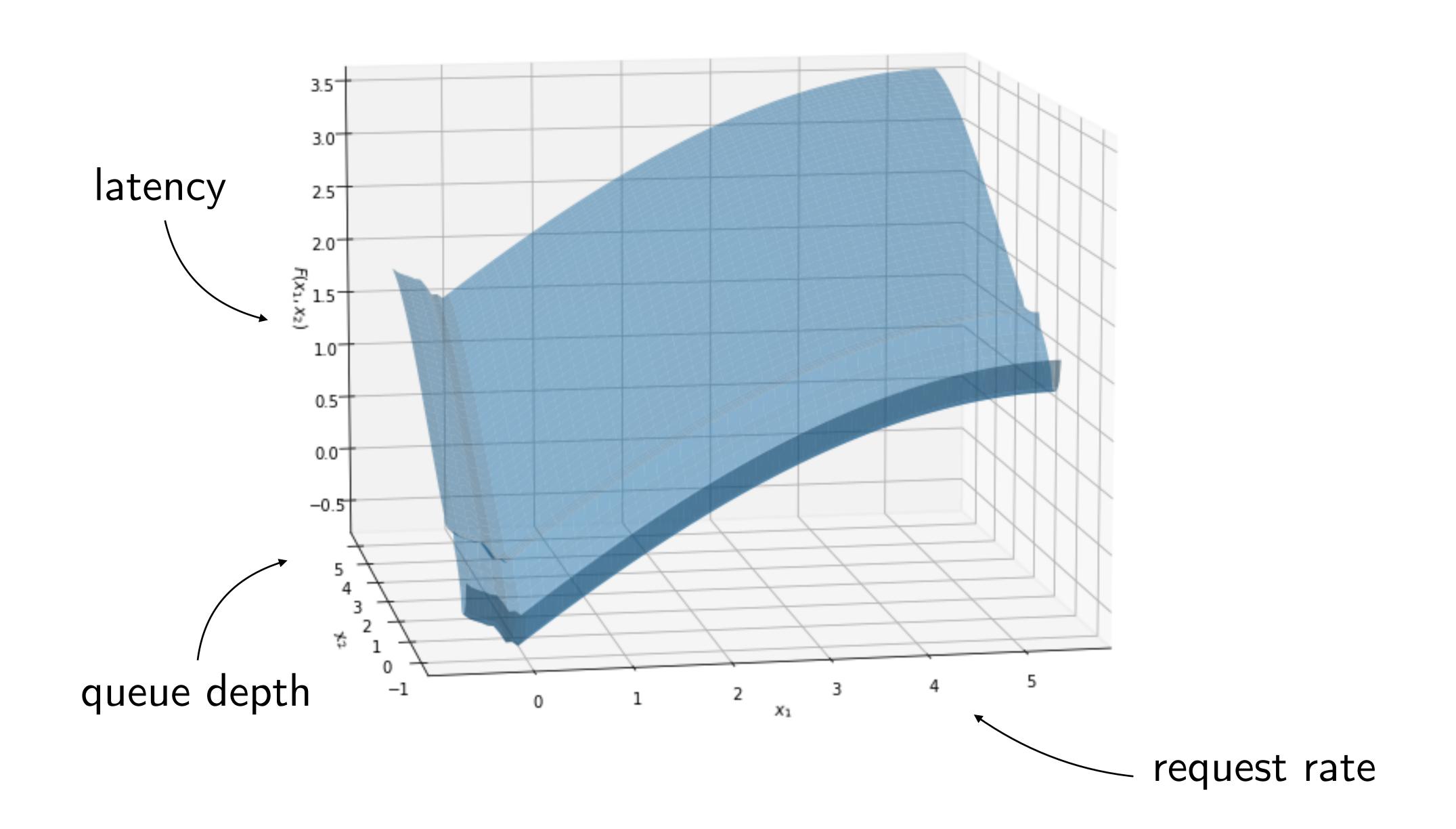
need predictor parameters

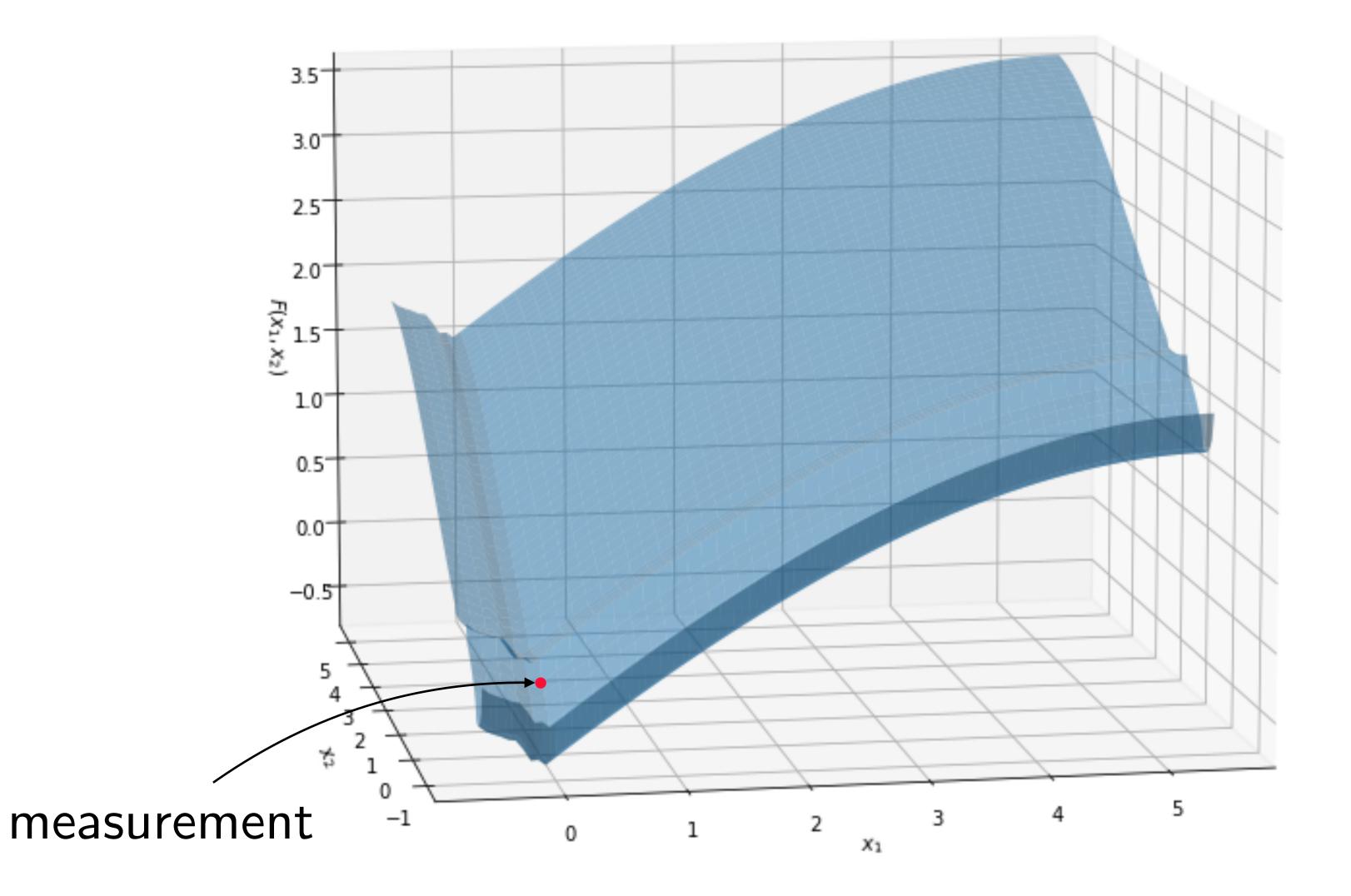
and covariance of residuals

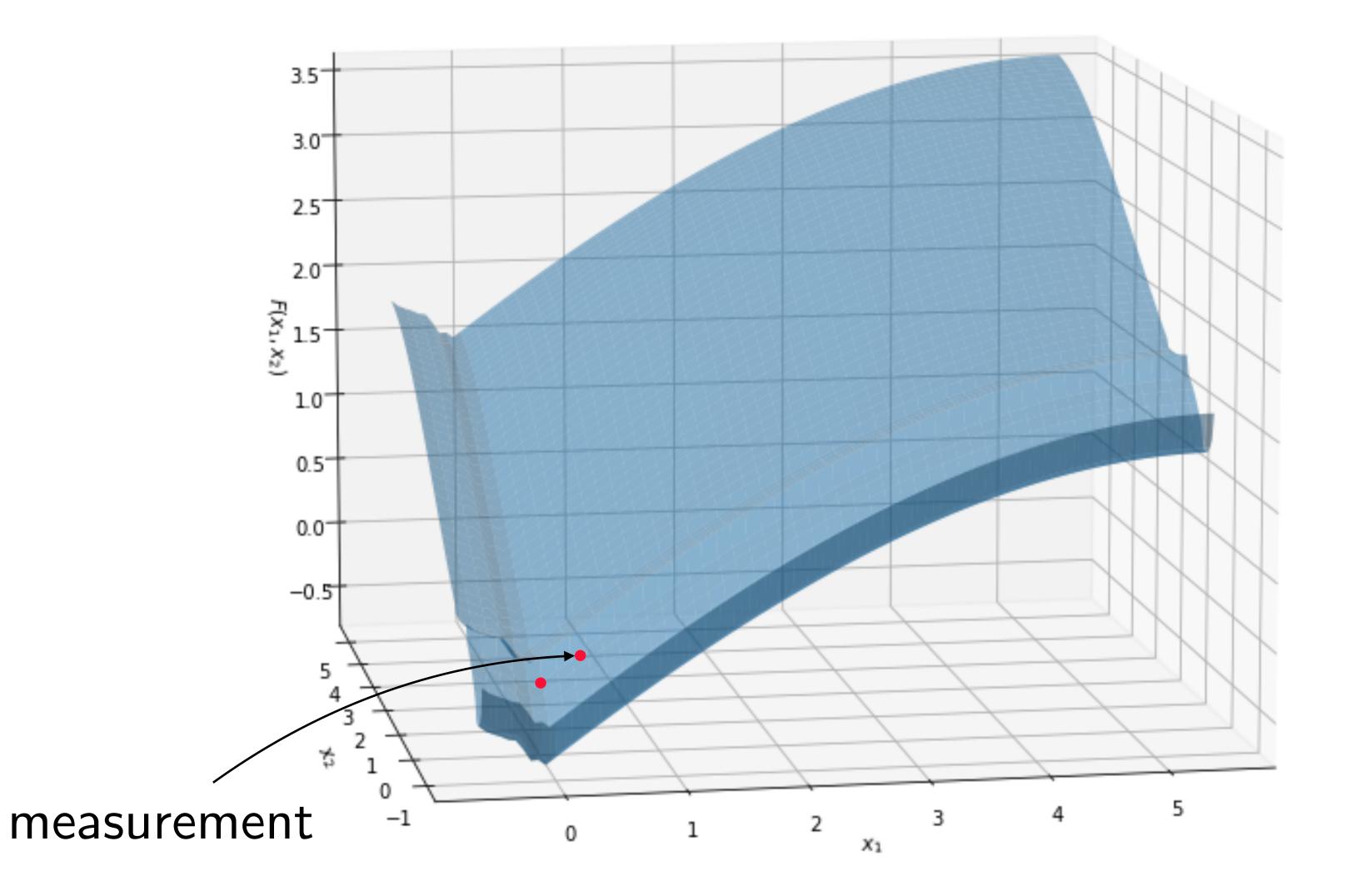


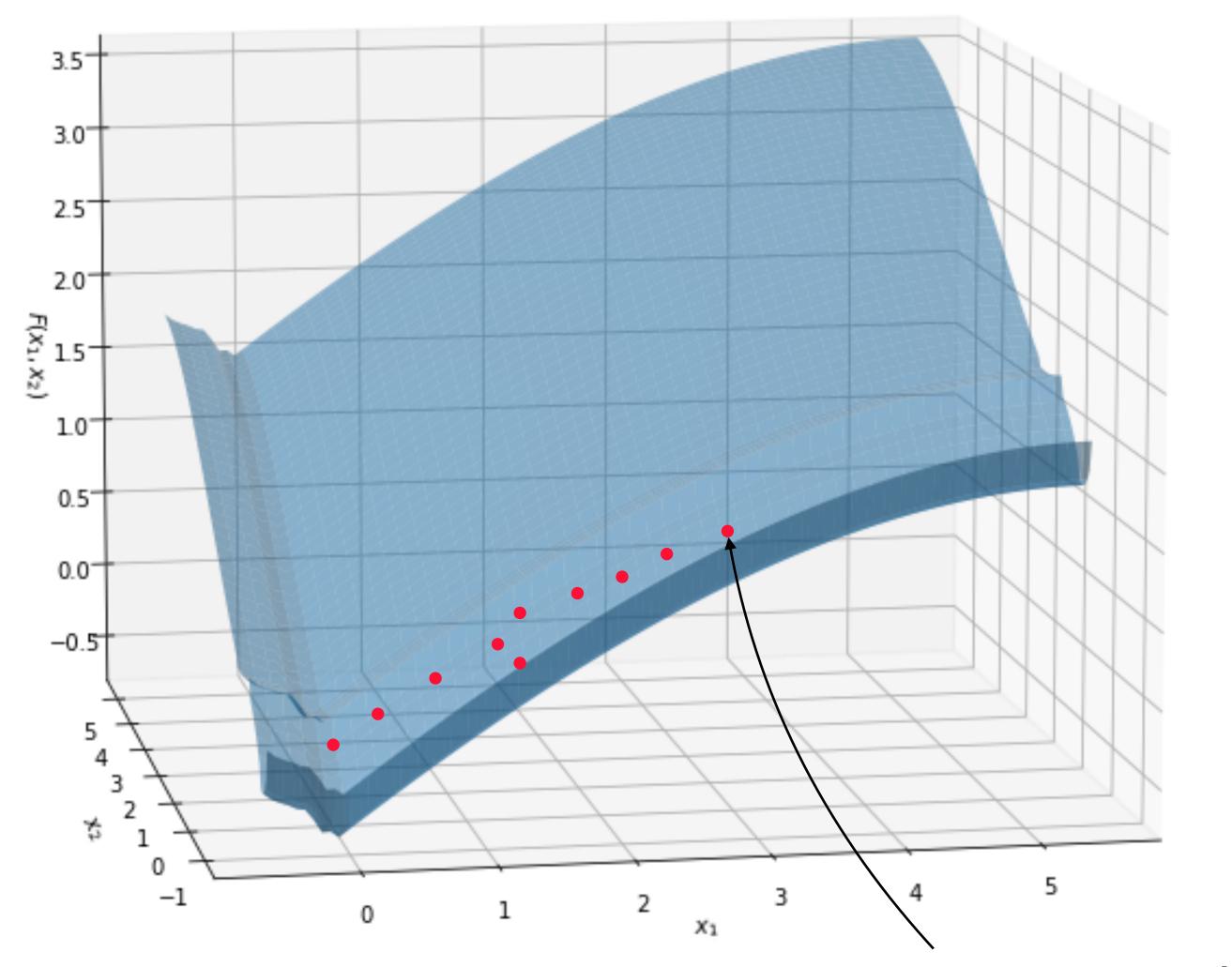




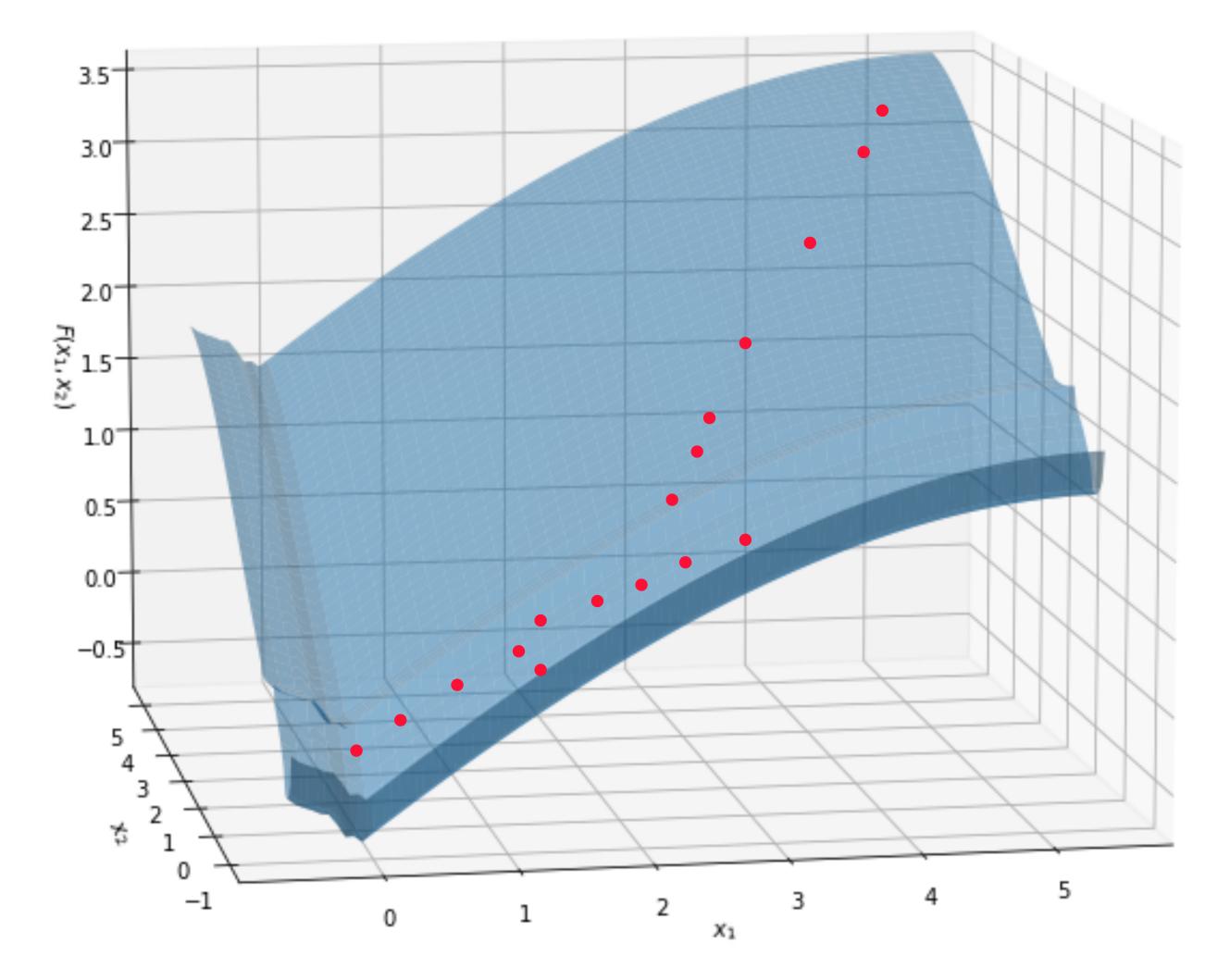




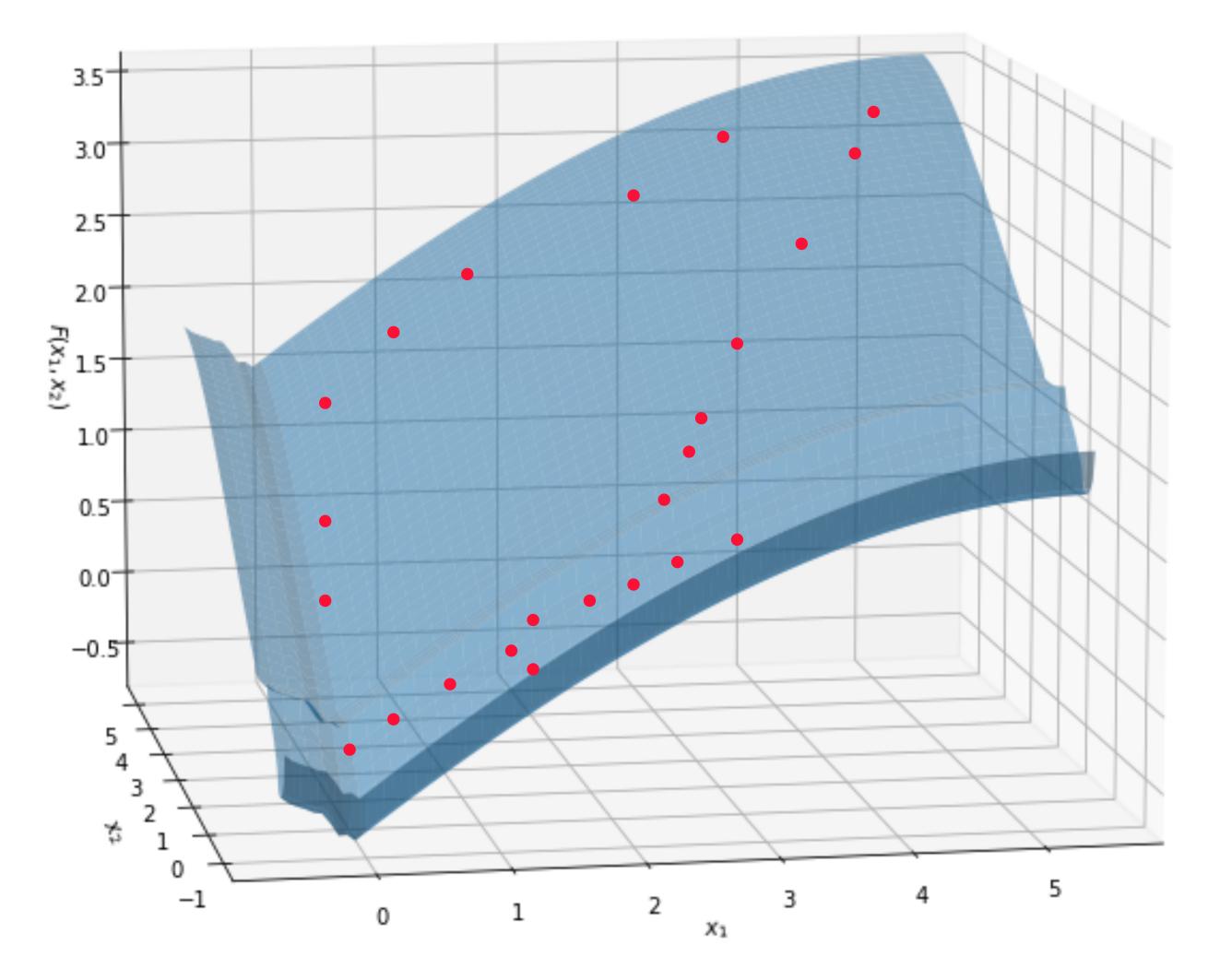




request rate increases so too does latency

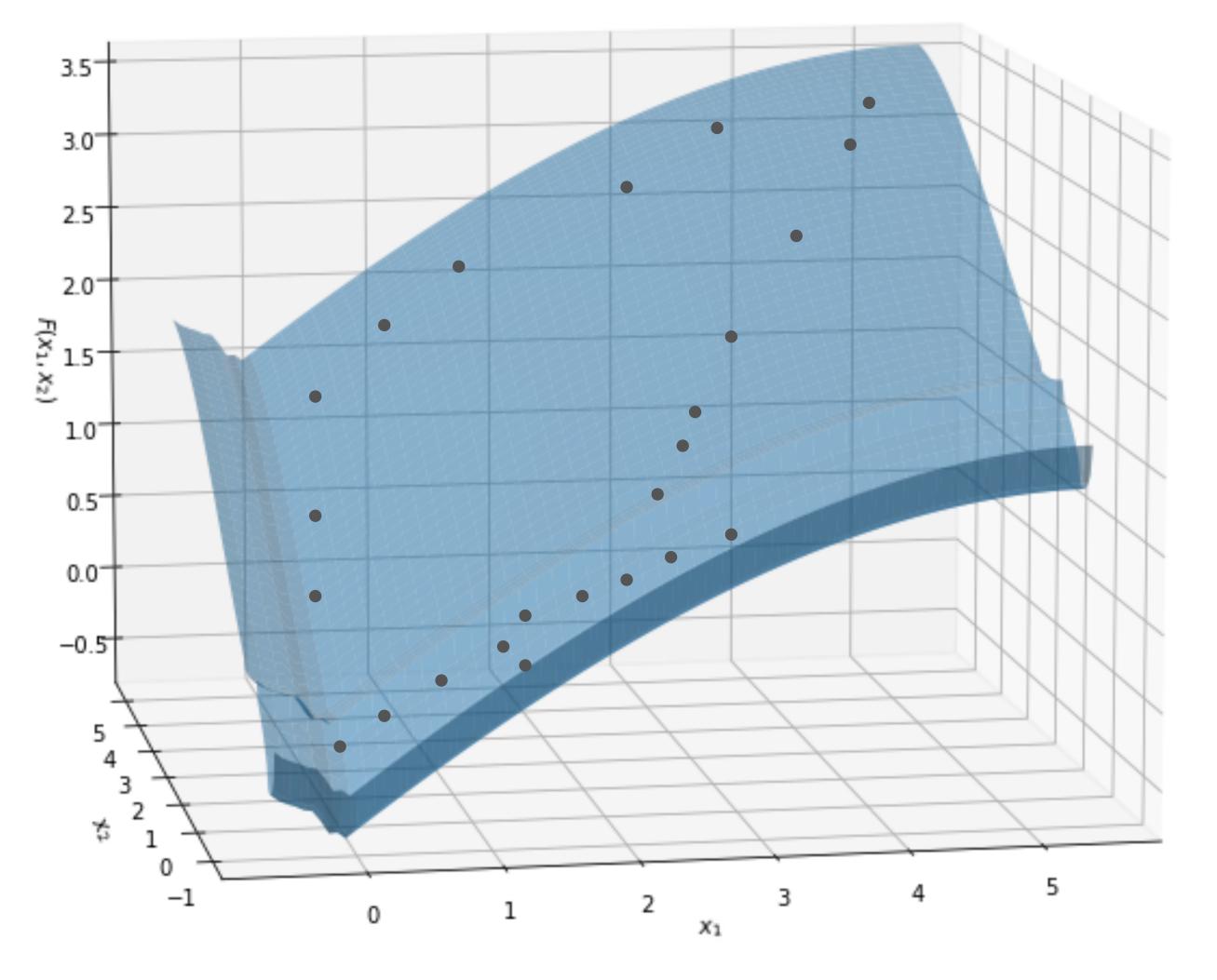


request rate increases so too does queue



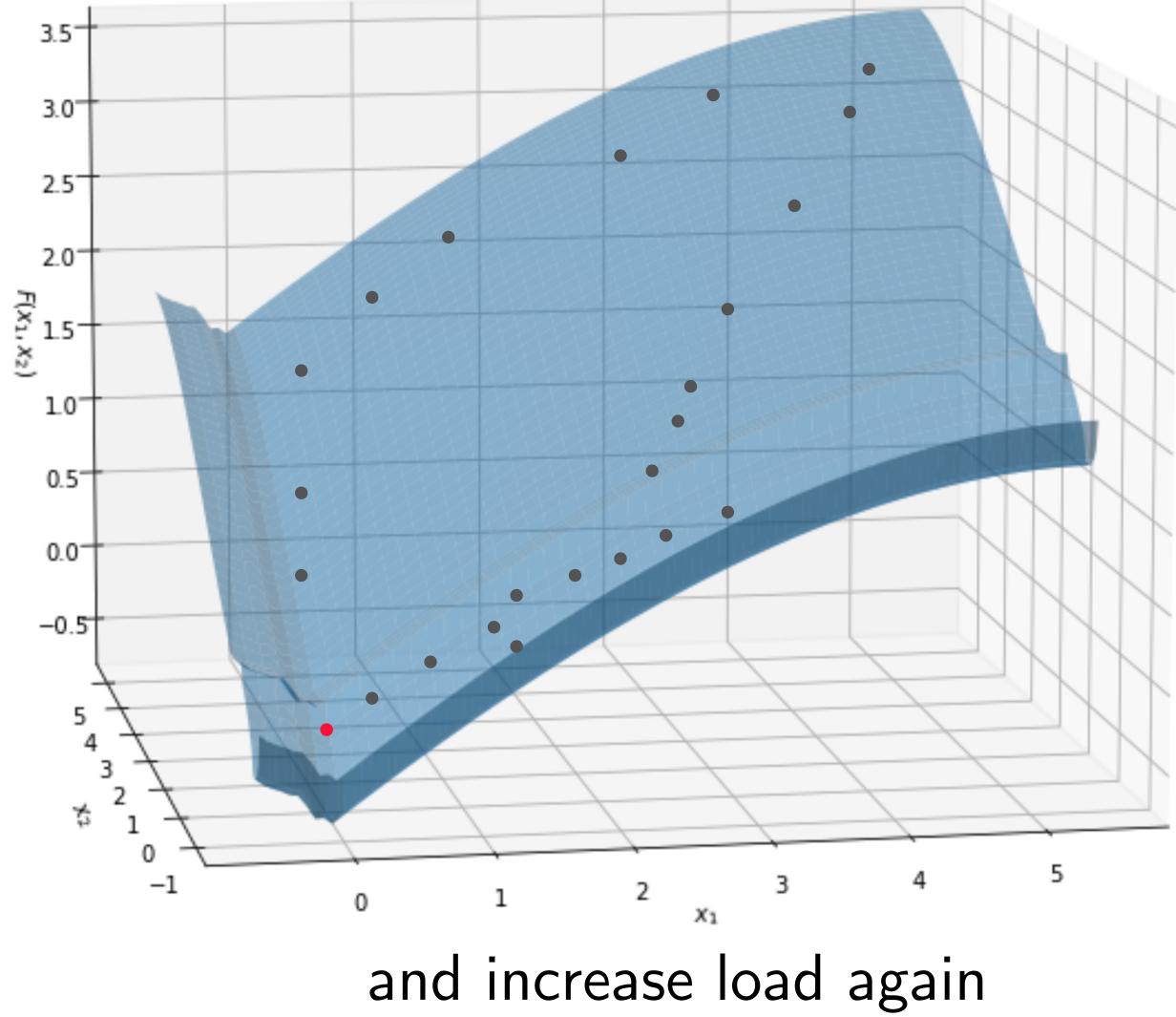
system sheds load

71

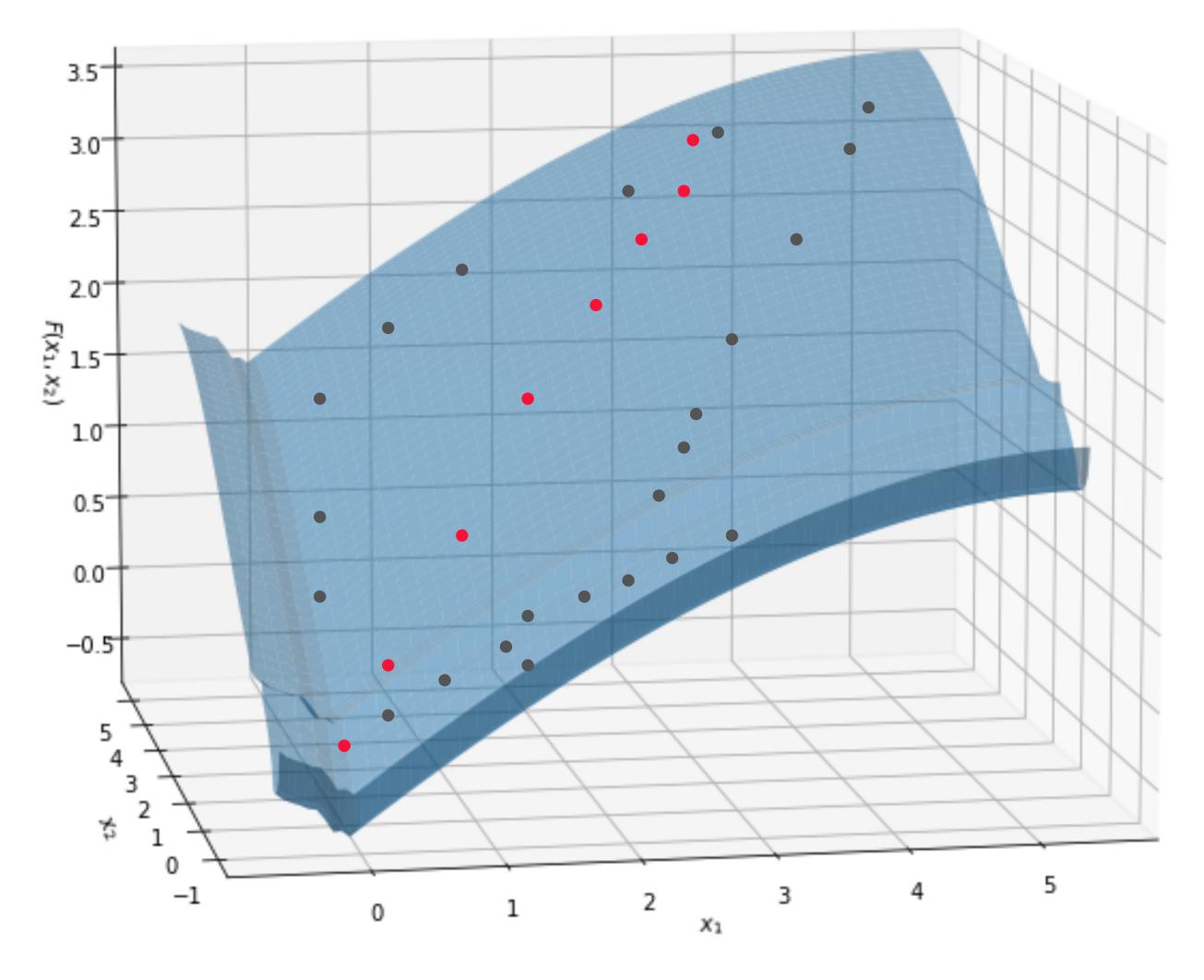


but suppose we (poorly) change configuration

Model interpretation

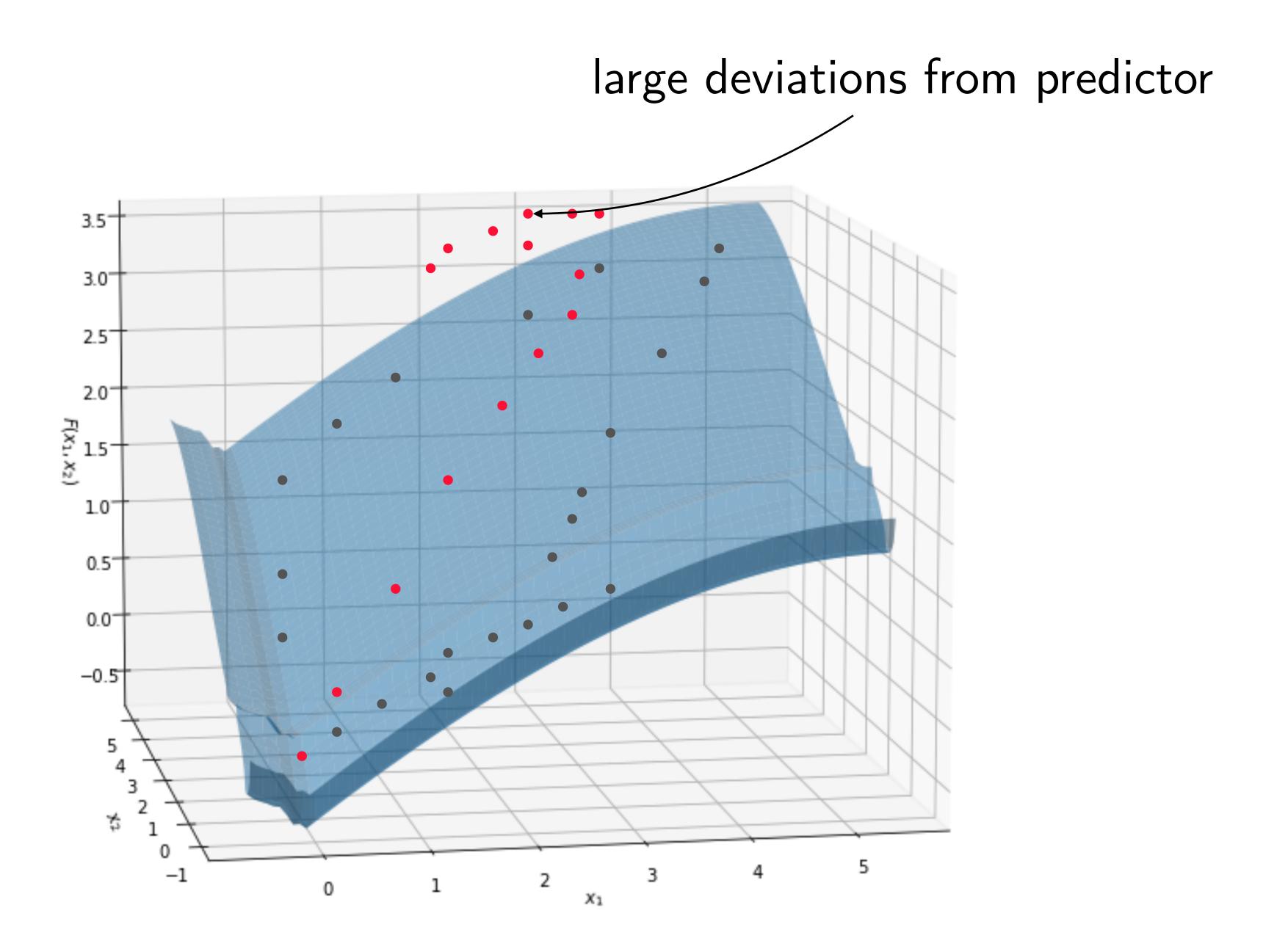


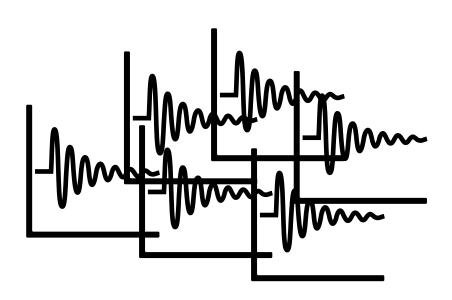
Model interpretation



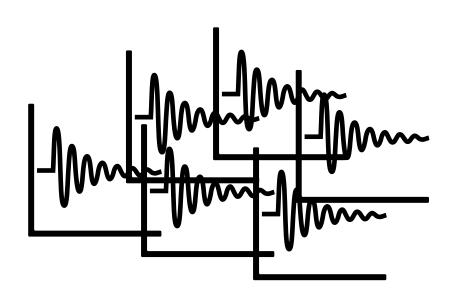
latency and queue length increase

Model interpretation





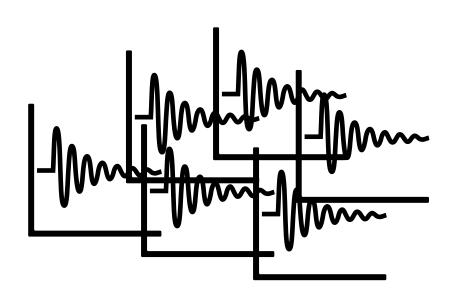
collect recent data



collect recent data

 f_i

build predictors

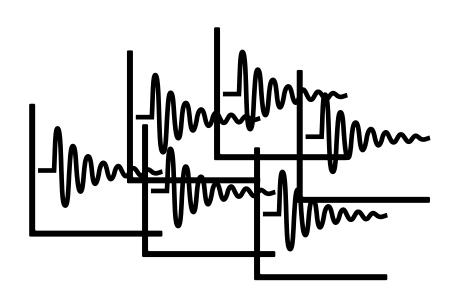


collect recent data

δ

build predictors

estimate covariance

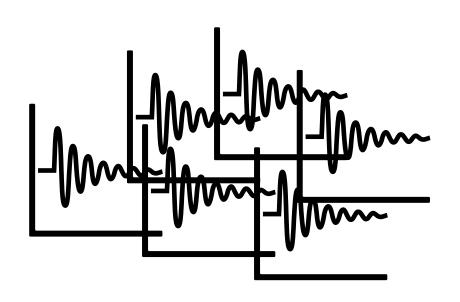


collect recent data build predictors

we use general additive models with splines

estimate covariance

δ

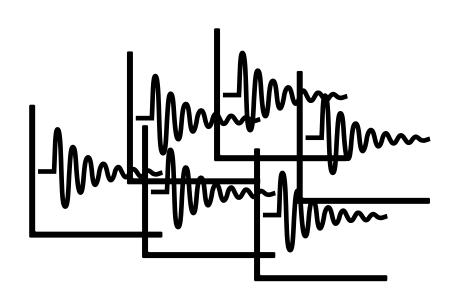


collect recent data build predictors

impose *sparsity* since we know which processes communicate

estimate covariance

 δ

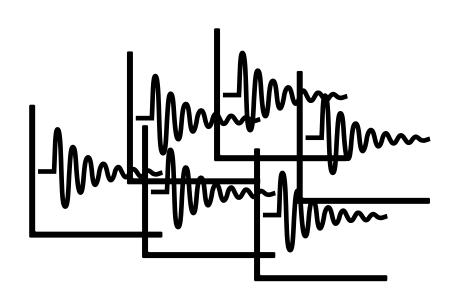


collect recent data build predictors

impose *conditional independence* on deviation covariance

estimate covariance

δ



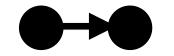
collect recent data build predictors

impose *conditional independence* on deviation covariance

estimate covariance

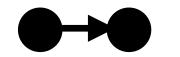
δ

Numerical experiments

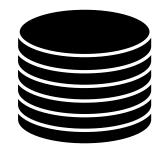


synthetic two-process model

Numerical experiments

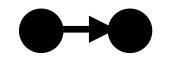


synthetic two-process model

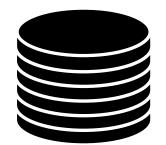


mongo database instance

Numerical experiments

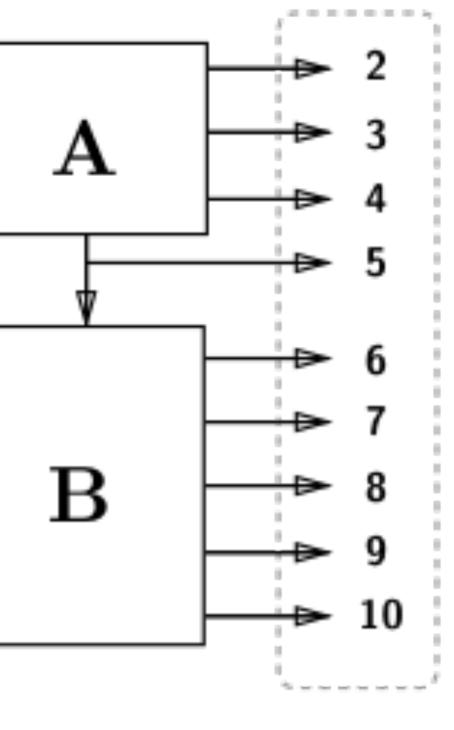


synthetic two-process model



mongo database instance

lacking full-scale cloud experiment; future work

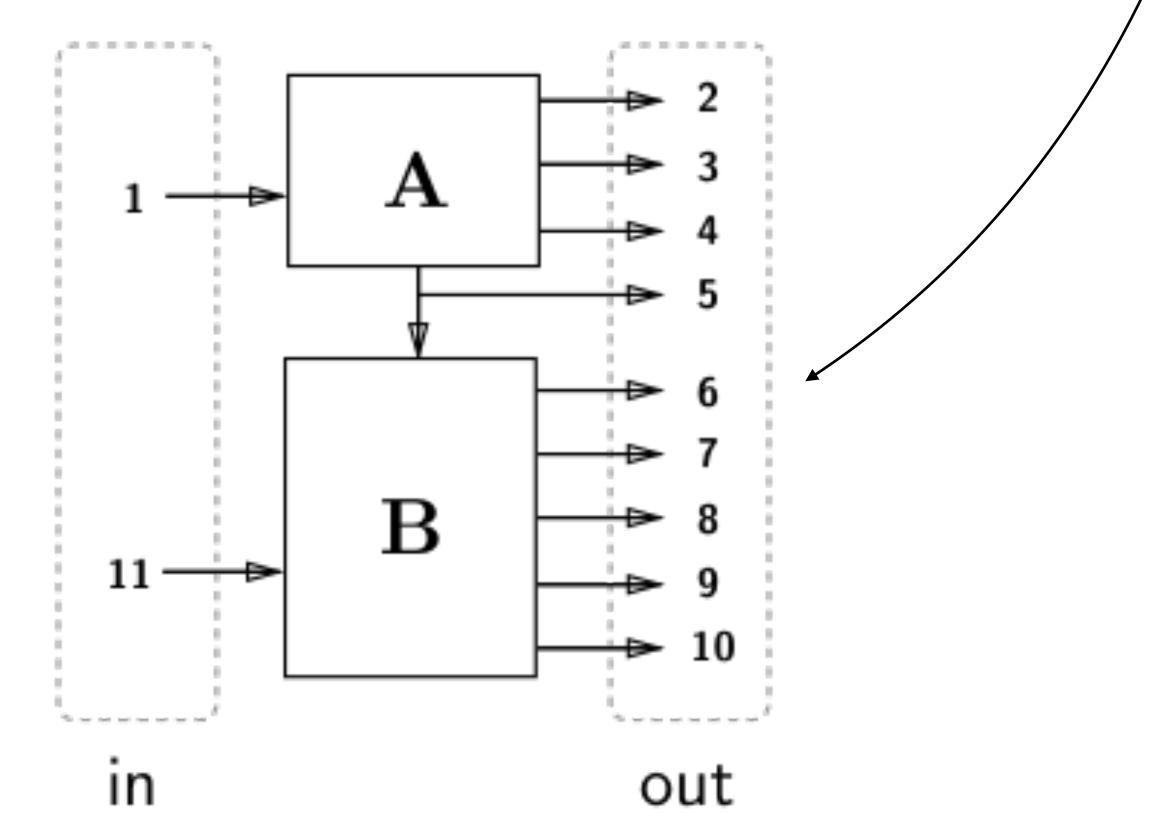


11

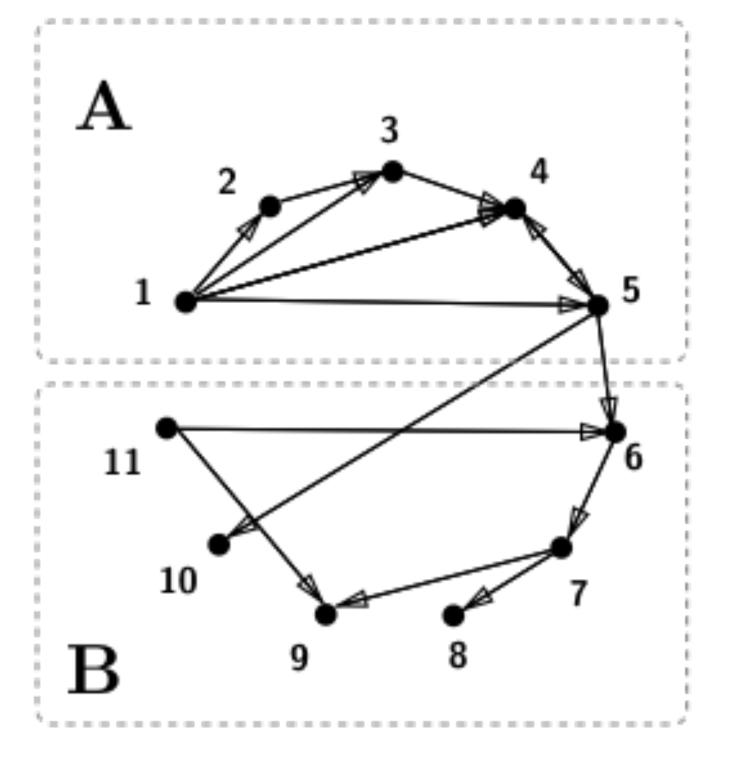
.

ın

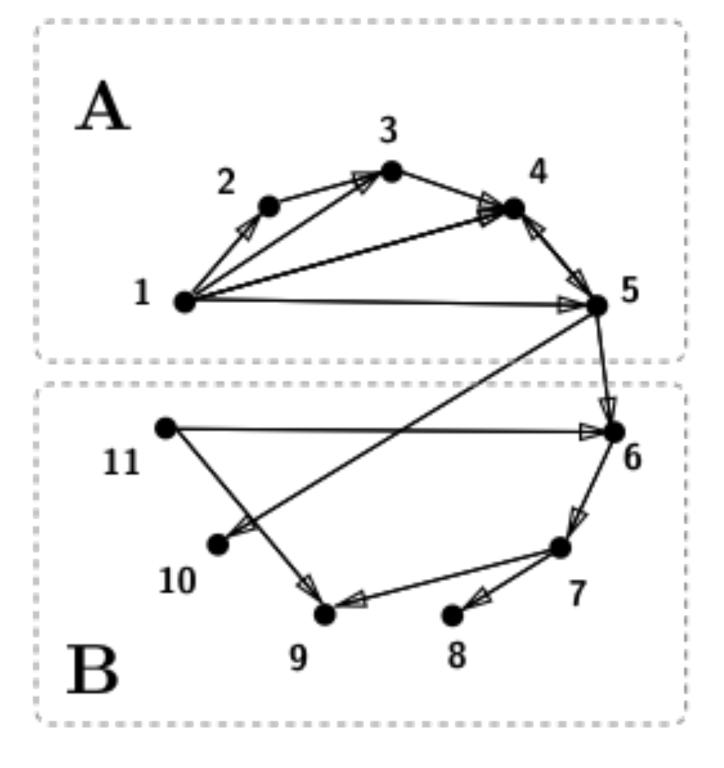
out



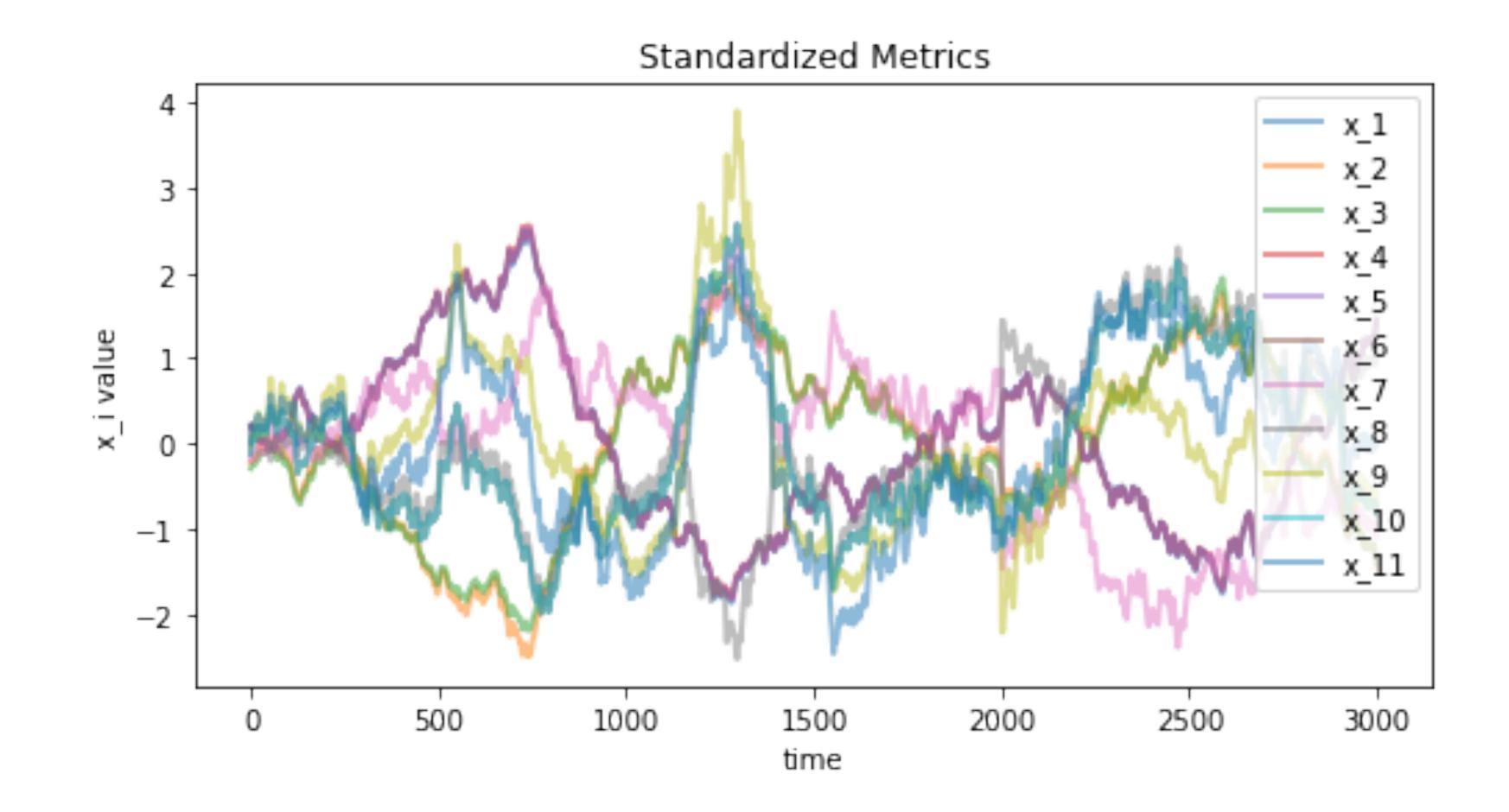
nine output stochastic processes

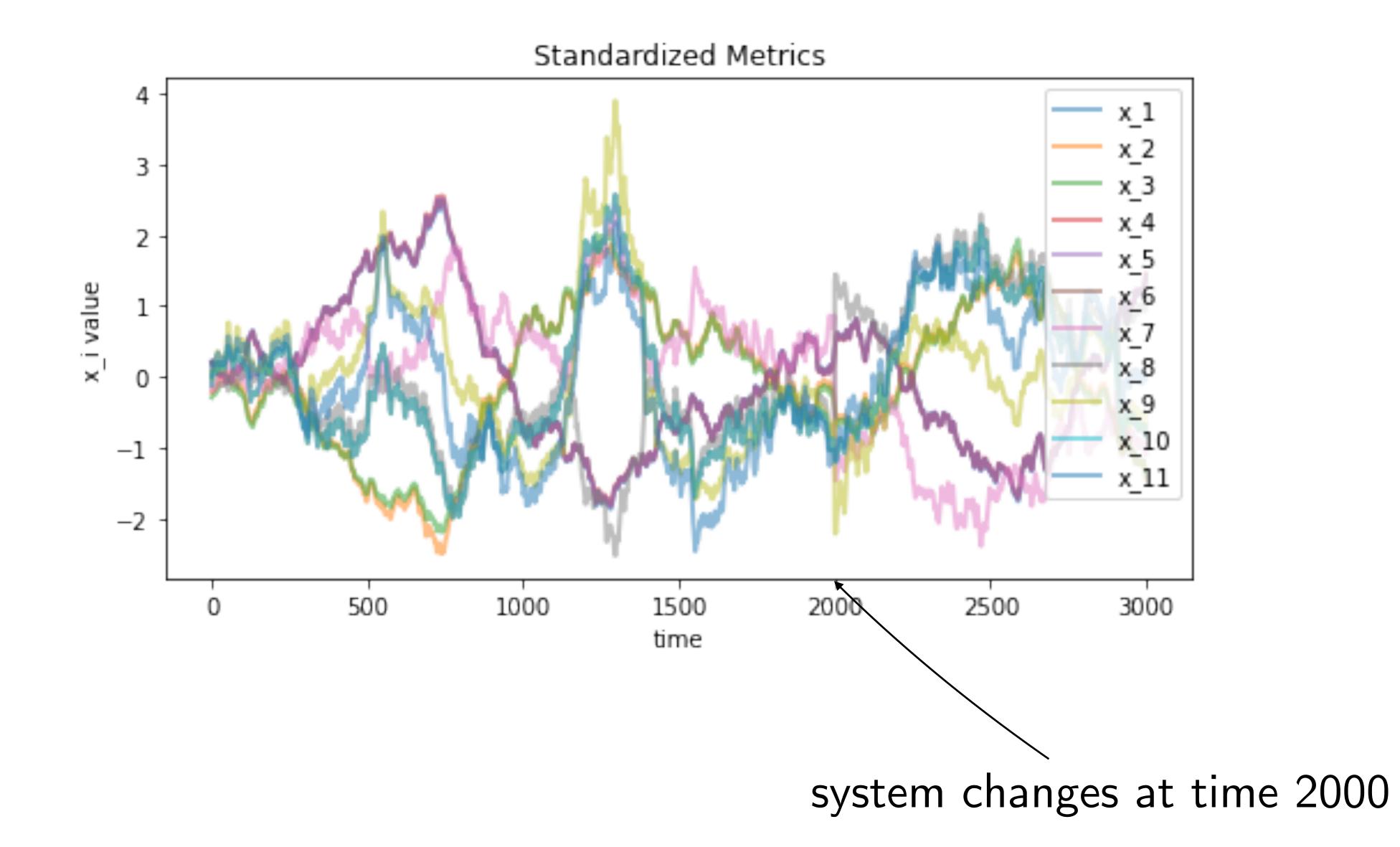


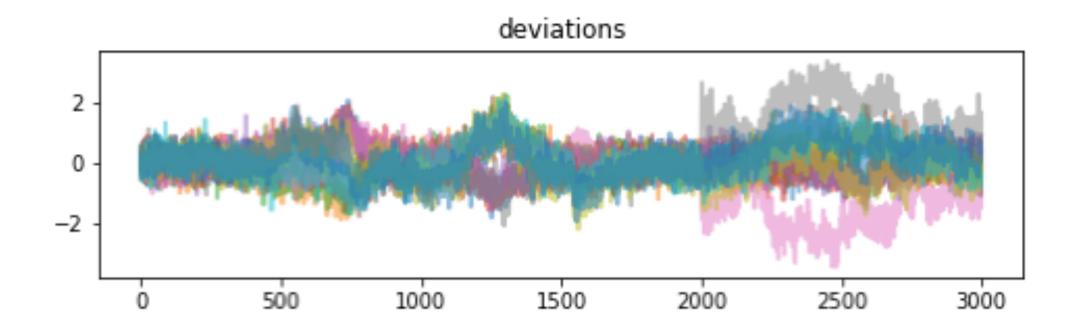
metrics *related functionally* to those with arrows

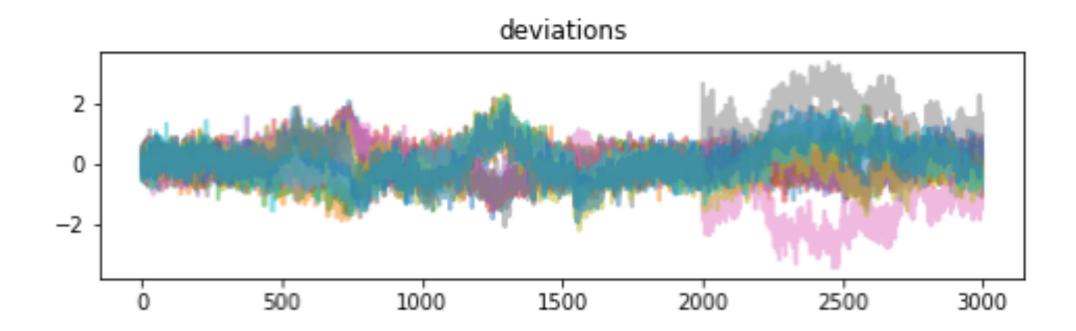


we collect normal data, then change parameter on edge 6 to 7

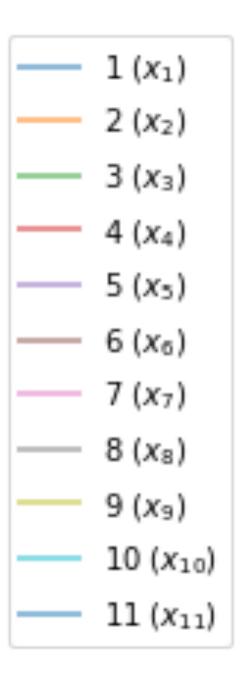


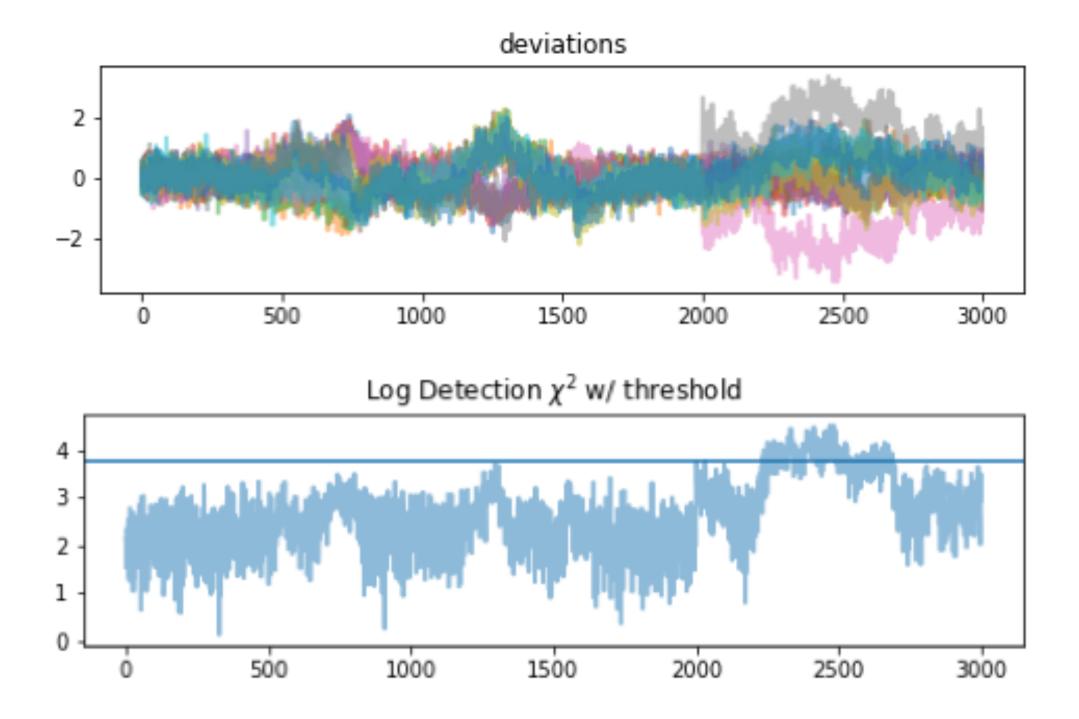


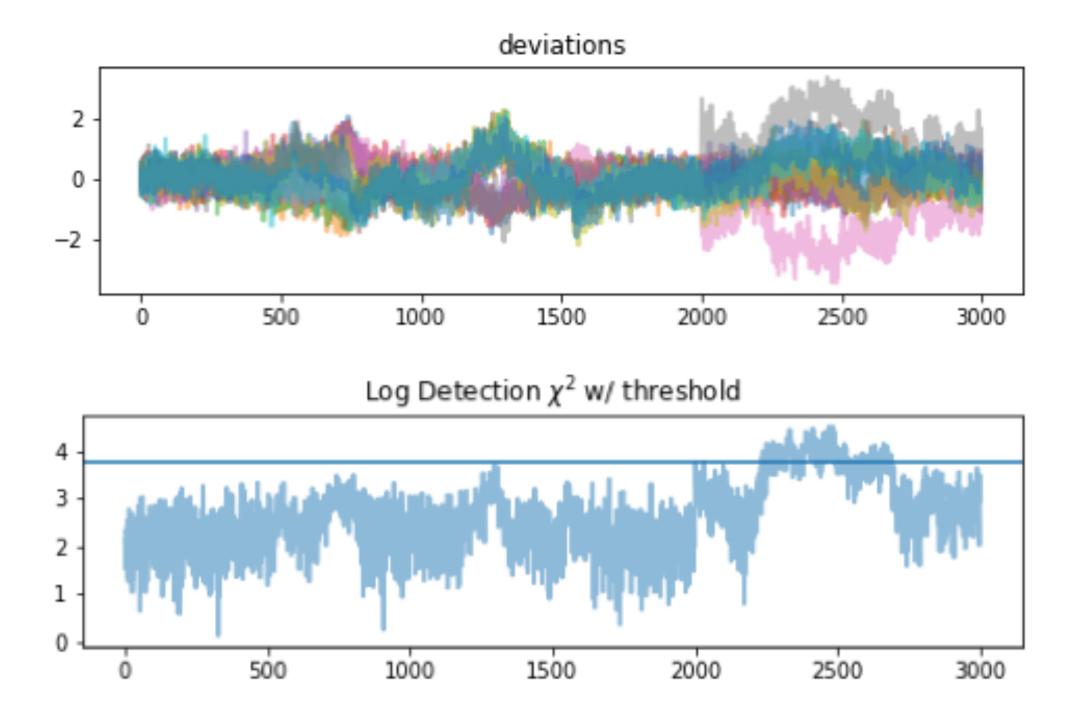




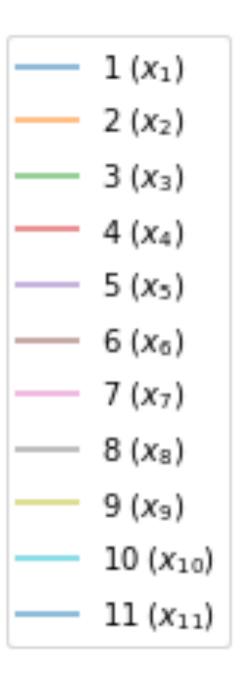
deviations get bigger at time step 2000

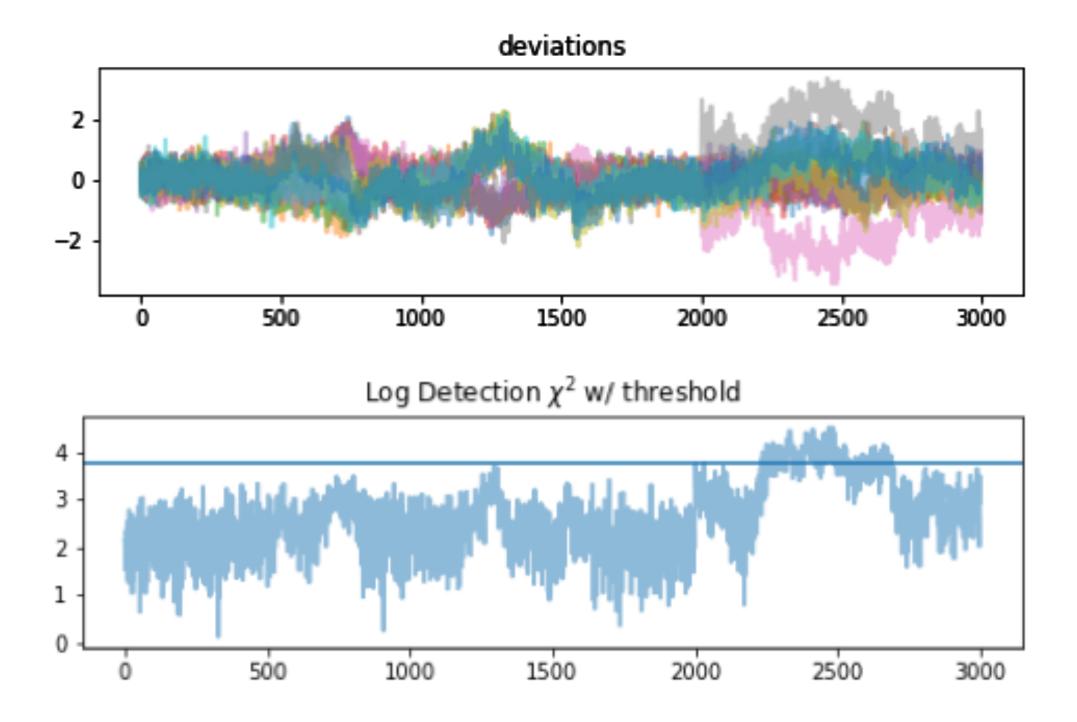


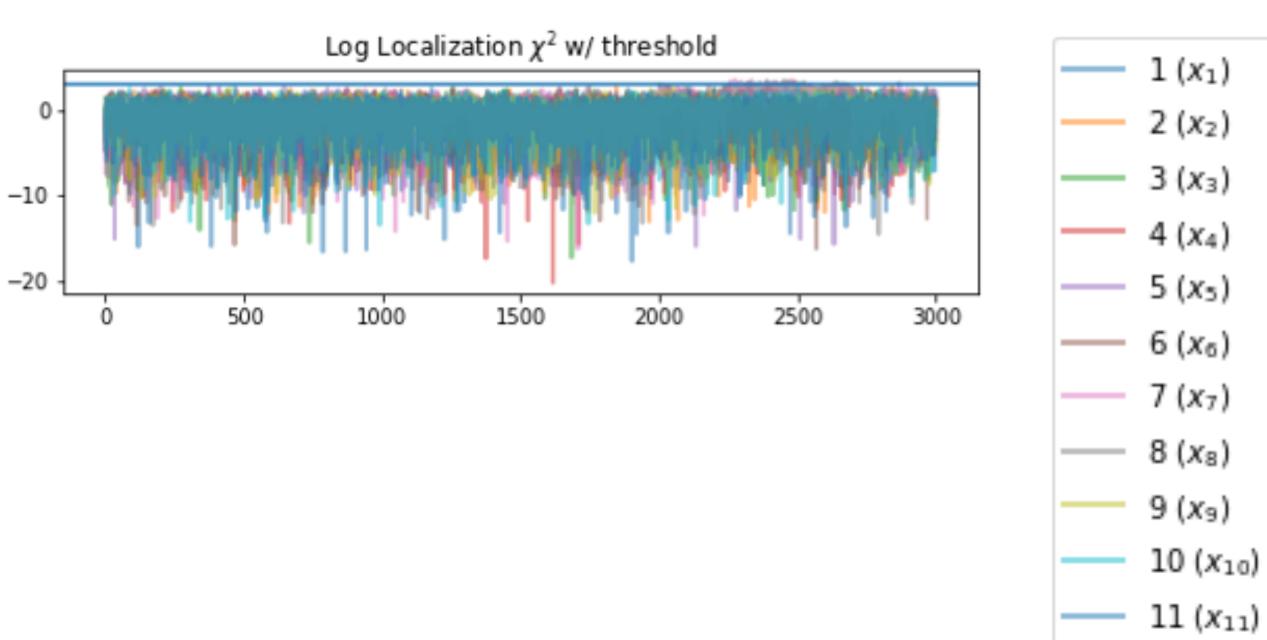


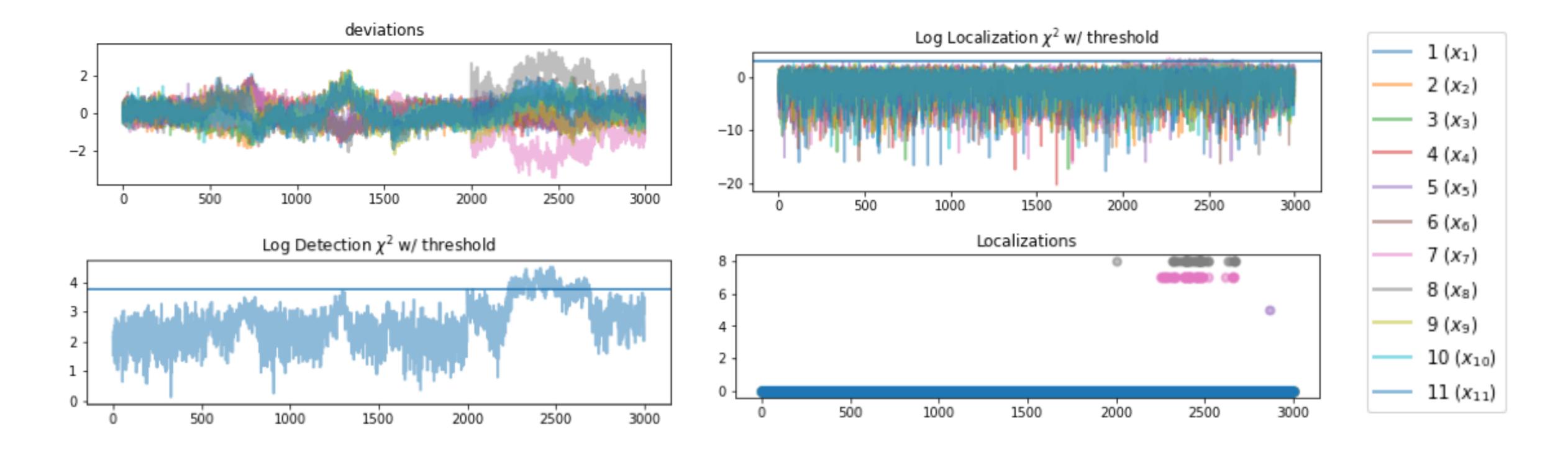


the system begins to look jointly anomalous



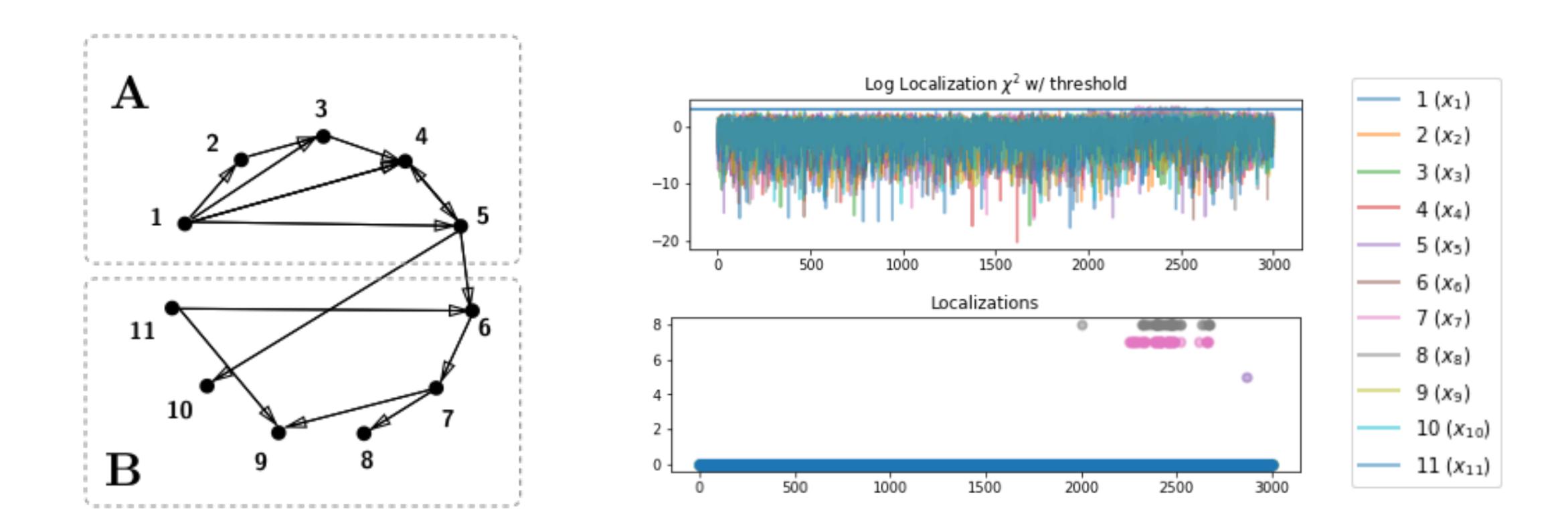




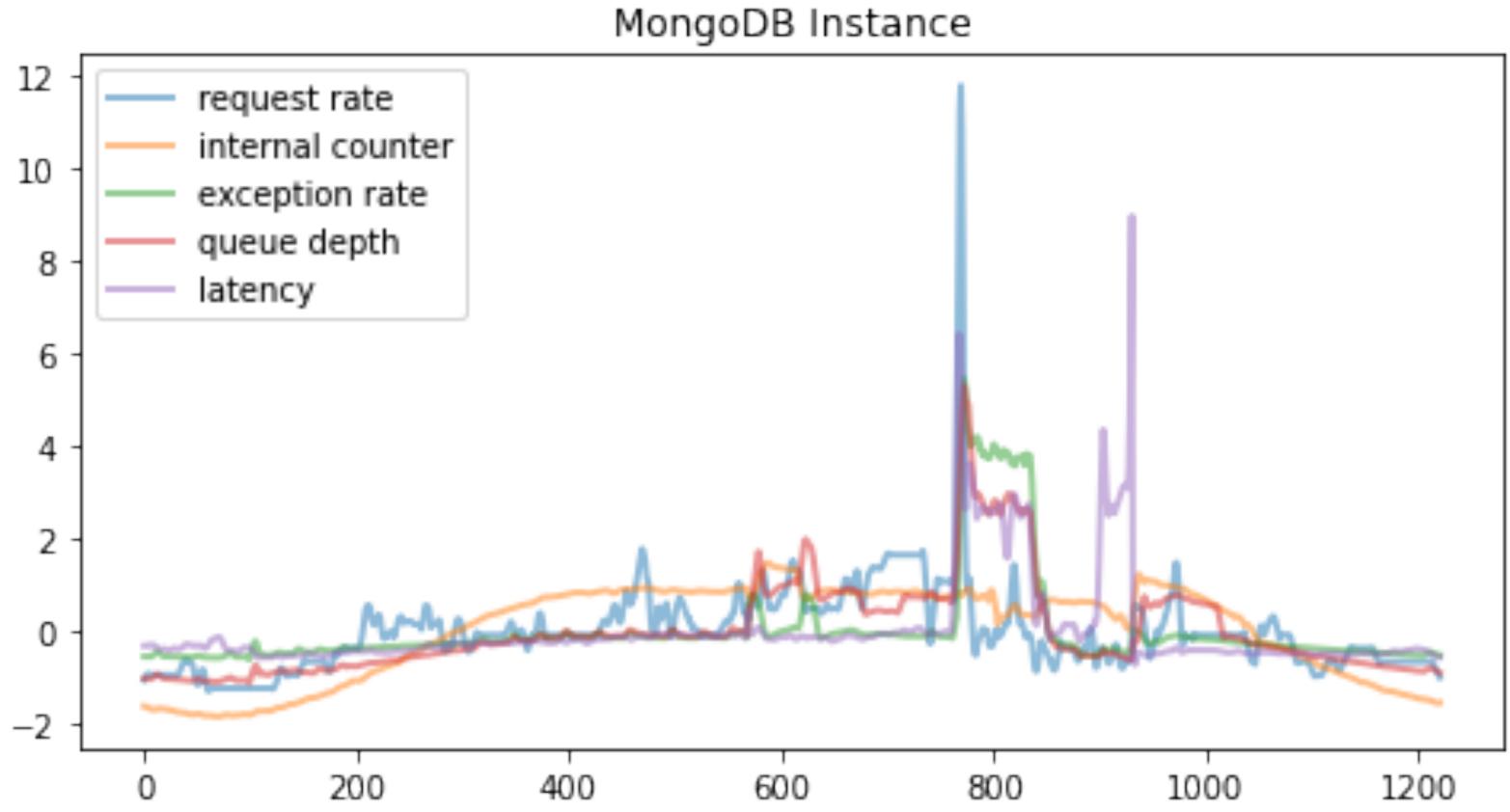


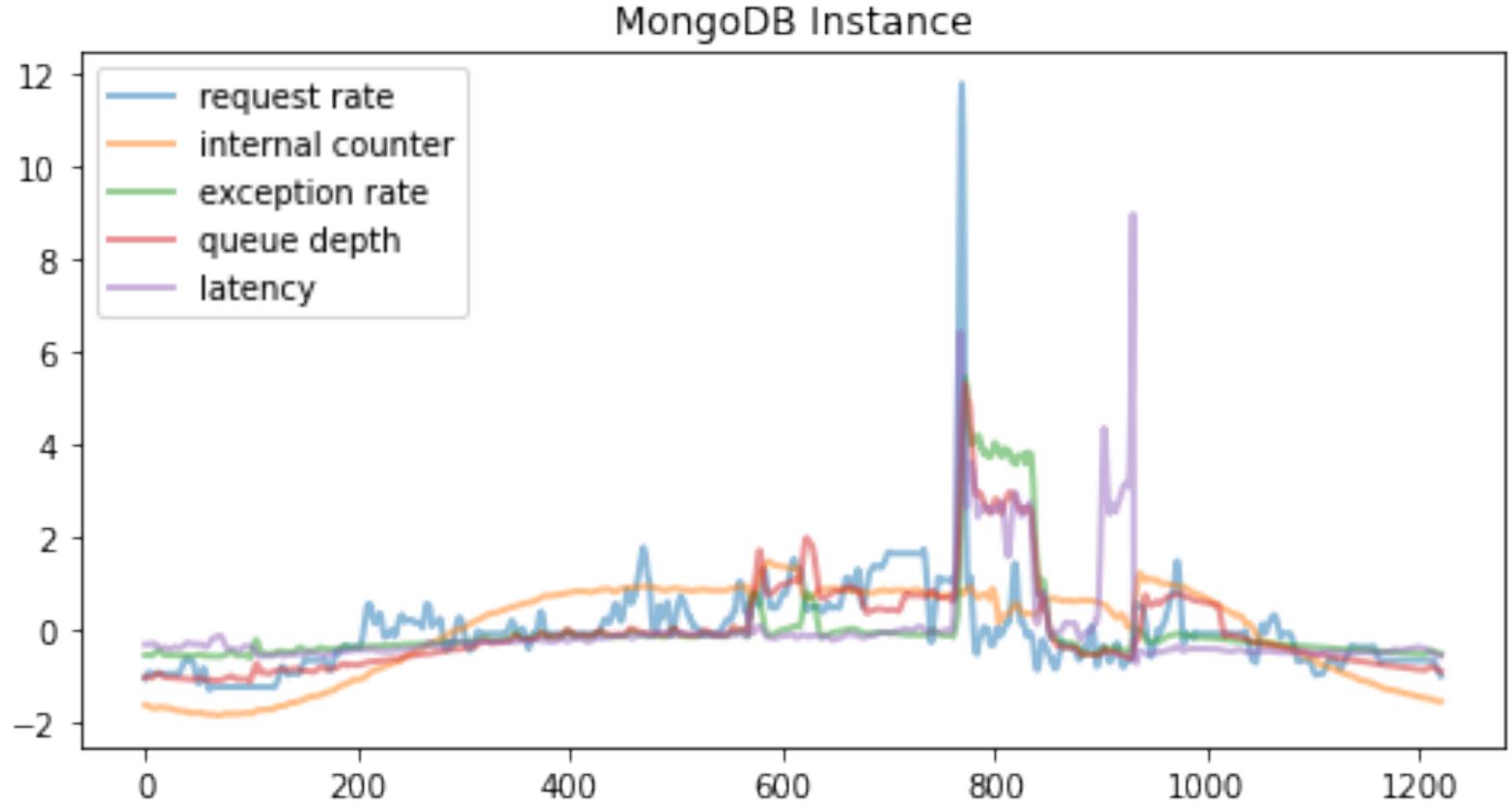
localize to metric 7 and 8

Numerical experiments: synthetic two-process environment

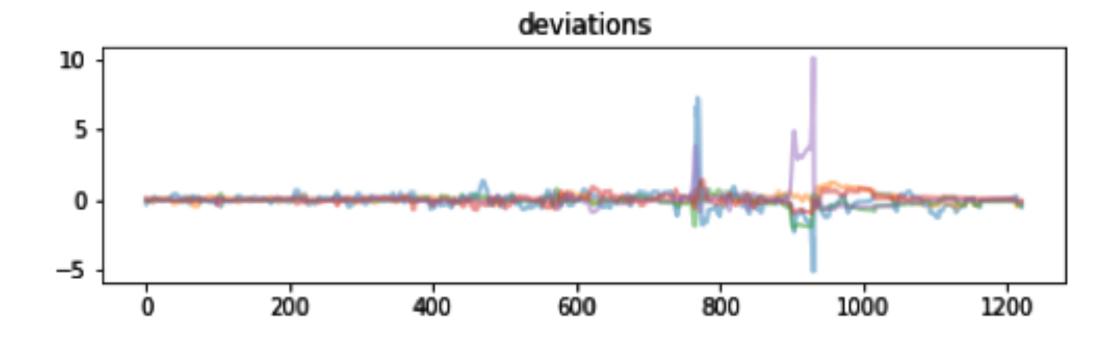


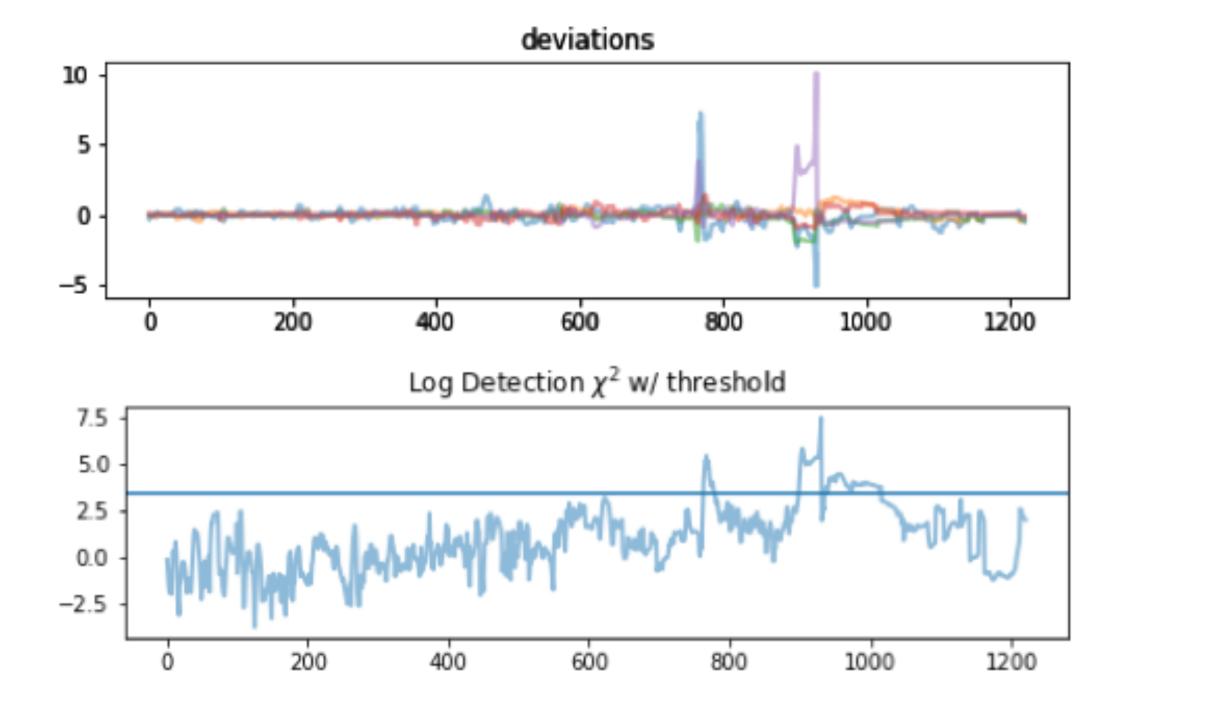
recall we changed 7, and 7 affects 8

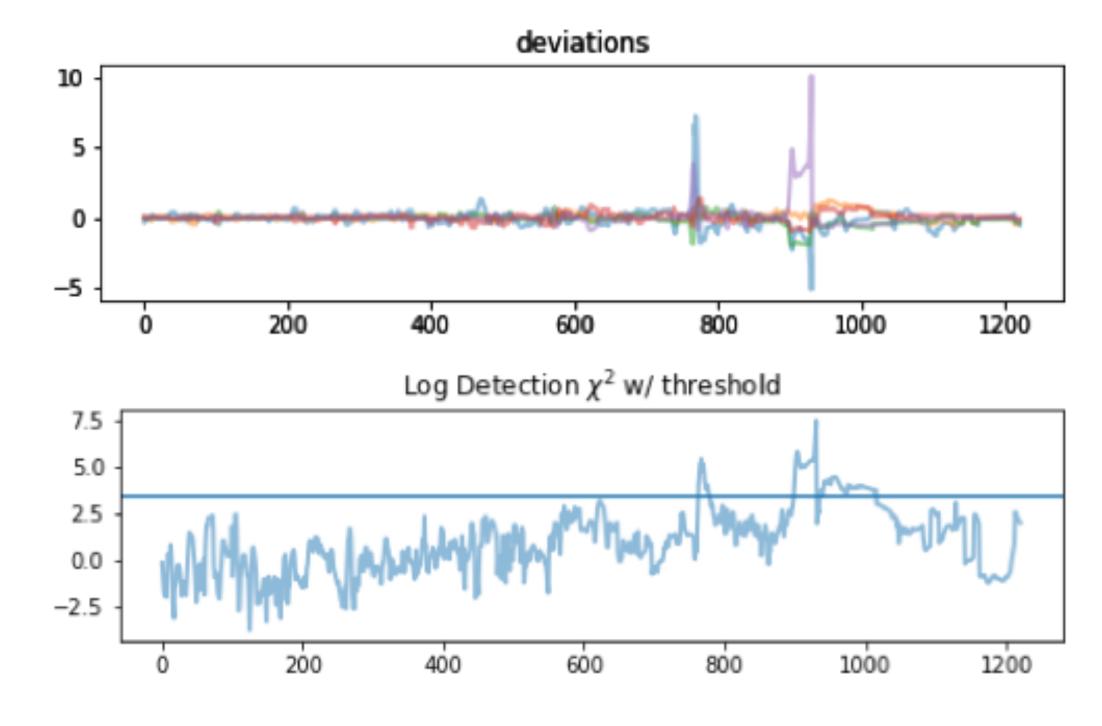


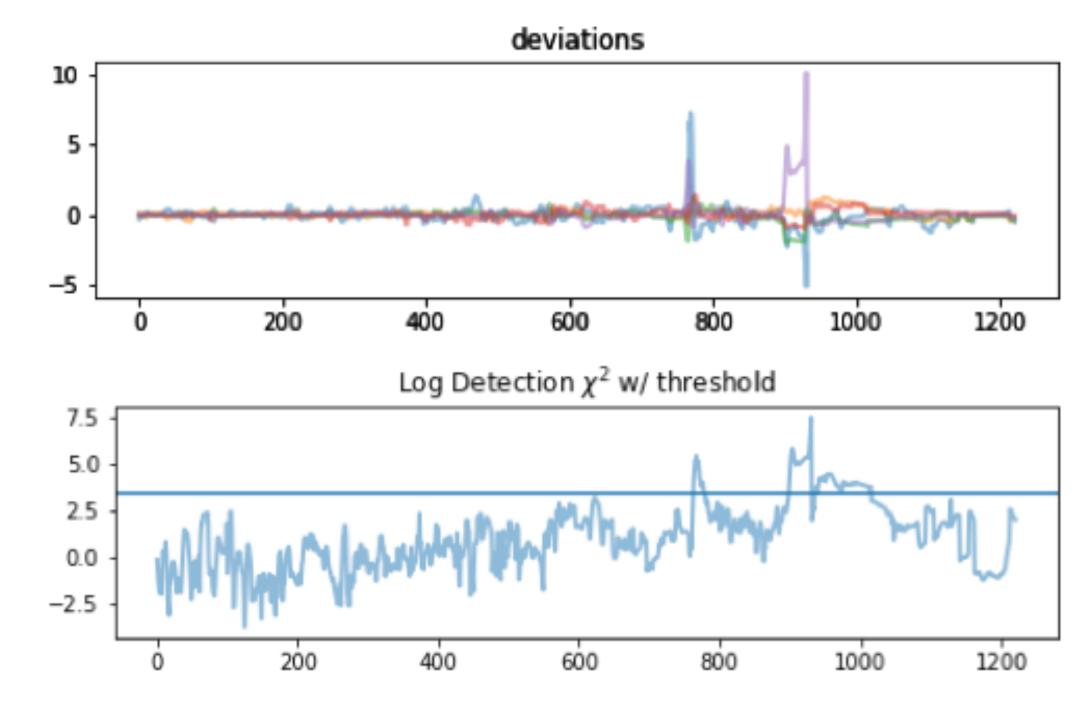


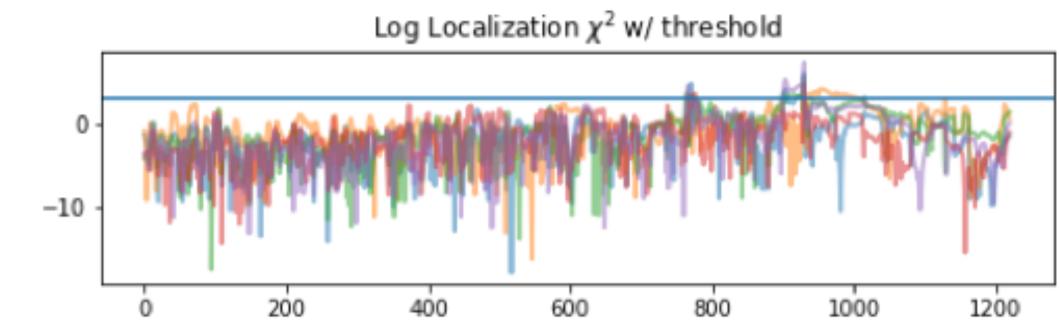
increase latency around sample 750, change configuration around sample 900

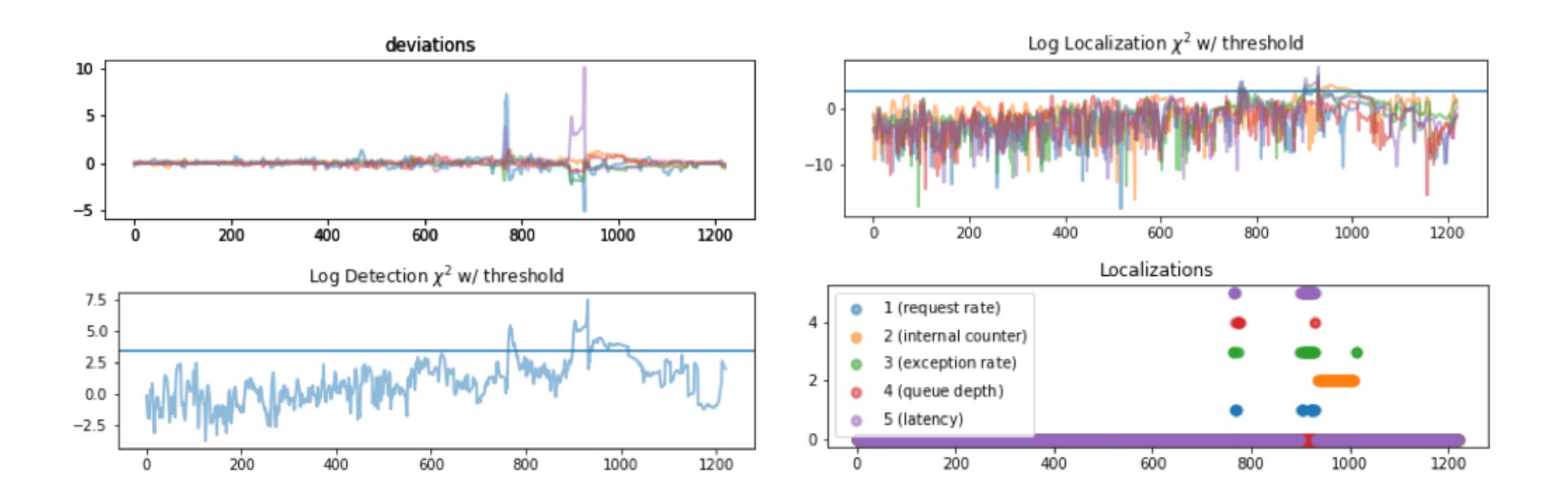


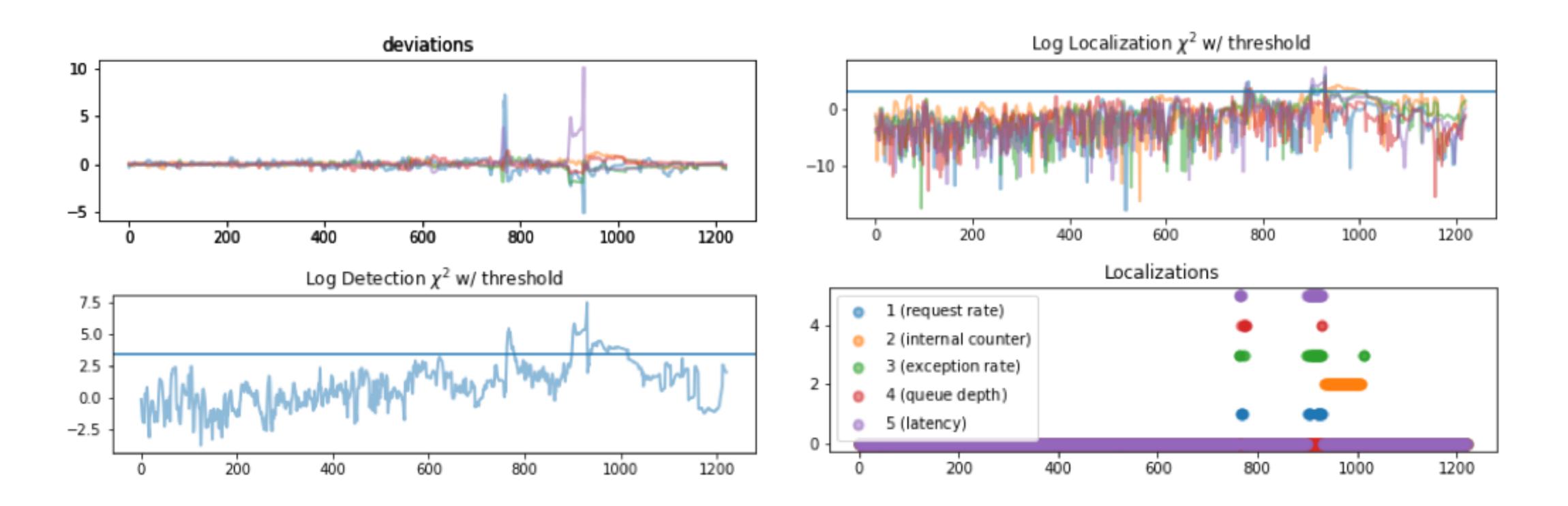




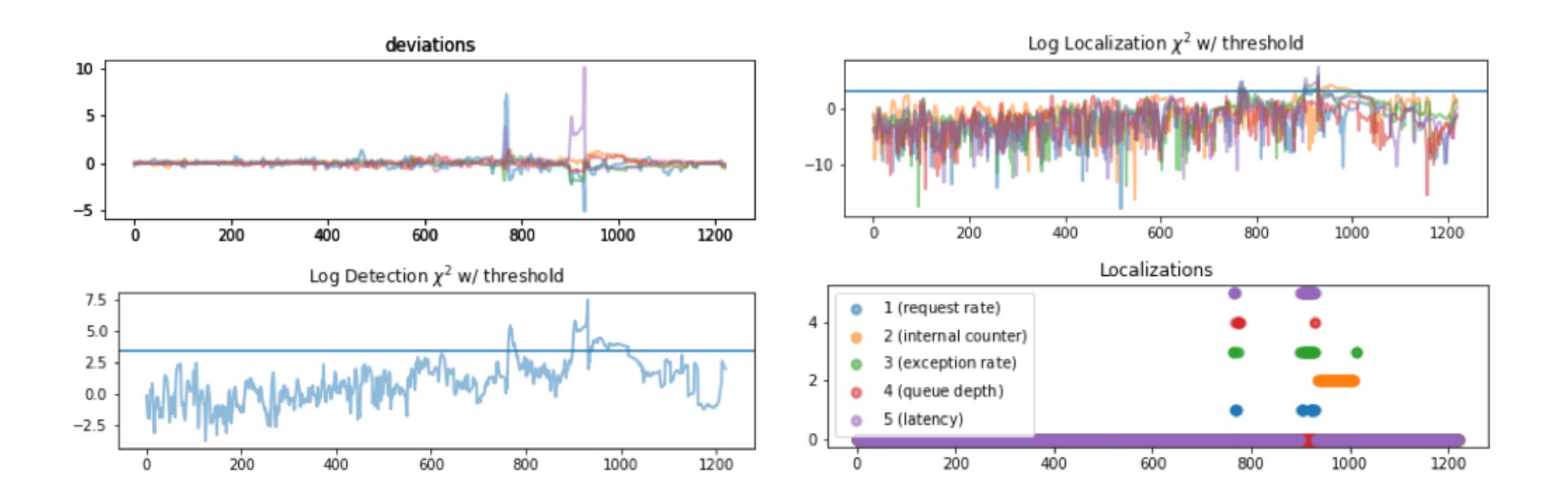


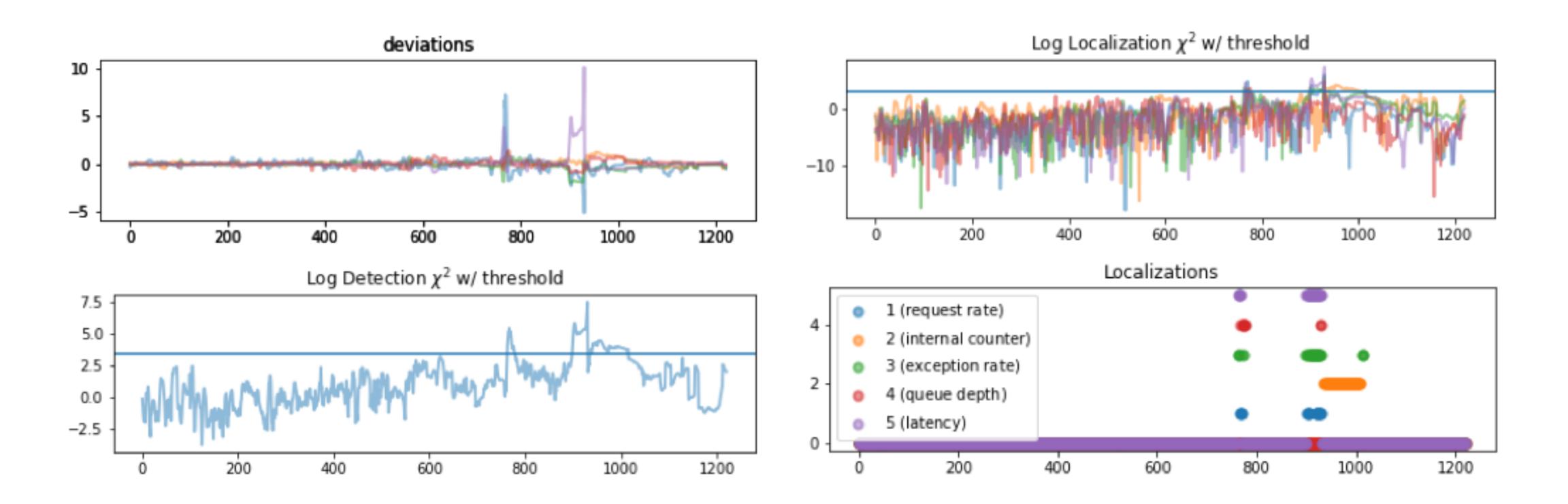






first detection excludes internal counter, may indicate input change





second detection includes counter, internal change

Residual Gauss-Markov random field

Our data model localizes potential problem sources

Residual Gauss-Markov random field

Our data model localizes potential problem sources

Thank you!

