Basic mathematical genomics

Nick Landolfi and Dan O'Neill Stanford University

- deoxyribonucleic acid (DNA) is a molecule which we can represent as a string
- ▶ a *nucleotide* (or *base pair*) is one of adenine, thymine, cytosine, and guanine
 - we abbreviate the word "nucleotide" with "nt"
 - ▶ we represent each of the four nucleotides with letters A, T, C, and G
 - ▶ ribonucleic acid (RNA) has the nucleotide uracil (U) instead of thymine (T)
- ▶ a *nucleotide string* is a sequence in the set {A, T, C, G}; e.g. ATCGATCATC
 - ▶ in the "double helix" structure of DNA, A binds with T and C binds with G, forming "cross-bars"
 - ▶ we call A the *nucleotide complement* of T, and vice versa; same for C and G
 - > as a result, we can represent the double helix DNA as a single nucleotide string

Proteins

- ▶ a protein is a molecule which we can represent as a string
- ▶ an *amino acid* (also *residue*) is one of

name	symbol	name	symbol	name	symbol	name	symbol
alanine	А	arginine	R	asparagine	N	aspartate	D
cysteine	С	glutamine	Q	glutamate	E	glycine	G
histidine	Н	isoleucine	I	leucine	L	lysine	K
methionine	М	phenylalanine	F	proline	Р	serine	S
threonine	Т	tryptophan	W	tyrosine	Y	valine	V

- ▶ an amino acid string is a sequence in {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V}
 - \blacktriangleright we denote this set by $\mathcal{A},$ a mnemonic for "amino"
 - different amino acid strings correspond to different proteins
 - ▶ as a result, we can represent a protein as a single amino acid string

Codons

- nucleotides have semantic meaning in non-overlapping sequences of three
- ▶ a *nucleotide codon* (or *trinucleotide sequence*) is a length 3 nucleotide string; e.g., ATC
 - ▶ codons encode an element of A (an amino acid) or a "stop" (which we denote by \diamond)
 - we partition the set $\{A, T, C, G\}^3$ of $4^3 = 64$ codons into 61 *amino codons* and 3 *stop codons*
- a nucleotide string is codon-aligned if its length is a multiple of three
 - > a codon-aligned nucleotide string can be interpreted as a sequence of codons
 - ▶ we know the *codon decoding function* $f : {A, C, T, G}^3 \rightarrow A \cup {\diamond}$
 - ▶ for example, f(GCT) = A where the r.h.s. is the symbol for the amino alanine
 - f is not injective since two distinct codons may map to the same amino (or to \diamond)
 - ▶ we call two codons with the same image under *f* synonyms
 - ▶ for example, CAU and CAC are synonyms for histidine; i.e., f(CAU) = f(CAC) = H

Codon Table

▶ it is easier to tabulate f^{-1} since its codomain is smaller than its domain

symbol	codons; i.e., $f^{-1}(symbol)$	symbol	codons
А	GCT, GCC, GCA, GCG		ΑΤΤ, ΑΤϹ, ΑΤΑ
R	CGT, CGC, CGA, CGG, AGA, AGG	L	CTT, CTC, CTA, CTG, TTA, TTG
Ν	ΑΑΤ, ΑΑС	K	AAA, AAG
D	GAT, GAC	M	ATG
С	TGT, TGC	F	ΤΤΤ, ΤΤΟ
Q	CAA, CAG	Р	CCT, CCC, CCA, CCG
Е	GAA, GAG	S	TCT, TCC, TCA, TCG, AGT, AGC
G	GGT, GGC, GGA, GGG	Т	ACT, ACC, ACA, ACG
Н	CAT, CAC	W	TGG
\diamond	TAA, TGA, TAG	Y	ΤΑΤ, ΤΑС
		V	GTT, GTC, GTA, GTG

▶ the domain of f is $\{A, T, C, G\}^3$ and the codomain of f is $A \cup \{\diamond\}$

▶ $f^{-1}(x)$ is the set of domain elements of f (in this case, codons) which map to $x \in \mathcal{A} \cup \{\diamond\}$

Nucleotide senses

▶ naturally, we can extend f to codon-aligned nucleotide strings by defining $s = \overline{f}(x)$ by

$$s_i = f(\underbrace{x_{3(i-1)+1}x_{3(i-1)+2}x_{3(i-1)+3}}_{\text{codon } i \text{ of } x})$$

we call s the sense of x; for example, the sense of ATTCTTAAA is

$$\overline{f}(\underbrace{\text{ATT}}_{I},\underbrace{\text{CTT}}_{L},\underbrace{\text{AAA}}_{K}) = \text{ILK}$$

- ▶ since f is not one-to-one, neither is \bar{f}
 - x and y are sense-equivalent if they have the same sense; i.e., $\bar{f}(x) = \bar{f}(y)$
 - \blacktriangleright roughly speaking, x and y are sense-equivalent if they "spell out the same thing"
 - e.g., CGTCGC and CGACGG are sense-equivalent because $\overline{f}(\underline{CGT},\underline{CGC}) = \overline{f}(\underline{CGA},\underline{CGG}) = RR$

▶ in this case, because CGT, CGC, CGA, CGG are synonyms for arginine (R)

Nucleotide substitutions

- ▶ a (nucleotide) substitution (or point mutation) to a length m nucleotide string is a pair (j, b)
 - ▶ the *index* j is in {1,..., m} and the *replacement* nucleotide b is in {A, T, C, G}
 - ▶ the (*j*,*b*)-mutation of x is the nucleotide string y defined by $y_j = b$ and $y_i = x_i$ for all $i \neq j$
 - \blacktriangleright i.e., y is the same as x except at index j, where it has nucleotide b
 - e.g., the (3, A)-mutation of CGT is CGA (we swapped T in position 3 with A)
- ▶ we classify substitutions on codon-aligned nucleotide sequences by their effect on the sense
 - a substitution is synonymous (silent) if it does not change the sense
 - ▶ e.g. (3, C) on CG<u>T</u> with result CG<u>C</u>, since $f(CG\underline{T}) = f(CG\underline{C}) = R$
 - > a substitution is *nonsynonymous* if it changes the sense
 - > a substitution is *missense* if an amino codon became a different amino codon
 - ▶ the *missense variants* of a protein are all proteins which differ with it by one amino in position
 - ▶ a substitution is *nonsense (readstop)* if an amino codon became a stop codon
 - a substitution is nonstop (readthrough) if a stop codon became amino codon