PCA Two Ways

Nick Landolfi Stanford University

Revision: August 2022, for EE263

Outline

- ▶ background: affine sets, projections, extremal trace
- minimum-residual affine set
- maximum-variance affine set
- examples with protein data

Affine sets

▶ a set $M \subset \mathbf{R}^n$ is affine if it contains the lines through any two of its points

- ▶ i.e., $(1 \lambda)x + \lambda y \in M$ for all $x, y \in M$, $\lambda \in \mathsf{R}$
- > other terminology: affine subspace, linear variety, affine variety, flat set
- the affine sets are the solution sets of linear equations
 - **b** given conforming A and b the set $\{x \in \mathbb{R}^n \mid Ax = b\}$ is affine, and vice versa
- ▶ the affine sets are translated subspaces
 - ▶ if *M* is affine, there exists a unique $a \in \mathbf{R}^n$ and subspace $S \subset \mathbf{R}^n$ so that M = a + S
 - ▶ notation a + S means $\{a + x \mid x \in S\}$; dimension of M is dimension of S

• concrete representation for M = a + S is $a + \operatorname{range}(U)$ where $\operatorname{range}(U) = S$ and $U^{\top}U = I$

Projection onto affine set

- given $a \in \mathbf{R}^n$ and $U \in \mathbf{R}^{n \times k}$ with $U^{\top}U = I$
- ▶ question: what is the projection of $x \in \mathbf{R}^n$ onto $a + \operatorname{range}(U)$
- ▶ find $z \in \mathbf{R}^k$ to minimize

$$||a + Uz - x|| = ||Uz - (x - a)||$$

▶ solution is
$$z^* = U^\top (x - a)$$

• projection is $Uz^{\star} + a = UU^{\top}x + (I - UU^{\top})a$

Extremal trace problem

▶ problem: given $A = A^{\top}$, find $U \in \mathbf{R}^{n \times k}$ to

maximize $\operatorname{trace}(U^{\top}AU)$ subject to $U^{\top}U = I$

- solution: pick first k (orthonormal) eigenvectors
 - ▶ let $A = Q \Lambda Q^{\top}$ be an eigendecomposition with $\lambda_1 \geq \cdots \geq \lambda_n$
 - \blacktriangleright then $U^{\star}=\left[egin{array}{ccc} q_1 & \cdots & q_k \end{array}
 ight]$ is a solution
 - ▶ "a solution", since any permutation obtains same objective value

Extremal trace diagonalized problem

- $A = Q \Lambda Q^{ op}$ with $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$
- ▶ parameterize columns of U by basis Q; i.e., U = QZ where $Z \in \mathbf{R}^{n \times k}$
 - \blacktriangleright columns of Z give coordinates of U in basis Q
 - \blacktriangleright there is one-to-one correspondence between U and Z
- in new coordinates, we find Z to

 $\begin{array}{ll} \mathsf{maximize} & \mathsf{trace}(Z^\top \Lambda Z) \\ \mathsf{subject to} & Z^\top Z = I \end{array}$

- ▶ since $U^{\top}U = 1$ if and only if $Z^{\top}Z = 1$ and $U^{\top}AU = Z^{\top}\Lambda Z$
- ▶ we have *diagonalized* the problem; changed coordinates to Q

Extremal trace diagonalized objective

we have

$$ext{trace}(Z^{ op}\Lambda Z) = \sum_{j=1}^k \lambda_i ilde{z}_i^{ op} ilde{z}_i = \sum_{j=1}^n \lambda_i \| ilde{z}_i \|^2 \leq \sum_{i=1}^k \lambda_i$$

since

▶ $||\mathcal{I}_i||^2 \leq ||\mathcal{I}||^2 = 1$; i.e., the rows of an orthonormal matrix have norm bounded by 1

 $\sum_{i=1}^{n} \|\vec{z}_i\|^2 = \|Z\|_F = k$; i.e., the sum of squares elements of an orthonormal matrix is bounded by k

- we can can achieve this upper bound by selecting $Z^{\star} = \begin{bmatrix} e_1 & \cdots & e_k \end{bmatrix}$
- \blacktriangleright this choice corresponds to $U^{\star}=QZ^{\star}=\left[egin{array}{cc} q_1&\cdots&q_k\end{array}
 ight]$

Minimum-residual affine set

• given dataset $x_1, x_2, \ldots, x_m \in \mathsf{R}^n$

▶ define $X = \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix}$, $\bar{x} = (1/m)X1$, and $\bar{X} = X - (1/m)X11^\top = (I - (1/m)11^\top)X$

- \blacktriangleright we want to find the k-dimensional affine set "closest to" data
- ▶ problem: find $a \in \mathbb{R}^n$ and $U \in \mathbb{R}^{n \times k}$ (giving affine set $M_{a,U}$) to minimize

$$\sum_{i=1}^m \lVert x_i - \mathsf{proj}_{M_{a,U}}(x_i)
Vert^2$$

- ▶ solution: pick $a^{\star} = \bar{x}$ and U to have columns first k eigenvectors of $\bar{X}\bar{X}^{ op}$
 - eigenvectors of $\bar{X}\bar{X}^{\top}$ are first k left singular vectors of \bar{X} (right singular vectors of \bar{X}^{\top})

Minimum-residual affine set, offset

- ▶ fix $U \in \mathbf{R}^{n \times k}$, $U^{\top}U = I$
- ▶ find $a \in \mathbf{R}^n$ to minimize

$$\sum_{i=1}^{m} ||x_i - UU^{\top} x_i - (I - UU^{\top})a||^2 = || \begin{bmatrix} I - UU^{\top} \\ \vdots \\ I - UU^{\top} \end{bmatrix} a - \begin{bmatrix} I - UU^{\top} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & I - UU^{\top} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} ||^2$$

▶ solution a^* must satisfies normal equations, helps to notice $(I - UU^{\top})^2 = (I - UU^{\top})$

- \blacktriangleright normal equations are $(I UU^{ op})a^{\star} = (I UU^{ op})ar{x}$
- $a^{\star} = \bar{x}$ works, and *does not depend on U*

Minimum-residual affine set, subspace

- ▶ assume $M = \bar{x} + \operatorname{range}(U)$
- ▶ find $U \in \mathbb{R}^{n \times k}$ to minimize $\sum_{i=1}^{m} ||(I - UU^{\top})(x_i - \bar{x})||^2$ subject to $U^{\top}U = I$ ▶ $||(I - UU^{\top})(x_i - \bar{x})||^2 = ||(x_i - \bar{x})||^2 - ||U^{\top}(x_i - \bar{x})||^2$, first term constant w.r.t. U▶ $\sum_{i=1}^{m} ||U^{\top}(x_i - \bar{x})||^2 = ||U^{\top}\bar{X}||_F^2 = \operatorname{trace}(\bar{X}^{\top}UU^{\top}\bar{X}) = \operatorname{trace}(U^{\top}\bar{X}\bar{X}^{\top}U)$
- ▶ so we want to find $U \in \mathbf{R}^{n imes k}$ to

maximize $\operatorname{trace}(U^{\top}\bar{X}\bar{X}^{\top}U)$ subject to $U^{\top}U = I$

 \blacktriangleright an extremal trace problem, solution is first k eigenvectors of $ar{X}ar{X}^ op$

Total least squares

measure distances orthogonal to line

Maximum-variance affine set

- given data set $x_1,\ldots,x_m\in\mathsf{R}^n$
- ▶ we want to find the k-dimensional affine subspace in which our data has "maximal variance"
- ▶ for affine subspace *M*, define the *projected mean* and *projected variance* by

$$ar{x}(M) = rac{1}{m} \sum_{i=1}^m \operatorname{proj}_M(x_i)$$
 and $u(M) = rac{1}{m} \sum_{i=1}^m \|\operatorname{proj}_M(x) - ar{x}(M)\|^2$

▶ problem: find $a \in \mathbf{R}^n$ and $U \in \mathbf{R}^{n \times k}$

$$ext{maximize} \quad
u(a+ ext{range}\,U)$$
 $ext{subject to} \quad U^ op U = I$

▶ solution pick columns of U to be the first k eigenvectors $\bar{X}\bar{X}^{\top}$, any $a \in \mathbf{R}^n$ works

Maximum-variance affine set solution

• express $\bar{x}(a + \operatorname{range} U)$ as

$$rac{1}{m}\sum_{i=1}^m UU^ op x_i + (I-UU^ op)a = UU^ op ar{x} + (I-UU^ op)a$$

• drop the constant 1/m and write the objective

$$\sum_{i=1}^{m} \| \mathsf{proj}_M(x) - ar{x}(S) \|^2 = \sum_{i=1}^{m} \| U U^{ op} x_i - U U^{ op} ar{x} \|^2 = \sum_{i=1}^{m} \| U U^{ op} (x_i - ar{x}) \|^2$$

 \blacktriangleright since U is orthonormal, $\|UU^{ op}(x_i-ar{x})\|=\|U^{ op}(x_i-ar{x})\|$, a familiar expression

▶ the variance of the projected points does not depend on a

• so we want to find $U \in \mathbf{R}^{n \times k}$ to

maximize $\operatorname{trace}(U^{\top} \bar{X} \bar{X}^{\top} U)$ subject to $U^{\top} U = I$

 \blacktriangleright an extremal trace problem, pick the first k eigenvectors of $ar{X}ar{X}^ op$

Protein embeddings 2d

▶ train a big neural network which maps proteins to vectors in R¹⁰²⁴

Protein embeddings 3D

 \blacktriangleright train a big neural network which maps proteins to vectors in R^{1024}

Rash embeddings 3D

► RASH protein family

Rash embeddings 3D

► RASH protein family

