Basic mathematical genomics

Nick Landolfi and Dan O'Neill
Stanford University

DNA

- deoxyribonucleic acid (DNA) is a molecule which we can represent as a string
- a nucleotide (or base pair) is one of adenine, thymine, cytosine, and guanine
- we abbreviate the word "nucleotide" with "nt"
- we represent each of the four nucleotides with letters A, T, C, and G
- ribonucleic acid (RNA) has the nucleotide uracil (U) instead of thymine (T)
- a nucleotide string is a sequence in the set $\{\mathrm{A}, \mathrm{T}, \mathrm{C}, \mathrm{G}\}$; e.g, ATCGATCATC
- in the "double helix" structure of DNA, A binds with T and C binds with G , forming "cross-bars"
- we call A the nucleotide complement of T, and vice versa; same for C and G
- as a result, we can represent the double helix DNA as a single nucleotide string

Proteins

- a protein is a molecule which we can represent as a string
- an amino acid (also residue) is one of

name	symbol	name	symbol	name	symbol	name	symbol
alanine	A	arginine	R	asparagine	N	aspartate	D
cysteine	C	glutamine	Q	glutamate	E	glycine	G
histidine	H	isoleucine	l	leucine	L	lysine	K
methionine	M	phenylalanine	F	proline	P	serine	S
threonine	T	tryptophan	W	tyrosine	Y	valine	V

- an amino acid string is a sequence in $\{\mathrm{A}, \mathrm{R}, \mathrm{N}, \mathrm{D}, \mathrm{C}, \mathrm{Q}, \mathrm{E}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{L}, \mathrm{K}, \mathrm{M}, \mathrm{F}, \mathrm{P}, \mathrm{S}, \mathrm{T}, \mathrm{W}, \mathrm{Y}, \mathrm{V}\}$
- we denote this set by \mathcal{A}, a mnemonic for "amino"
- different amino acid strings correspond to different proteins
- as a result, we can represent a protein as a single amino acid string

Codons

- nucleotides have semantic meaning in non-overlapping sequences of three
- a nucleotide codon (or trinucleotide sequence) is a length 3 nucleotide string; e.g., ATC
- codons encode an element of \mathcal{A} (an amino acid) or a "stop" (which we denote by \diamond)
- we partition the set $\{\mathrm{A}, \mathrm{T}, \mathrm{C}, \mathrm{G}\}^{3}$ of $4^{3}=64$ codons into 61 amino codons and 3 stop codons
- a nucleotide string is codon-aligned if its length is a multiple of three
- a codon-aligned nucleotide string can be interpreted as a sequence of codons
- we know the codon decoding function $f:\{\mathrm{A}, \mathrm{C}, \mathrm{T}, \mathrm{G}\}^{3} \rightarrow \mathcal{A} \cup\{\diamond\}$
- for example, $f(\mathrm{GCT})=$ A where the r.h.s. is the symbol for the amino alanine
- f is not injective since two distinct codons may map to the same amino (or to \diamond)
- we call two codons with the same image under f synonyms
- for example, CAU and CAC are synonyms for histidine; i.e., $f(\mathrm{CAU})=f(\mathrm{CAC})=\mathrm{H}$

Codon Table

- it is easier to tabulate f^{-1} since its codomain is smaller than its domain

symbol	codons; i.e., f^{-1} (symbol)	symbol	codons
A	GCT, GCC, GCA, GCG	I	ATT, ATC, ATA
R	CGT, CGC, CGA, CGG, AGA, AGG	L	CTT, CTC, CTA, CTG, TTA, TTG
N	AAT, AAC	K	AAA, AAG
D	GAT, GAC	M	ATG
C	TGT, TGC	F	TTT, TTC
Q	CAA, CAG	P	CCT, CCC, CCA, CCG
E	GAA, GAG	S	TCT, TCC, TCA, TCG, AGT, AGC
G	GGT, GGC, GGA, GGG	T	ACT, ACC, ACA, ACG
H	CAT, CAC	W	TGG
\diamond	TAA, TGA, TAG	Y	TAT, TAC
		V	GTT, GTC, GTA, GTG

- the domain of f is $\{\mathrm{A}, \mathrm{T}, \mathrm{C}, \mathrm{G}\}^{3}$ and the codomain of f is $\mathcal{A} \cup\{\diamond\}$
- $f^{-1}(x)$ is the set of domain elements of f (in this case, codons) which map to $x \in \mathcal{A} \cup\{\diamond\}$

Nucleotide senses

- naturally, we can extend f to codon-aligned nucleotide strings by defining $s=\bar{f}(x)$ by

$$
s_{i}=f(\underbrace{x_{3(i-1)+1} x_{3(i-1)+2} x_{3(i-1)+3}}_{\text {codon } i \text { of } x})
$$

- we call s the sense of x; for example, the sense of ATTCTTAAA is

$$
\bar{f}(\underbrace{\mathrm{ATT}}_{\mathrm{I}} \underbrace{\mathrm{CTT}}_{\mathrm{L}} \underbrace{\mathrm{AAA}}_{\mathrm{K}})=\mathrm{ILK}
$$

- since f is not one-to-one, neither is \bar{f}
- x and y are sense-equivalent if they have the same sense; i.e., $\bar{f}(x)=\bar{f}(y)$
- roughly speaking, x and y are sense-equivalent if they "spell out the same thing"
- e.g., CGTCGC and CGACGG are sense-equivalent because $\bar{f}(\underbrace{\text { CGT }}_{\mathrm{R}} \underbrace{\text { CGC }}_{\mathrm{R}})=\bar{f}(\underbrace{\text { CGA }}_{\mathrm{R}} \underbrace{\text { CGG }}_{\mathrm{R}})=\mathrm{RR}$
- in this case, because CGT, CGC, CGA, CGG are synonyms for arginine (R)

Nucleotide substitutions

- a (nucleotide) substitution (or point mutation) to a length m nucleotide string is a pair (j, b)
- the index j is in $\{1, \ldots, m\}$ and the replacement nucleotide b is in $\{\mathrm{A}, \mathrm{T}, \mathrm{C}, \mathrm{G}\}$
- the (j, b)-mutation of x is the nucleotide string y defined by $y_{j}=b$ and $y_{i}=x_{i}$ for all $i \neq j$
- i.e., y is the same as x except at index j, where it has nucleotide b
- e.g., the ($3, \mathrm{~A}$)-mutation of CGI is CGA (we swapped T in position 3 with A)
- we classify substitutions on codon-aligned nucleotide sequences by their effect on the sense
- a substitution is synonymous (silent) if it does not change the sense
- e.g. $(3, \mathrm{C})$ on $\mathrm{CG} \underline{\text { I }}$ with result $\mathrm{CG} \underline{\text {, since }} f(\mathrm{CG} \underline{\mathrm{I}})=f(\mathrm{CG} \underline{\mathrm{C}})=\mathrm{R}$
- a substitution is nonsynonymous if it changes the sense
- a substitution is missense if an amino codon became a different amino codon
- the missense variants of a protein are all proteins which differ with it by one amino in position
- a substitution is nonsense (readstop) if an amino codon became a stop codon
- a substitution is nonstop (readthrough) if a stop codon became amino codon

