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Background

I about me: fourth year Ph.D. candidate in Computer Science at Stanford (computational side)

I about this talk: unsupervised prediction of protein variant pathogenicity

I Disease variant prediction with deep generative models of evolutionary data [Frazer et al. 2021]

I a nature paper from last year

I involved/sophisticated research effort

I computational biology team (5 people at Harvard) and machine learning team (3 people at Oxford)
I most recent contribution in a decade-long research program
I they build probabilistic models for 3,000+ proteins, each protein takes 80 hr. CPU time
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Pathogenicity via probability

I goal: quantify pathogenicity of protein variants in disease-related genes

I problem: infeasible to label all variants (even with high-throughput experiments); see paper

I 6.5 million missense variants in the gnomAD dataset of 141,000 human genomes

I 36 million missense variants associated with 3,219 disease-related genes in ClinVar

I approach: (roughly speaking) protein variants which appear in nature have been selected for fitness

I given a dataset of naturally occurring variants, one could build an unsupervised probabilistic model
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Proteins as strings

I recall that a protein is a molecule which we can represent as an amino acid string

I nucleotides are read into aminos in groups of three called codons

I call the amino string corresponding to nucleotide string the sense of the nucleotide string

I different nucleotide strings can have same or different sense (depends on codons)

I paper’s focus: when a sense is different by one amino in one spot, called a missense variant

I in other words, the paper restricts interest to mutations that swap a single amino acid

I they look at missense variants of protein-coding genes which are associated with disease
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Distribution on amino strings

I paper asserts that uncommon variants are pathogenic

I so the goal is to build a protein-specific distribution over naturally occurring amino strings

I given a length-k wild-type (or canonical) protein xwt 2 X = fA, R, � � � , Vgk for a gene

I want the distribution p : X ! [0; 1] of naturally occurring variants of this protein

I use p to score variants: p(x) > p(y) means variant x is more common than y

I if we had p, we could define the evolutionary index Ev of variant xv by

Ev = � log
p(xv)

p(xwt)

I if a variant has relatively low probability, then it is a candidate for being pathogenic

I obtaining this index is the point of the paper; hence evolutionary model of variant effect (EVE)
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Latent structure in genetic data

I amino acid space still too big, at least 20100 variants...can’t write down p

I perhaps (nonlinear) latent structure, can use it to approximate p

I conservation across certain subindices of protein

I figure from Riesselman 2018 (prior work by some of the EVE authors)

I trained a VAE latent variable model (will discuss later) with 2-dimensional latent space
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Latent variable models

I observe x 2 X , postulate px(x) =
R
Z
pzx(�; x) and pzx = pzpxjz

I z 2 Z are hidden and not observed

I roughly speaking, most of the structure in x comes from structure in z

I ubiquitous example: any signal + noise model

I other examples include gaussian mixture models, hidden markov models (HMMs) etc.

I e.g., jackhmmr multiple sequence alignment (MSA) tool used in paper is based on an HMM

I variational autoencoders (VAEs) are one such latent variable model, which we will discuss later

I their conditional distribution pxjz is parameterized using a neural network
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Block diagram of method used in paper

I first, they find pathogenic genes and construct a MSA dataset for each one

I second, they fit a probabilistic latent variable for each protein and score variants
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Method used in paper

I dataset construction

1. associate a gene with a canonical wild-type protein; using ClinVar, UniProt

2. associate and align many similar proteins found in nature with that canonical one

I specifically, get a multiple sequence alignment (MSA) using jackhmmr against UniRef100

I probabilistic model and scoring

3. fit a VAE to a dataset (a subset of subsequences)

4. likelihood score all proteins which are one-amino substitutions of the canonical protein

10



Probabilistic model piece
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Variational autoencoder (VAE)

I a variational autoencoder from latents Z to observations X is a pair (p(�)z ; p
(�)

xjz); q
(�)

zjx where

I (p
(�)
z ; p

(�)

xjz
) is a deep latent-variable model with parameters �, called generative model

I p
(�)
z : Z ! R is a distribution with parameters from �, called latent prior distribution

I p
(�)

xjz
: X � Z ! R is a deep conditional with params from �, called decoder distribution

I has associated decoder neural network f(�) with domain Z

I q
(�)

zjx
: Z �X ! R is deep conditional with params �, called encoder distribution

I has associated encoder neural network g(�) with domain X
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Evidence lower bound for log likelihood

I log likelihood of i.i.d. observed dataset x1; : : : ; xn in X under VAE model is
Pn

i=1
log p

(�)
x (xi)

I where the model evidence p(�)x (xi) =
R
Z
p
(�)
zx (�; x) is assumed (usually is) intractable

I but since
R
Z
q
(�)

zjx(�; x
i) = 1 and p

(�)
x (xi) = p

(�)
zx (�; x

i)=p
(�)

zjx(�; x
i) for all � 2 Z, can express

log p(�)x (xi) =

Z
Z

q
(�)

zjx(�; x) log
p
(�)
zx (�; x

i)

q
(�)

zjx(�; x
i)
d�

| {z }
ELBO(�;�;xi)

+

Z
Z

q
(�)

zjx(�; x
i) log

q
(�)

zjx(�; x
i)

p
(�)

zjx(�; x
i)
d�

| {z }
dkl(q

(�)

zjx
(�;xi);p

(�)

zjx
(�;xi))�0

� ELBO(�; �;xi)

I dkl is the Kullback-Leibler divergence between two distributions (densities)

I it is a nonnegative similarity measure (but not a metric); dkl(q; p) = 0 when q = p

I � are sometimes called variational parameters, since one wants q(�)
zjx

� p
(�)

zjx

I can maximize the evidence lower bound (ELBO) as a proxy for the likelihood
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ELBO as reconstruction loss and regularization

I recall from the previous slide that log p(�)x (xi) � ELBO(�; �; xi)

I again, since p(�)zx (�; x
i) = p

(�)
z (�)p

(�)

xjz(x
i; �) for all � 2 Z, express

ELBO(�; �; xi) =
Z
Z

q
(�)

zjx(�; x
i) log p

(�)

xjz(x
i; �)d�

| {z }
`(�;�;xi)

+ dkl(q
(�)

zjx(�; x
i); p(�)z )| {z }

r(�;�;xi)

= `(�; �; xi) + r(�; �; xi)

I can interpret ` a reconstruction loss and r as a regularization

I ` is an integral (expectation) and may be estimated via monte carlo
I r is often analytical since it is a divergence of two distributions

I if these are differentiable in parameters, can apply usual stochastic gradient methods (next slide)
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Gradient of ELBO

I recall ELBO(�; �; xi) = `(�; �; xi) + r(�; �; xi)

I for first-order (gradient) methods, one wants r(�;�)ELBO

I loss `(�; �; xi) is an integral (expectation) of log p(�)xjz, use monte carlo to approximate

Z
Z

q
(�)

zjx(�; x
i) log p

(�)

xjz(x
i; �)d� �

mX
j=1

log p
(�)

xjz(x
i; �

(j)
i )

with m samples �(j)i � q
(�)

zjx(�; x
i) from the encoder model

I empirical fact m = 1 works; so approximate `(�; �; xi) � log p
(�)

xjz
(xi; �i) where �i � q

(�)

zjx
(�; xi)

I difficulty: the sampling distribution depends on �; fix: reparameterize �i (called reparameterization trick)

I e.g., suppose �i is gaussian with mean �
(�)
i and covariance �

(�)
i (�i params depends on �)

I �
(�)
i + (�

(�)
i )1=2"i for "i mean-zero identity-covariance gaussian ("i params don’t depend on �)

I the regularization r(�; �; xi), a divergence, is assumed (often) analytically computable

I e.g., for gaussian latent and gaussian encoder, exists closed form for divergence between two gaussians
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Finding parameters for VAE

I in summary, we have bounded below the log likelihood of the dataset

nX
i=1

log p(�)x (xi) �

nX
i=1

ELBO(�; �; xi) =
nX
i=1

`(�; �; xi) + r(�; �; xi)

I use minibatch stochastic gradient ascent to maximize right hand side

I i.e., sample k points from dataset, compute gradients using techniques on previous slide

I algorithm is called auto-encoding variational bayes [Kingma & Welling 2014]

I the gradient estimator is called stochastic gradient variational bayes estimator [Rezende et al. 2014]
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Details of paper’s VAE

I details of neural network architecture in paper, lots of exploration to land on this model

I slight wrinkle: paper uses a Bayesian VAE (i.e. learns a distribution on decoder weights �)

I same ELBO machinery we discussed works, gives one additional term in loss

I paper claims that using a Bayesian neural network further improved results
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Dataset construction piece
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Multiple sequence alignment datasets

I goal: turn public sources into a dataset of aligned protein families

I ClinVar: variant labels; UniProt: canonical protein transcript; UniRef100: naturally occurring proteins

I use ClinVar database to identify genes associated with disease; for each such gene:

1. use UniProt database to find the canonical protein associated with the gene
2. use jackhmmer against UniRef100 to find and align homologous proteins to that protein

I heuristic 1: pick subset of those sequences that “well-match” the canonical one
I heuristic 2: pick subset of focus indices “well-conserved” across this subset of sequences

I methodology originally proposed in Hopf et al. 2017 (same lab at Harvard)
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Results: example plot for SCN1B

I heat map of EVE pathogenicity scores in SCN1B, hotter (red) is more pathogenic

I paper’s bottom line: get one of these for each gene (canonical protein) of interest

I suggest using these scores to filter pathogenic candidates for further investigation
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Comparison to other methods
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Next steps

I what is the meaning of the learned latent variables?

I how sensitive is the model to the dataset generation choices?

I does one need to use VAEs? there are other generative models, are there simpler choices?

I beyond missense variants?
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Conclusion

I latent variable models are viable for genomic data

I sophisticated approaches obtain state of the art results

I several directions for future work on simplifications, extensions, interpretations
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