# Efficient Disease Screening Using Group Testing and Symmetric Probability 

Nick Landolfi<br>Stanford University

## Research so far...

- robot reward learning from demonstrations and preferences
- multi-task model-based reinforcement learning
- data center anomaly detection and sparse structural equation model learning
- this talk: group testing for symmetric distributions


## Outline

1. Group testing
2. Symmetric distributions
3. Algorithm
4. Real world example
5. Future work

Group testing to save resources

## Group testing to save resources

- we have a batch of $n$ specimens to screen for a binary trait
- have blood draws, want to screen for syphilis using antigen tests
- have nasal swabs, want to screen for COVID using RT-PCR tests
- have liquid biopsies, want to screen for cancer using ct-DNA tests
- we want to know trait associated with each specimen
- basic idea: pool specimens together in groups of size $k>1$, test as a group


## Saving tests by choosing groupings


if we knew the distribution, we could design groupings that minimize expected cost

## Group testing and Dorfman's procedure

- we may test several specimens together as a group, and observe that either

1. all the specimens are negative or
2. at least one of the specimens is positive

- Dorfman ${ }^{1}$ proposed an adaptive two-stage procedure
- pool specimens into groups of size $k>1$, each group is tested
- if the group tests negative, declare all $k$ specimens negative, saving $k-1$ tests
- if the group tests positive, retest all specimens in the group individually
- punchline: if most groups tests negative, pooling saves tests
- benefits: simple, parallel, only split sample into two portions

[^0]
## Minimizing expected number of tests

- $n$ individuals
- $x=\left(x_{1}, \ldots, x_{n}\right)$ where binary random variable $x_{i}$ is the status of individual $i$
- partition $\{1, \ldots, n\}$ into grouping $G=\left\{H_{1}, \ldots, H_{k}\right\}$ where $H_{i} \subset\{1, \ldots, n\}$ is the $i$ th group
- expected number of tests is $\mathbf{E} C(G, x)=\sum_{H \in G} \mathbf{E} T_{H}(x)$ where

$$
T_{H}(x)= \begin{cases}1 & \text { if } x_{i}=0 \text { for all } i \in H \\ 1+|H| & \text { if } x_{i}=1 \text { for some } i \in H\end{cases}
$$

- $T_{H}(x)$ is number of tests used for group $H$


## Minimizing expected number of tests: example

- for example $n=6$, and we partition into three groups

- expected number of tests is

- always need 3 group tests, may need additional individual tests


## Minimizing expected number of tests: problem

- $x_{1}, \ldots, x_{n}$ have distribution $p:\{0,1\}^{\{1, \ldots, n\}} \rightarrow[0,1]$
- Problem. given $p$, find a partition $G$ of $\{1, \ldots, n\}$ to minimize the expected number of tests
- efficient algorithms when $x_{1}, \ldots, x_{n}$ are IID or just independent ${ }^{2}$
$\rightarrow$ our work: efficient algorithm when $x_{1}, \ldots, x_{n}$ are exchangeable
- roughly means any subset has the same distribution
- allows modeling correlation in test outcomes

[^1]
## Problem 1: overview of assumptions on $x_{1}, \ldots, x_{n}$



## Symmetric distributions

## Rearranging distributions and definition of symmetry

- given outcomes $x \in\{0,1\}^{\{1, \ldots, n\}}$ and permutation $g$ of $\{1, \ldots, n\}$
- rearrange $x$ as usual via composition $x \circ g$
- likewise, rearrange distribution $p$ to distribution $p^{g}:\{0,1\}^{\{1, \ldots, n\}} \rightarrow[0,1]$ defined by

$$
p^{g}(x)=p(x \circ g)
$$

- call $p$ symmetric if

$$
p=p^{g} \quad \text { for all permutations } g \text { of }\{1, \ldots, n\}
$$

- alternative language: call $x_{1}, \ldots, x_{n}$ exchangeable
- $p$ is a permutation-invariant function


## Rearranging distributions


consider $g$ swapping 1 and 3 ; symmetry means that all these probabilities are the same

Symmetric distributions are constant on equivalence classes

permutations give equivalence relation; $\operatorname{nnz}(x)$ is number of nonzero values of $x$

## Examples of symmetric distributions

- any IID distribution is symmetric
- any mixture (convex combination) of symmetric distributions is symmetric
- simple random sampling produces symmetry
- shuffling creates symmetry


## Geometry of symmetric distributions


set corresponding to all distributions is tetrahedron, that to all symmetric distributions is 2D simplex

## Symmetric marginals

- Fact: Suppose $p:\{0,1\}^{\{1, \ldots, n\}} \rightarrow[0,1]$ is a distribution. Then
$p$ is symmetric $\Longleftrightarrow p_{H}=\left(p_{J}\right)^{g}$ for all bijections $g: J \rightarrow H$ where $H, J \subset P$
- $p_{H}$ is the marginal over the variables $\left\{x_{i}\right\}_{i \in H}$
- has two intuitive interpretations
- says that all marginals of a symmetric distribution are symmetric
- i.e., any subset of exchangeable random variables is exchangeable
- says that all same-size marginals of a symmetric distribution agree
- e.g., the distribution of any three test outcomes is the same


## Representation via marginals

- Fact: Suppose $p:\{0,1\}^{\{1, \ldots, n\}} \rightarrow[0,1]$ is a distribution. Then $p$ is symmetric if and only if there exists a function $q:\{0,1, \ldots, n\} \rightarrow[0,1]$ such that

$$
p_{H}(\mathbf{0})=q(|H|) \quad \text { for all } H \subset\{1, \ldots, n\}
$$

- $q$ is a nonobvious representation for a symmetric distribution
- $q(h)$ is the probability that a group of size $h$ tests negative
- $q$ is the input representation to our algorithm

Main result and algorithm

## Optimal partitions have optimal substructure

- motivation for a dynamic programming approach
- Fact: any subset of an optimal partition is optimal for the subpopulation it partitions



## Simplifications under symmetry

- for symmetric distributions...
- (1) the cost of a group depends only on its size, denote by $T_{h}$ for group of size $h$
- thus, (2) the cost of a grouping only depends on the number of groups it has of each size
- depends on pattern $\pi$ of a grouping where $\pi(h)$ is the number of groups of size $h$

- hence, (3) size-m subpopulations have same optimal patterns, same optimal cost $C_{m}^{\star}$


## Algorithm and main result

- Fact: If $x_{1}, \ldots, x_{n}$ have symmetric distribution $p$, then

$$
C_{m}^{\star}=\min _{h=1, \ldots, m}\left\{C_{m-h}^{\star}+T_{h}\right\} \quad \text { for all } m=1, \ldots, n
$$

- where $C_{m}^{\star}$ optimal cost of subpopulation of size $m$ and $T_{h}$ is cost of testing group of size $h$
- Algorithm: to compute $C_{1}^{\star}, \ldots, C_{n}^{\star}$ and optimal patterns $\pi^{1}, \ldots, \pi^{n}$
- take $\pi^{1}$ so that $\pi_{1}^{1}=1$ and $\pi_{n}^{1}=0$ for $n \neq 1$, take $C_{1}^{\star}=T_{1}$
- for $k=2, \ldots, n$, find $h_{k}$ a minimizer of $f(h)=C_{k-h}^{\star}+T_{h}$, define $\pi_{k}$ by

$$
\pi_{k}(j)= \begin{cases}\pi_{k-h_{k}}(j)+1 & \text { if } j=h_{k} \\ \pi_{k-h_{k}}(j) & \text { otherwise }\end{cases}
$$

and take $C_{k}^{\star}=C_{k-h_{k}}^{\star}+T_{h_{k}}$

- Theorem: partitions computed in this way are optimal


## Algorithm visualization

iteration 1
iteration 2


> only works under symmetry
optimal, cost is $C_{3}^{\star}$
iteration 3

vs.

iteration 4

vs.



# Simulation and data fitting 

## Comparisons

- for simulation and a real dataset, compare different approaches
- prior tools, assuming IID outcomes; infinite (Dorfman) and finite (Hwang) cases
- tool we built, assuming exchangeability
- in some cases, different approaches indicate the same pooling
- for intuition, we show examples where the indicated poolings are different


## Example 1: 10 individuals, all or none positive

- simple extreme example for intuition

```
population }n=1
tests either
50% of time
50% of time
```

- at prevalence of $1 / 2$, both IID- $\infty$ and IID-finite say test individually (10 tests)
- symmetric says pool one group of size 10 ( 6 tests on avg.)



## Approximation by symmetric distributions and fitting

- Problem: given arbitrary distribution $r:\{0,1\}^{\{1, \ldots, n\}} \rightarrow[0,1]$, find a distribution $p$ to

$$
\begin{aligned}
\operatorname{minimize} & d_{k l}(r, p) \\
\text { subject to } & p \text { is symmetric }
\end{aligned}
$$

- Solution: pick the symmetric distribution which puts the same mass on equivalence classes as $r$
- indicates solution to maximum likelihood estimation
- count number of samples with no positives, one positive, two positives, and so on...


## Barak et al. dataset 2021 methodology and observation


4. RT-PCR test (up to 90 pools in parallel)

3. robot pools/mixes samples

5. individual retesting


- "in reality, samples arrive in batches: from colleges, nursing homes, or health care personnel...thereby increasing the number of positive samples" ${ }^{3}$

[^2]
## Barak et al. 2020: our results

- take first 2 months of data (prevalence stable, about $0.2 \%$ )
- corresponds to 500 batches of size 80 ; fit on first half, test on second half
- group testing should help at low prevalence
- individual testing uses $\mathbf{4 0 , 0 0 0}$ tests
- Barak et al. partition $8,8,8,8,8,8,8,8,8,8$; uses 2940 tests
- IID model indicates partition 20, 20, 20, 20; uses 1,660 tests
- symmetric model indicates partition 27, 27, 26; uses $\mathbf{1 , 6 3 0}$ tests


## Additional topics not discussed and future work...

- characterize formally when symmetry helps
- use sampling to reduce number of tests (as in example 1)
- use features to learn the probability a sample will test positive
- use permutation invariant models to learn probability a group with some set of features will test positive


## Efficient disease screening using group testing and symmetric probability

- we generalized classical group testing to symmetric distributions
- demonstrated a proof of concept on real data

Thank you!

# Extra slides 

## An infectious disease example: group exposure model

- set of symmetric distributions is convex
- given symmetric distributions $r$ and $s$ along with a mixing parameter $\mu$ in $[0,1]$, define

$$
p(x)=(1-\mu) r(x)+\mu s(x)
$$

- interpret $p$ as modeling outcomes that depend on some unobserved event
- latent event occurs with probability $\mu$
- call $\mathrm{E} \sum_{i=1}^{n} x_{i} / n$ the prevalence rate
- if $r$ and $s$ have prevalence rates $\rho_{r}$ and $\rho_{s}$, then $p$ has rate $(1-\mu) \rho_{r}+\mu \rho_{s}$
- if $\rho_{s}>\rho_{r}$ we may say the unobserved exposure event increases the prevalence
- straightforward generalization to $\ell$ levels, Bayesian interpretation of mixing parameters


## Optimal partitions have optimal substructure

- motivation for a dynamic programming approach
- call a partition $F^{\star}$ of $S \subset P$ optimal if $\mathbf{E} C\left(F^{\star}, x\right) \leq \mathbf{E} C(F, x)$ for all other partitions $F$
- Fact: If $F^{\star}$ is optimal for $S$, then for any $E \subset F^{\star}, E$ is optimal for $\cup E$
- any subset of an optimal partition is optimal for the subpopulation it partitions



## Tests used for a group depends only on size

- for any distribution we have

$$
\mathrm{E} T_{H}(x)= \begin{cases}1 & \text { if }|H|=1 \\ 1+|H| \operatorname{Prob}\left(S_{H}(x)=1\right) & \text { otherwise }\end{cases}
$$

- if $p$ is symmetric, we can express the second case

$$
\begin{aligned}
1+|H| \operatorname{Prob}\left(S_{H}(x)=1\right) & =1+|H|\left(1-\operatorname{Prob}\left(S_{H}(x)=0\right)\right. \\
& =1+|H|\left(1-p_{H}(\mathbf{0})\right) \\
& =1+|H|(1-q(|H|))
\end{aligned}
$$

- the right hand side depends only on $|H|$
- not true without symmetry: for example, independent outcomes with different probabilities


## Example 2: group exposure

- simple for intuition: w.p. 0.9 , prevalence 0.01 , w.p. 0.1 prevalence 0.5
- the population prevalence is 0.059
- IID- $\infty$, IID-finite: two pools of 5 (3.41 tests on avg.), symmetric: one pool of size 10 ( 2.85 tests on avg.)

expected tests used by group size

true model
〇 IID approximation


## Example 3: multi group exposure

- here we have $n=30$, we concatenate three of the group exposure models each of size 10
- exposure model same as before, $90 \%$ of time IID with prevalence $0.01,10 \%$ of time IID with prevalence 0.5
- draw $10^{5}$ samples, and fit a distribution using methodology on previous slide
- IID, finite and infinite, indicates partition $5,5,5,5,5,5$; uses 10.2 tests on average
- symmetric indicates partition $8,8,7,7$; uses 9.8 tests on average


[^0]:    ${ }^{\mathbf{1}}$ The detection of defective members of large populations, Annals of Mathematical Statistics, 1943

[^1]:    ${ }^{2}$ Hwang, A generalized binomial group testing problem, Journal of the American Statistical Association, 1975

[^2]:    ${ }^{3}$ Barak et al., Lessons from applied large-scale pooling of 133,816 SARS-CoV-2 RT-PCR tests, 2021

