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Research so far...

I robot reward learning from demonstrations and preferences

I multi-task model-based reinforcement learning

I data center anomaly detection and sparse structural equation model learning

I this talk: group testing for symmetric distributions
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Group testing to save resources
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Group testing to save resources

I we have a batch of n specimens to screen for a binary trait

I have blood draws, want to screen for syphilis using antigen tests

I have nasal swabs, want to screen for COVID using RT-PCR tests

I have liquid biopsies, want to screen for cancer using ct-DNA tests

I we want to know trait associated with each specimen

I basic idea: pool specimens together in groups of size k > 1, test as a group
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Saving tests by choosing groupings

4 group tests, 3 retests
7 tests used

group tests help

4 group tests, 12 retests
16 tests used

group tests hurt

12 individual tests
(does not depend on outcomes)

population of size 

if we knew the distribution, we could design groupings that minimize expected cost
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Group testing and Dorfman’s procedure

I we may test several specimens together as a group, and observe that either

1. all the specimens are negative or

2. at least one of the specimens is positive

I Dorfman1 proposed an adaptive two-stage procedure

I pool specimens into groups of size k > 1, each group is tested

I if the group tests negative, declare all k specimens negative, saving k � 1 tests
I if the group tests positive, retest all specimens in the group individually

I punchline: if most groups tests negative, pooling saves tests

I benefits: simple, parallel, only split sample into two portions

1The detection of defective members of large populations, Annals of Mathematical Statistics, 1943
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Minimizing expected number of tests

I n individuals

I x = (x1; : : : ; xn) where binary random variable xi is the status of individual i

I partition f1; : : : ; ng into grouping G = fH1; : : : ; Hkg where Hi � f1; : : : ; ng is the ith group

I expected number of tests is EC(G; x) =
P

H2G
ETH(x) where

TH(x) =

(
1 if xi = 0 for all i 2 H

1 + jHj if xi = 1 for some i 2 H

I TH(x) is number of tests used for group H
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Minimizing expected number of tests: example

I for example n = 6, and we partition into three groups

group 1 group 2 group 3

I expected number of tests is

1|{z}
group 1

+1 + 2 prob(x2 = 1 or x3 = 1)| {z }
group 2

+1 + 3 prob(x4 = 1 or x5 = 1 or x6 = 1)| {z }
group 3

I always need 3 group tests, may need additional individual tests
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Minimizing expected number of tests: problem

I x1; : : : ; xn have distribution p : f0; 1gf1;:::;ng ! [0; 1]

I Problem. given p, find a partition G of f1; : : : ; ng to minimize the expected number of tests

I efficient algorithms when x1; : : : ; xn are IID or just independent2

I our work: efficient algorithm when x1; : : : ; xn are exchangeable

I roughly means any subset has the same distribution
I allows modeling correlation in test outcomes

2Hwang, A generalized binomial group testing problem, Journal of the American Statistical Association, 1975
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Problem 1: overview of assumptions on x1; : : : ; xn

IID outcomes
Hwang 1975

independent outcomes
Hwang 1975

exchangeable outcomes
this work

arbitrary outcomes
future work

drop independence assumption

drop identical assumption

IID outcomes
Dorfman 1943

(Asymptotic case:          ) Finite case
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Symmetric distributions
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Rearranging distributions and definition of symmetry

I given outcomes x 2 f0; 1gf1;:::;ng and permutation g of f1; : : : ; ng

I rearrange x as usual via composition x � g

I likewise, rearrange distribution p to distribution pg : f0; 1gf1;:::;ng ! [0; 1] defined by

p
g(x) = p(x � g)

I call p symmetric if
p = p

g for all permutations g of f1; : : : ; ng

I alternative language: call x1; : : : ; xn exchangeable

I p is a permutation-invariant function
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Rearranging distributions

consider g swapping 1 and 3; symmetry means that all these probabilities are the same
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Symmetric distributions are constant on equivalence classes

permutations give equivalence relation; nnz(x) is number of nonzero values of x
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Examples of symmetric distributions

I any IID distribution is symmetric

I any mixture (convex combination) of symmetric distributions is symmetric

I simple random sampling produces symmetry

I shuffling creates symmetry
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Geometry of symmetric distributions

embed distributions as points  

symmetric

IID

IID mix

set corresponding to all distributions is tetrahedron, that to all symmetric distributions is 2D simplex
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Symmetric marginals

I Fact: Suppose p : f0; 1gf1;:::;ng ! [0; 1] is a distribution. Then

p is symmetric () pH = (pJ)
g for all bijections g : J ! H where H; J � P

I pH is the marginal over the variables fxigi2H

I has two intuitive interpretations

I says that all marginals of a symmetric distribution are symmetric

I i.e., any subset of exchangeable random variables is exchangeable

I says that all same-size marginals of a symmetric distribution agree

I e.g., the distribution of any three test outcomes is the same
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Representation via marginals

I Fact: Suppose p : f0; 1gf1;:::;ng ! [0; 1] is a distribution. Then p is symmetric if and only if there exists
a function q : f0; 1; : : : ; ng ! [0; 1] such that

pH(0) = q(jHj) for all H � f1; : : : ; ng

I q is a nonobvious representation for a symmetric distribution

I q(h) is the probability that a group of size h tests negative

I q is the input representation to our algorithm
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Main result and algorithm
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Optimal partitions have optimal substructure

I motivation for a dynamic programming approach

I Fact: any subset of an optimal partition is optimal for the subpopulation it partitions

optimal

optimal from additive cost
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Simplifications under symmetry

I for symmetric distributions...

I (1) the cost of a group depends only on its size, denote by Th for group of size h

I thus, (2) the cost of a grouping only depends on the number of groups it has of each size

I depends on pattern � of a grouping where �(h) is the number of groups of size h

cost is

pattern is

I hence, (3) size-m subpopulations have same optimal patterns, same optimal cost C?
m
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Algorithm and main result

I Fact: If x1; : : : ; xn have symmetric distribution p, then

C
?
m = min

h=1;:::;m
fC?

m�h + Thg for all m = 1; : : : ; n

I where C?
m optimal cost of subpopulation of size m and Th is cost of testing group of size h

I Algorithm: to compute C?
1 ; : : : ; C

?
n and optimal patterns �1; : : : ; �n

I take �1 so that �1
1
= 1 and �1n = 0 for n 6= 1, take C?

1
= T1

I for k = 2; : : : ; n, find hk a minimizer of f(h) = C?
k�h + Th, define �k by

�k(j) =

�
�k�hk (j) + 1 if j = hk

�k�hk (j) otherwise

and take C?
k
= C?

k�hk
+ Thk

I Theorem: partitions computed in this way are optimal
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Algorithm visualization

vs.

iteration 1

iteration 2

iteration 3

iteration 4

vs. vs.

vs. vs. vs.

only works under symmetry

optimal, cost is

optimal, cost is

optimal, cost is
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Simulation and data fitting
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Comparisons

I for simulation and a real dataset, compare different approaches

I prior tools, assuming IID outcomes; infinite (Dorfman) and finite (Hwang) cases

I tool we built, assuming exchangeability

I in some cases, different approaches indicate the same pooling

I for intuition, we show examples where the indicated poolings are different
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Example 1: 10 individuals, all or none positive

I simple extreme example for intuition

or
population 

 tests either
50% of time

50% of time

I at prevalence of 1/2, both IID-1 and IID-finite say test individually (10 tests)

I symmetric says pool one group of size 10 (6 tests on avg.)

IID approximationtrue model
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Approximation by symmetric distributions and fitting

I Problem: given arbitrary distribution r : f0; 1gf1;:::;ng ! [0; 1], find a distribution p to

minimize dkl(r; p)

subject to p is symmetric

I Solution: pick the symmetric distribution which puts the same mass on equivalence classes as r

I indicates solution to maximum likelihood estimation

I count number of samples with no positives, one positive, two positives, and so on...
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Barak et al. dataset 2021 methodology and observation

1. batch of 80 arrives

4. RT-PCR test (up to 90 pools in parallel)
5. individual retesting

2. spin down lysate
3. robot pools/mixes samples

I “ in reality, samples arrive in batches: from colleges, nursing homes, or health care personnel...thereby
increasing the number of positive samples”3

3Barak et al., Lessons from applied large-scale pooling of 133,816 SARS-CoV-2 RT-PCR tests, 2021
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Barak et al. 2020: our results

I take first 2 months of data (prevalence stable, about 0.2%)

I corresponds to 500 batches of size 80; fit on first half, test on second half

I group testing should help at low prevalence

I individual testing uses 40,000 tests

I Barak et al. partition 8, 8, 8, 8, 8, 8, 8, 8, 8, 8; uses 2940 tests

I IID model indicates partition 20, 20, 20, 20; uses 1,660 tests

I symmetric model indicates partition 27, 27, 26; uses 1,630 tests
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Additional topics not discussed and future work...

I characterize formally when symmetry helps

I use sampling to reduce number of tests (as in example 1)

I use features to learn the probability a sample will test positive

I use permutation invariant models to learn probability a group with some set of features will test positive
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Efficient disease screening using group testing and symmetric probability

I we generalized classical group testing to symmetric distributions

I demonstrated a proof of concept on real data

Thank you!
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Extra slides
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An infectious disease example: group exposure model

I set of symmetric distributions is convex

I given symmetric distributions r and s along with a mixing parameter � in [0; 1], define

p(x) = (1� �)r(x) + �s(x)

I interpret p as modeling outcomes that depend on some unobserved event

I latent event occurs with probability �

I call E
Pn

i=1
xi=n the prevalence rate

I if r and s have prevalence rates �r and �s, then p has rate (1� �)�r + ��s

I if �s > �r we may say the unobserved exposure event increases the prevalence

I straightforward generalization to ` levels, Bayesian interpretation of mixing parameters
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Optimal partitions have optimal substructure

I motivation for a dynamic programming approach

I call a partition F ? of S � P optimal if EC(F ?; x) � EC(F; x) for all other partitions F

I Fact: If F ? is optimal for S, then for any E � F ?, E is optimal for [E

I any subset of an optimal partition is optimal for the subpopulation it partitions

optimal

optimal from additive cost
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Tests used for a group depends only on size

I for any distribution we have

ETH(x) =

(
1 if jHj = 1

1 + jHjProb(SH(x) = 1) otherwise

I if p is symmetric, we can express the second case

1 + jHjProb(SH(x) = 1) = 1 + jHj(1� Prob(SH(x) = 0)

= 1 + jHj(1� pH(0))

= 1 + jHj(1� q(jHj))

I the right hand side depends only on jHj

I not true without symmetry: for example, independent outcomes with different probabilities
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Example 2: group exposure

I simple for intuition: w.p. 0.9, prevalence 0.01, w.p. 0.1 prevalence 0.5

I the population prevalence is 0.059

I IID-1, IID-finite: two pools of 5 (3.41 tests on avg.), symmetric: one pool of size 10 (2.85 tests on avg.)

IID approximationtrue model
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Example 3: multi group exposure

I here we have n = 30, we concatenate three of the group exposure models each of size 10

I exposure model same as before, 90% of time IID with prevalence 0.01, 10% of time IID with prevalence 0.5

I draw 105 samples, and fit a distribution using methodology on previous slide

I IID, finite and infinite, indicates partition 5, 5, 5, 5, 5, 5; uses 10.2 tests on average

I symmetric indicates partition 8, 8, 7, 7; uses 9.8 tests on average
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