PCA Two Ways

Nick Landolfi
Stanford University

Outline

- background: affine sets, projections, extremal trace
- minimum-residual affine set
- maximum-variance affine set
- examples with protein data

Affine sets

- a set $M \subset \mathbf{R}^{n}$ is affine if it contains the lines through any two of its points
- i.e., $(1-\lambda) x+\lambda y \in M$ for all $x, y \in M, \lambda \in \mathbf{R}$
- other terminology: affine subspace, linear variety, affine variety, flat set
- the affine sets are the solution sets of linear equations
- given conforming A and b the set $\left\{x \in \mathbf{R}^{n} \mid A x=b\right\}$ is affine, and vice versa
- the affine sets are translated subspaces
- if M is affine, there exists a unique $a \in \mathbf{R}^{n}$ and subspace $S \subset \mathbf{R}^{n}$ so that $M=a+S$
- notation $a+S$ means $\{a+x \mid x \in S\}$; dimension of M is dimension of S
- concrete representation for $M=a+S$ is $a+\operatorname{range}(U)$ where $\operatorname{range}(U)=S$ and $U^{\top} U=I$

Projection onto affine set

- given $a \in \mathbf{R}^{n}$ and $U \in \mathbf{R}^{n \times k}$ with $U^{\top} U=I$
- question: what is the projection of $x \in \mathbf{R}^{n}$ onto $a+\operatorname{range}(U)$
- find $z \in \mathbf{R}^{k}$ to minimize

$$
\|a+U z-x\|=\|U z-(x-a)\|
$$

- solution is $z^{\star}=U^{\top}(x-a)$
- projection is $U z^{\star}+a=U U^{\top} x+\left(I-U U^{\top}\right) a$

Extremal trace problem

- problem: given $A=A^{\top}$, find $U \in \mathbf{R}^{n \times k}$ to

$$
\begin{aligned}
\text { maximize } & \operatorname{trace}\left(U^{\top} A U\right) \\
\text { subject to } & U^{\top} U=I
\end{aligned}
$$

- solution: pick first k (orthonormal) eigenvectors
- let $A=Q \Lambda Q^{\top}$ be an eigendecomposition with $\lambda_{1} \geq \cdots \geq \lambda_{n}$
- then $U^{\star}=\left[\begin{array}{lll}q_{1} & \cdots & q_{k}\end{array}\right]$ is a solution
- "a solution", since any permutation obtains same objective value

Extremal trace diagonalized problem

- $A=Q \Lambda Q^{\top}$ with $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$
- parameterize columns of U by basis Q; i.e., $U=Q Z$ where $Z \in \mathrm{R}^{n \times k}$
- columns of Z give coordinates of U in basis Q
- there is one-to-one correspondence between U and Z
- in new coordinates, we find Z to

$$
\begin{array}{cl}
\text { maximize } & \operatorname{trace}\left(Z^{\top} \Lambda Z\right) \\
\text { subject to } & Z^{\top} Z=I
\end{array}
$$

- since $U^{\top} U=1$ if and only if $Z^{\top} Z=1$ and $U^{\top} A U=Z^{\top} \Lambda Z$
- we have diagonalized the problem; changed coordinates to Q

Extremal trace diagonalized objective

- we have

$$
\operatorname{trace}\left(Z^{\top} \Lambda Z\right)=\sum_{j=1}^{k} \lambda_{i} \tilde{z}_{i}^{\top} \tilde{z}_{i}=\sum_{j=1}^{n} \lambda_{i}\left\|\tilde{z}_{i}\right\|^{2} \leq \sum_{i=1}^{k} \lambda_{i}
$$

since

- $\left\|\tilde{z}_{i}\right\|^{2} \leq\|Z\|^{2}=1$; i.e., the rows of an orthonormal matrix have norm bounded by 1
- $\sum_{i=1}^{n}\left\|\tilde{z}_{i}\right\|^{2}=\|Z\|_{F}=k$; i.e., the sum of squares elements of an orthonormal matrix is bounded by k
- we can can achieve this upper bound by selecting $Z^{\star}=\left[\begin{array}{lll}e_{1} & \cdots & e_{k}\end{array}\right]$
- this choice corresponds to $U^{\star}=Q Z^{\star}=\left[\begin{array}{lll}q_{1} & \cdots & q_{k}\end{array}\right]$

Minimum-residual affine set

- given dataset $x_{1}, x_{2}, \ldots, x_{m} \in \mathbf{R}^{n}$
- define $X=\left[\begin{array}{lll}x_{1} & \cdots & x_{m}\end{array}\right], \bar{x}=(1 / m) X 1$, and $\bar{X}=X-(1 / m) X 11^{\top}=\left(I-(1 / m) 11^{\top}\right) X$
- we want to find the k-dimensional affine set "closest to" data
- problem: find $a \in \mathbf{R}^{n}$ and $U \in \mathbf{R}^{n \times k}$ (giving affine set $M_{a, U}$) to minimize

$$
\sum_{i=1}^{m}\left\|x_{i}-\operatorname{proj}_{M_{a, U}}\left(x_{i}\right)\right\|^{2}
$$

- solution: pick $a^{\star}=\bar{x}$ and U to have columns first k eigenvectors of $\bar{X} \bar{X}^{\top}$
- eigenvectors of $\bar{X} \bar{X}^{\top}$ are first k left singular vectors of \bar{X} (right singular vectors of \bar{X}^{\top})

Minimum-residual affine set, offset

- fix $U \in \mathbf{R}^{n \times k}, U^{\top} U=I$
- find $a \in \mathrm{R}^{n}$ to minimize

$$
\sum_{i=1}^{m}\left\|x_{i}-U U^{\top} x_{i}-\left(I-U U^{\top}\right) a\right\|^{2}=\left\|\left[\begin{array}{c}
I-U U^{\top} \\
\vdots \\
I-U U^{\top}
\end{array}\right] a-\left[\begin{array}{ccc}
I-U U^{\top} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & I-U U^{\top}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\right\|^{2}
$$

- solution a^{\star} must satisfies normal equations, helps to notice $\left(I-U U^{\top}\right)^{2}=\left(I-U U^{\top}\right)$
- normal equations are $\left(I-U U^{\top}\right) a^{\star}=\left(I-U U^{\top}\right) \bar{x}$
- $a^{\star}=\bar{x}$ works, and does not depend on U

Minimum-residual affine set, subspace

- assume $M=\bar{x}+\operatorname{range}(U)$
- find $U \in \mathbf{R}^{n \times k}$ to

$$
\begin{aligned}
\text { minimize } & \sum_{i=1}^{m}\left\|\left(I-U U^{\top}\right)\left(x_{i}-\bar{x}\right)\right\|^{2} \\
\text { subject to } & U^{\top} U=I
\end{aligned}
$$

- $\left\|\left(I-U U^{\top}\right)\left(x_{i}-\bar{x}\right)\right\|^{2}=\left\|\left(x_{i}-\bar{x}\right)\right\|^{2}-\left\|U^{\top}\left(x_{i}-\bar{x}\right)\right\|^{2}$, first term constant w.r.t. U
- $\sum_{i=1}^{m}\left\|U^{\top}\left(x_{i}-\bar{x}\right)\right\|^{2}=\left\|U^{\top} \bar{X}\right\|_{F}^{2}=\operatorname{trace}\left(\bar{X}^{\top} U U^{\top} \bar{X}\right)=\operatorname{trace}\left(U^{\top} \bar{X} \bar{X}^{\top} U\right)$
- so we want to find $U \in \mathbf{R}^{n \times k}$ to

$$
\begin{array}{ll}
\text { maximize } & \operatorname{trace}\left(U^{\top} \bar{X} \bar{X}^{\top} U\right) \\
\text { subject to } & U^{\top} U=I
\end{array}
$$

- an extremal trace problem, solution is first k eigenvectors of $\bar{X} \bar{X}^{\top}$

Total least squares

- measure distances orthogonal to line

Maximum-variance affine set

- given data set $x_{1}, \ldots, x_{m} \in \mathbf{R}^{n}$
- we want to find the k-dimensional affine subspace in which our data has "maximal variance"
- for affine subspace M, define the projected mean and projected variance by

$$
\bar{x}(M)=\frac{1}{m} \sum_{i=1}^{m} \operatorname{proj}_{M}\left(x_{i}\right) \quad \text { and } \quad \nu(M)=\frac{1}{m} \sum_{i=1}^{m}\left\|\operatorname{proj}_{M}(x)-\bar{x}(M)\right\|^{2}
$$

- problem: find $a \in \mathbf{R}^{n}$ and $U \in \mathbf{R}^{n \times k}$

$$
\begin{array}{cl}
\text { maximize } & \nu(a+\text { range } U) \\
\text { subject to } & U^{\top} U=I
\end{array}
$$

- solution pick columns of U to be the first k eigenvectors $\bar{X} \bar{X}^{\top}$, any $a \in \mathbf{R}^{n}$ works

Maximum-variance affine set solution

- express $\bar{x}(a+\operatorname{range} U)$ as

$$
\frac{1}{m} \sum_{i=1}^{m} U U^{\top} x_{i}+\left(I-U U^{\top}\right) a=U U^{\top} \bar{x}+\left(I-U U^{\top}\right) a
$$

- drop the constant $1 / m$ and write the objective

$$
\sum_{i=1}^{m}\left\|\operatorname{proj}_{M}(x)-\bar{x}(S)\right\|^{2}=\sum_{i=1}^{m}\left\|U U^{\top} x_{i}-U U^{\top} \bar{x}\right\|^{2}=\sum_{i=1}^{m}\left\|U U^{\top}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

- since U is orthonormal, $\left\|U U^{\top}\left(x_{i}-\bar{x}\right)\right\|=\left\|U^{\top}\left(x_{i}-\bar{x}\right)\right\|$, a familiar expression
- the variance of the projected points does not depend on a
- so we want to find $U \in \mathbf{R}^{n \times k}$ to

$$
\begin{aligned}
\text { maximize } & \operatorname{trace}\left(U^{\top} \bar{X} \bar{X}^{\top} U\right) \\
\text { subject to } & U^{\top} U=I
\end{aligned}
$$

- an extremal trace problem, pick the first k eigenvectors of $\bar{X} \bar{X}^{\top}$

Protein embeddings 2d

- train a big neural network which maps proteins to vectors in \mathbf{R}^{1024}

Protein embeddings 3D

- train a big neural network which maps proteins to vectors in R^{1024}

Rash embeddings 3D

- RASH protein family

Rash embeddings 3D

- RASH protein family

