
Stanford University N. Landolfi and S. Lall

Tree Distributions

Nick Landolfi and Sanjay Lall
Stanford University

1



Outline

Overview

Notation

Trees and Distributions

Approximation Problem & Solution

Example: Binary MNIST

2



Overview

3



Motivation: classification

I we have a data set of records u1; : : : ; un 2 U and v1; : : : ; vn 2 V with V a finite set of classes

I we want to build a classifier G : U ! V and use it to classify a new independent variable u as G(u)

I for example, U = R2 and V = f0; 1g

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

I the point uk is colored red if vk = 0 and blue if vk = 1

I the region
�
u 2 R2

�� G(u) = 0
	

is shaded red and
�
u 2 R2

�� G(u) = 1
	

is shaded blue
4



Our setting

I we consider independent variables in a large discrete set

I U = Sd where S is a finite set; d > 100, so Sd is large

I in particular, U is not R2 as on the previous slide

I for example, U = f0; 1g784 and V = f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g

I u represents a hand-written digit (784 = 28� 28 pixels); v is the Arabic digit depicted by u

(a) v1 = 5 (b) v2 = 0 (c) v3 = 4 (d) v4 = 1 (e) v5 = 9

I one approach is to produce a distribution over U for each class; called generative modeling

I for a new u, we define G(u) to be a class with maximum likelihood
5



Overview

I so we want to estimate and store a distribution over a large discrete space Sd

I for example, S = f0; 1g and d = 784 with Sd representing 28� 28 binary images

I but estimating and storing a distribution over so many outcomes is infeasible

I for a distribution on f0; 1g784 we need 2784 � 1 parameters to represent the distribution

I so we do not look at all distributions, because that space is too large, we consider a subset

I roughly, only consider distributions which are a product of so-called second-order distributions

I we will see an efficient algorithm for estimating such distributions

I original work by Chow and Liu in 1968

6



Notation

7



Notation: probability

I p : U ! R is a distribution on U = Sd with S finite; as usual p � 0 and
P

u2U
p(u) = 1

I pi is a distribution on S, called the ith marginal distribution, for i = 1; : : : ; d

I defined by pi(a) =
X
ui=a

p(u)

I pijj is a conditional distribution, called the i; jth conditional distribution, for i; j = 1 : : : ; d and i 6= j

I first, we define the second-order i; jth marginal distribution pij on S2

pij(a; b) =
X

ui=a;uj=b

p(u)

I then we define pijj by pijj(a; b)pj(b) = pij(a; b) for all a; b 2 S

I often we will drop the arguments and write pij = pijjpj

I we will use similar notation for conditioning on multiple variables: for example, pijjkl

I roughly speaking, we will approximate a distribution p using terms like pi and pijj

8



Notation: Kullback-Leibler divergence

I we want a criterion to judge how well a distribution p approximates a given distribution q

I we will use the Kullback-Leibler divergence, defined by

dkl(q; p) = H(q; p)�H(q)

I where H(q) = �
P

a
q(a) log q(a) is called the entropy of q

I and H(q; p) = �
P

a
q(a) log p(a) is called the cross entropy of p relative to q

I we interpret dkl as a measure of the difference between two distributions

I dkl(q; p) � 0 for all distributions q and p and dkl(q; q) = 0

I if we want to find a distribution p to
minimize dkl(q; p)

then p = q is a solution; later we will constrain p

I dkl is not symmetric and so not a metric, though we do not mind

9



Notation: empirical distribution

I the distribution we will approximate is the natural one associated with data

I we are given n records u1; : : : ; un with uk 2 U a finite set

I the empirical distribution of u1; : : : ; un is the distribution q on U defined by

q(u) =
1

n

���uk �� uk = u
	��

I q(u) is the proportion of records which are u

I the empirical distribution is a useful summary of data, but unwieldy, so we approximate it

10



Notation: mutual information graph

I a solution to our approximation will be characterized by mutual informations of the empirical distribution

I the mutual information of pij is dkl(pij ; pipj)

I we denote the symmetric matrix of mutual informations of p by I(p), and define it by

I(p)ij = dkl(pij ; pipj)

I the mutual information graph of p is a weighted complete undirected graph on f1; : : : ; dg

I edge fi; jg is weighted by I(p)ij

I roughly speaking, good approximations will model interactions between vertices with heavy edges

11



Trees and Distributions

12



Rooted trees

I we use trees to discuss factoring a discrete probability distribution

I we will use such distributions to approximate, since they require fewer parameters

I a tree T is an undirected acyclic connected (finite) graph

I there is a unique path between any two vertices

I we root a tree by selecting a vertex and orienting all edges away from it

I and so obtain a directed tree

I we call the distinguished vertex the root

I each vertex (except the root) has only one parent

13



Rooted trees: example

I consider tree T = (f1; 2; 3; 4; 5; 6g; ff1; 2g; f2; 3g; f2; 4g; f4; 5g; f4; 6gg)

1

2

3 4

5 6
(a) not rooted

1

2

3 4

5 6
(b) rooted at 1

1

2

3 4

5 6
(c) rooted at 5

Figure 2: A tree and two possible roots

I in a rooted tree, each vertex except the root has one parent

I we write paj = i to mean that the parent of vertex j is vertex i

I in panel (b), pa2 = 1; pa3 = 2; pa4 = 2; pa5 = 4, and pa6 = 4
14



Tree-structured probability: example

I consider the same tree T = (f1; 2; 3; 4; 5; 6g; ff1; 2g; f2; 3g; f2; 4g; f4; 5g; f4; 6gg), rooted at vertex 1

1

2

3 4

5 6

I if p is a distribution on S6, then by chain rule p always satisfies

p = p6j1;2;3;4;5p5j1;2;3;4p4j1;2;3p3j1;2p2j1p1

I we say p factors according to the tree T rooted at vertex 1 if p satisfies

p = p6j4p5j4p4j2p3j2p2j1p1

I so p6j1;2;3;4;5 = p6j4 (the conditional distribution does not depend on u1; u2; u3 or u5)

I and similarly for p5j4, p4j2 and p3j2

15



Tree-structured probability: rooted definition

I Definition: Let T be a tree on f1; : : : ; dg. A distribution p on Sd factors according to T rooted at
vertex i if

p = pi

Y
j 6=i

pjjpaj

I reminder that this statement is for all u 2 U but drops arguments

I we call pi and pjjpaj for j 6= i the factors of p

I the distribution p is a product of d factors

I this definition says how a distribution factors according to a rooted tree

16



Tree-structured probability: defining theorem

I Theorem: Let T be a tree on f1; : : : ; dg and let p be a distribution on Sd. If p factors according to T
rooted at some vertex, then p factors according to T rooted at any vertex in f1; : : : ; dg.

I in other words: if p factors according to one choice of root, it factors according to all choices

I Definition: A distribution p on Sd factors according to a tree T on f1; : : : ; dg if it factors according to
T rooted at any vertex.

17



Tree-structured probability: defining theorem intuition

I we can successively exchange a root with one of its children to root the tree at the child

1

2

3 4

5 6
(a) rooted at 1

1

2

3 4

5 6
(b) rooted at 2

1

2

3 4

5 6
(c) rooted at 4

1

2

3 4

5 6
(d) rooted at 5

Figure 3: Moving from rooted at 1 to rooted at 5

I the root vertex is red

I in (b), (c) and (d), the only edge differing from (a), (b) and (c), respectively, is red

18



Tree-structured probability: proof of defining theorem

I roughly, the theorem says

I p factors according to one possible root if and only if it factors according to every possible root

I proof of the theorem is repeated application of following lemma

I Lemma: Let T be a tree on f1; : : : ; dg. Let distribution p on Sd factor according to T rooted at vertex
i. If j 2 f1; : : : ; dg with paj = i, then p factors according to T rooted at vertex j.

I the assumption on p means p = pi
Q

k 6=i
pkjpak = pipjji

Q
k 6=i;j

pkjpak

I since p is a distribution, pjjipi = pij = pjjipj

I so we conclude p = pjpjji
Q

k 6=i;j
pkjpak

I which means p factors according to T rooted at j

19



Tree-structured probability: existence and uniqueness

I a distribution p need not factor according to a tree

I for example, consider a distribution p on f0; 1g3 with p(1; 1; 1) = 4=11 and p(u1; u2; u3) = 1=11 otherwise

I there does not exist a tree according to which p factors, requires checking cases (symmetry reduces number)

I compare with: p always factors according to chain rule

I a distribution p may factor according to multiple trees

I for example, consider a distribution p on f0; 1g3 with p = p1p2p3

I then p factors according to every tree on f1; 2; 3g

I we conclude that there is not a one-to-one correspondence between trees and distributions

I rather, trees specify subsets of distributions

20



Tree-structured probability: why

I these distributions can be stored feasibly in computer memory

I linear in d rather than exponential in d; 2d vs. 2d for the case S = f0; 1g

I we will see, they can be estimated efficiently

I algorithm polynomial in dimension d and size of data set n

I broadly speaking, they are useful baseline probabilistic models

I roughly speaking, they are specified by few parameters, which reduces overfitting

I and, also roughly speaking, they may still capture important dependencies

21



Approximation Problem & Solution

22



Relative entropy approximation

I we have a distribution q on Sd

I we want to find a distribution p on Sd and tree T on f1; : : : ; dg to

minimize dkl(q; p)

subject to p factors according to T

I called the Chow-Liu problem to approximate q

I we refer to a solution pair as a Chow-Liu distribution and a Chow-Liu tree of q

I a Chow-Liu tree always exists, but need not be unique

I we will solve by finding best parameters for a fixed tree, then finding best tree

23



Relative entropy approximation: maximum likelihood interpretation

I we have data set u1; : : : ; un with empirical distribution q

I the Chow-Liu problem to approximate q is equivalent to minimizing average negative log likelihood, since

dkl(q; p) = H(q; p)�H(q)

= �
X
u2U

(q(u) log p(u))�H(q)

= �
1

n

nX
k=1

log p(uk)

| {z }
avg. neg. log likelihood

�H(q)

I and H(q) does not depend on p or T

I in this case, we refer to a Chow-Liu tree T as a maximum likelihood tree

24



Approximation: first theorem

I first, we will see how to select the probability parameters for a given tree

I later we will see how to select the tree

I Theorem 1: Let q be a distribution on Sd. Let T be a tree on f1; : : : ; dg. Let pa(�) be defined by T

rooted at vertex i. Then the distribution p on Sd defined by

p = qi

Y
j 6=i

qjjpaj

achieves minimum Kullback-Leibler divergence to q among all distributions which factor according to T .

25



Approximation: proof of Theorem 1

I i = 1; : : : ; d is an arbitrary vertex and p factors according to T rooted at i

I we express the cross entropy of p relative to q

H(q; p) = �
X
u2U

q(u) log p(u)

= �
X
u2U

q(u)

 
log pi(ui) +

X
j 6=i

log pjjpaj (uj ; upaj )

!

= H(qi; pi) +
X
j 6=i

X
b2S

qpaj (b)H(qjjpaj (�; b); pjjpaj (�; b))

I this problem separates across dimension d

I one problem to find pi; solution is pi = qi

I d� 1 problems to find pjjpaj for j 6= i; solutions are pjjpaj = qjjpaj

26



Approximation: second theorem

I this theorem will tell us how to select the tree structure

I recall that the mutual information graph is undirected on f1; : : : ; dg and edge fi; jg has weight I(q)ij

I Theorem 2: Let q be a distribution on Sd. A tree T on f1; : : : ; dg is a Chow-Liu tree of q if and only if
T is a maximum spanning tree of the mutual information graph of q.

27



Approximation: proof of Theorem 2 (1/2)

I first theorem tells us the optimal choice of p that factors according to a tree T , we write it p�T

I recall that dkl(q; p) = H(q; p)�H(q)

I H(q) does not depend on p, so we focus on the cross entropy term

I we will see that we can express the cross entropy

H(q; p�T ) =

dX
i=1

H(qi)�
X

fi;jg2T

I(q)ij

I notation fi; jg 2 T means fi; jg is an edge of T

I for each i = 1; : : : ; d, H(qi) does not depend on T

I the minimize in the Chow-Liu problem results in a maximization over the second sum

28



Approximation: proof of Theorem 2 (2/2)

I we express the cross entropy of p�T relative to q as

H(q; p�T ) = H(q1)�
X
j 6=1

X
u2U

q(u) log qjjpaj (uj ; upaj )

= H(q1)�
X
j 6=1

X
u2U

q(u)
�
log qj;paj (uj ; upaj )� log qpaj (upaj )

�
= H(q1)�

X
j 6=1

X
u2U

q(u)
�
log qj;paj (uj ; upaj )� log qpaj (upaj )� log qj(uj) + log qj(uj)

�

=

dX
i=1

H(qi)�
X
j 6=1

I(q)j;paj

I this completes the proof, so we want a maximum spanning tree of the mutual information graph

29



Approximation: algorithm (for data)

I given records u1; : : : ; un 2 Sd with empirical distribution q

1. compute the mutual information matrix of the empirical distribution

2. find a maximum spanning tree of the mutual information graph

I tree structure represented as element of f1; : : : ; dgd

3. construct distribution p̂ = q1
Q

i6=1
qijpai (pai is parent function for T rooted at vertex 1)

I p̂1: prior distribution of u1 represented as jSj-dimensional vector
I p̂ijpai for i 6= 1: d� 1 conditional distributions represented as jSj � jSj-dimensional matrices

I return distribution p̂ on Sd

I the model is specified by O(djSj2) parameters

I the runtime is O(nd2 + d2 log d), for computing I(q) and then finding T

30



Example: Binary MNIST

31



Data set

I train set of 60,000 records, test set of 10,000 records; both constructed by thresholding MNIST

I originally 28 by 28 gray scale images with pixel values in f0; 1; 2; 3; : : : ; 255g

I construct binary images by taking pixels as 1 if original pixel is positive (i.e., not 0)

I so U = f0; 1g784 and V = f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g

I we can visualize as 28 by 28 binary images, some examples:

(a) v1 = 5 (b) v2 = 0 (c) v3 = 4 (d) v4 = 1 (e) v5 = 9

Figure 4: First five images in data set

32



Classifier

I for each class, we construct a distribution pv over U using the train set, for v = 0; : : : ; 9

I we split into ten subsets based on a record’s class

I we approximate the empirical distribution of each class

I we obtain ten distributions on f0; 1g784

I we define a classifier G : U ! V so that G(u) 2 argmaxv p
v(u)

I we classify points according to the class with the maximum likelihood

33



Distribution sample averages

I we can roughly visualize the distributions by drawing 5000 samples and averaging

0 5 10 15 20 25

0

5

10

15

20

25

(a) v = 0 (b) v = 1 (c) v = 2 (d) v = 3 (e) v = 4

(f) v = 5 (g) v = 6 (h) v = 7 (i) v = 8 (j) v = 9

34



Confusion matrix

I we want a quantitative way to judge our classifier G

I the confusion matrix C 2 Rm�m of G on u1; : : : ; un summarizes performance

I Cij is the number of records for which G(uk) = i and vk = j

I in other words, the number of records we classified as i and the actual class was j

I the accuracy of G on u1; : : : ; un is the proportion of records correctly classified

I can be expressed as
1

n

mX
i=1

Cii

I the error of G on u1 : : : ; un is the proportion of records misclassified

I we want high accuracy and low error on a test set not used to construct G

35



Training confusion matrix

I we train with 60,000 data pairs

I here is the train set confusion matrix

C
train =

2
66666666666664

5742 1 27 30 4 20 31 7 12 22

3 6586 37 22 18 14 22 24 100 12

33 80 5617 133 16 10 10 53 87 6

9 6 54 5579 0 105 2 18 212 55

9 25 51 4 5538 2 7 74 45 94

26 4 6 116 7 5102 98 17 153 43

40 6 16 2 22 32 5692 1 18 1

0 5 33 37 18 4 0 5606 10 169

60 18 107 163 24 110 56 44 5117 81

1 11 10 45 195 22 0 421 97 5466

3
77777777777775

I entry ij is the number of records for which we predicted class i and the actual class was j

36



Test confusion matrix

I we test with 10,000 data pairs

I here is the test set confusion matrix

C
test =

2
66666666666664

953 0 15 10 3 3 14 2 6 6

0 1099 5 0 0 2 4 8 3 6

1 13 952 14 1 1 0 20 15 7

1 0 16 917 2 27 1 5 38 4

2 4 9 0 940 0 3 9 5 19

8 0 0 31 0 830 12 2 25 10

7 7 4 0 5 8 915 0 4 0

3 0 7 6 5 1 0 897 10 24

4 12 23 22 3 15 9 12 849 11

1 0 1 10 23 5 0 73 19 922

3
77777777777775

I again, entry ij is the number of records for which we predicted class i and the actual class was j

I we confuse sevens for nines and eights for threes (highlighted in red)

37



Summary of numerical experiments

I train error (60,000 pairs): 6.59%; test error (10,000 pairs): 7.26%;

I indicated accuracy is � 93%

I state of the art (neural networks) is � 99%

I julia code runs in about 5 minutes to construct distributions

I nearly all of that time is spent finding second order distributions (counting co-occurrences)

I model specified by 15,680 parameters; compare with 2784 � 1

I 784 integers for structure of each tree (specifying parent of each node)

I 784 floating point numbers for log conditional probabilities in each tree

I inference time is trivial

38



Extensions

I can define relative entropy for two measures

I if P and Q are probability measures and P � Q, define the relative entropy

dkl(P;Q) =

Z
log

�
dP

dQ

�
dP

I will give probability mass function and probability density function cases

I less aesthetic patches for cases when P 6� Q

I can derive Chow-Liu for Gaussian density estimation

I corresponds to sparsity in the precision matrix

39


