Tree Distributions

Nick Landolfi and Sanjay Lall Stanford University

Outline

Overview

Notation

Trees and Distributions

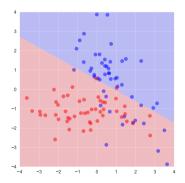
Approximation Problem & Solution

Example: Binary MNIST

Overview

Motivation: classification

- ▶ we have a *data set* of *records* $u^1, \ldots, u^n \in U$ and $v^1, \ldots, v^n \in V$ with V a finite set of *classes*
- we want to build a *classifier* $G : U \to V$ and use it to classify a new *independent variable* u as G(u)
- for example, $\mathcal{U} = \mathbf{R}^2$ and $\mathcal{V} = \{0, 1\}$

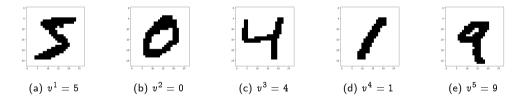


▶ the point u^k is colored red if $v^k = 0$ and blue if $v^k = 1$

▶ the region $\left\{ u \in \mathsf{R}^2 \mid G(u) = 0 \right\}$ is shaded red and $\left\{ u \in \mathsf{R}^2 \mid G(u) = 1 \right\}$ is shaded blue

Our setting

- ▶ we consider independent variables in a *large discrete set*
 - $\mathcal{U} = \mathcal{S}^d$ where \mathcal{S} is a finite set; d > 100, so \mathcal{S}^d is large
 - $\blacktriangleright\,$ in particular, ${\cal U}$ is not R^2 as on the previous slide
- ▶ for example, $\mathcal{U} = \{0, 1\}^{784}$ and $\mathcal{V} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - ▶ u represents a hand-written digit (784 = 28 × 28 pixels); v is the Arabic digit depicted by u



▶ one approach is to produce a distribution over U for each class; called *generative* modeling

• for a new u, we define G(u) to be a class with maximum likelihood

Overview

- ▶ so we want to estimate and store a distribution over a large discrete space S^d
 - ▶ for example, $S = \{0, 1\}$ and d = 784 with S^d representing 28×28 binary images
- but estimating and storing a distribution over so many outcomes is infeasible
 - ▶ for a distribution on $\{0,1\}^{784}$ we need $2^{784} 1$ parameters to represent the distribution
- ▶ so we do not look at all distributions, because that space is too large, we consider a subset
 - > roughly, only consider distributions which are a product of so-called second-order distributions
- we will see an *efficient algorithm* for estimating such distributions
 - ▶ original work by Chow and Liu in 1968

Notation

Notation: probability

- ▶ $p: U \to \mathbf{R}$ is a *distribution* on $U = S^d$ with S finite; as usual $p \ge 0$ and $\sum_{u \in U} p(u) = 1$
- ▶ p_i is a distribution on S, called the *ith marginal* distribution, for i = 1, ..., d

▶ defined by
$$p_i(a) = \sum_{u_i = a} p(u)$$

- ▶ $p_{i|j}$ is a conditional distribution, called the *i*, *j*th conditional distribution, for *i*, *j* = 1..., *d* and *i* ≠ *j*
 - ▶ first, we define the second-order i, jth marginal distribution p_{ij} on S^2

$$p_{ij}(a,b) = \sum_{u_i=a,u_j=b} p(u)$$

- \blacktriangleright then we define $p_{i|j}$ by $p_{i|j}(a,b)p_j(b)=p_{ij}(a,b)$ for all $a,b\in\mathcal{S}$
- \blacktriangleright often we will drop the arguments and write $p_{ij} = p_{i|j}p_j$
- \blacktriangleright we will use similar notation for conditioning on multiple variables: for example, $p_{i|jkl}$
- \blacktriangleright roughly speaking, we will approximate a distribution p using terms like p_i and $p_{i|j}$

Notation: Kullback-Leibler divergence

- \blacktriangleright we want a criterion to judge how well a distribution p approximates a given distribution q
- ▶ we will use the *Kullback-Leibler divergence*, defined by

 $d_{kl}(q,p)=H(q,p)-H(q)$

• where $H(q) = -\sum_{a} q(a) \log q(a)$ is called the *entropy* of q

- ▶ and $H(q, p) = -\sum_{a} q(a) \log p(a)$ is called the *cross entropy* of p relative to q
- \blacktriangleright we interpret d_{kl} as a measure of the difference between two distributions
 - $ig> d_{kl}(q,p) \geq 0$ for all distributions q and p and $d_{kl}(q,q) = 0$
 - if we want to find a distribution p to

minimize $d_{kl}(q, p)$

then p = q is a solution; later we will constrain p

 \blacktriangleright d_{kl} is not symmetric and so not a metric, though we do not mind

- > the distribution we will approximate is the natural one associated with data
- \blacktriangleright we are given n records u^1, \ldots, u^n with $u^k \in \mathcal{U}$ a finite set
- ▶ the *empirical distribution* of u^1, \ldots, u^n is the distribution q on \mathcal{U} defined by

$$q(u)=rac{1}{n}ig|ig\{u^kig\mid u^k=uig\}ig|$$

- ▶ q(u) is the proportion of records which are u
- ▶ the empirical distribution is a useful summary of data, but unwieldy, so we approximate it

- > a solution to our approximation will be characterized by mutual informations of the empirical distribution
- the mutual information of p_{ij} is $d_{kl}(p_{ij}, p_i p_j)$
 - we denote the symmetric *matrix of mutual informations* of p by I(p), and define it by

$$I(p)_{ij} = d_{kl}(p_{ij}, p_i p_j)$$

- ▶ the *mutual information graph* of p is a weighted complete undirected graph on $\{1, ..., d\}$
 - edge $\{i, j\}$ is weighted by $I(p)_{ij}$
- ▶ roughly speaking, good approximations will model interactions between vertices with heavy edges

Trees and Distributions

Rooted trees

- > we use trees to discuss factoring a discrete probability distribution
 - > we will use such distributions to approximate, since they require fewer parameters
- \blacktriangleright a *tree* T is an undirected acyclic connected (finite) graph
 - there is a unique path between any two vertices
- ▶ we *root* a tree by selecting a vertex and orienting all edges away from it
 - and so obtain a *directed* tree
 - we call the distinguished vertex the root
 - each vertex (except the root) has only one parent

Rooted trees: example

• consider tree $T = (\{1, 2, 3, 4, 5, 6\}, \{\{1, 2\}, \{2, 3\}, \{2, 4\}, \{4, 5\}, \{4, 6\}\})$

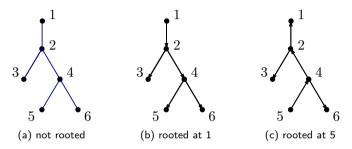


Figure 2: A tree and two possible roots

- in a rooted tree, each vertex except the root has one parent
 - \blacktriangleright we write $pa_j = i$ to mean that the parent of vertex j is vertex i
 - ▶ in panel (b), $pa_2 = 1$, $pa_3 = 2$, $pa_4 = 2$, $pa_5 = 4$, and $pa_6 = 4$

Tree-structured probability: example

• consider the same tree $T = (\{1, 2, 3, 4, 5, 6\}, \{\{1, 2\}, \{2, 3\}, \{2, 4\}, \{4, 5\}, \{4, 6\}\})$, rooted at vertex 1

▶ if p is a distribution on S^6 , then by *chain rule* p always satisfies

 $p=p_{6|1,2,3,4,5}p_{5|1,2,3,4}p_{4|1,2,3}p_{3|1,2}p_{2|1}p_{1}$

• we say p factors according to the tree T rooted at vertex 1 if p satisfies

 $p = p_{6|4} p_{5|4} p_{4|2} p_{3|2} p_{2|1} p_{1}$

- ▶ so $p_{6|1,2,3,4,5} = p_{6|4}$ (the conditional distribution does not depend on u_1, u_2, u_3 or u_5)
- ▶ and similarly for $p_{5|4}$, $p_{4|2}$ and $p_{3|2}$

Tree-structured probability: rooted definition

▶ Definition: Let T be a tree on {1,..., d}. A distribution p on S^d factors according to T rooted at vertex i if

$$p=p_i\prod_{j
eq i}p_{j|\mathbf{pa}_j}$$

- \blacktriangleright reminder that this statement is for all $u \in \mathcal{U}$ but drops arguments
- ▶ we call p_i and $p_{j|pa_i}$ for $j \neq i$ the *factors* of p
- the distribution p is a product of d factors
- ▶ this definition says how a distribution factors according to a *rooted* tree

Tree-structured probability: defining theorem

▶ Theorem: Let T be a tree on $\{1, \ldots, d\}$ and let p be a distribution on S^d . If p factors according to T rooted at some vertex, then p factors according to T rooted at any vertex in $\{1, \ldots, d\}$.

▶ in other words: if p factors according to one choice of root, it factors according to all choices

▶ **Definition**: A distribution *p* on S^d factors according to a tree *T* on {1,..., *d*} if it factors according to *T* rooted at any vertex.

Tree-structured probability: defining theorem intuition

▶ we can successively exchange a root with one of its children to root the tree at the child

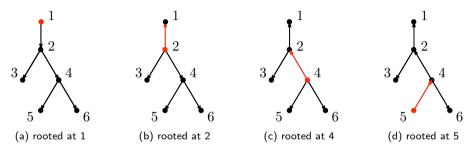


Figure 3: Moving from rooted at 1 to rooted at 5

- ▶ the root vertex is red
- ▶ in (b), (c) and (d), the only edge differing from (a), (b) and (c), respectively, is red

Tree-structured probability: proof of defining theorem

- roughly, the theorem says
 - ▶ p factors according to one possible root if and only if it factors according to every possible root
- > proof of the theorem is repeated application of following lemma
- ▶ Lemma: Let T be a tree on {1,..., d}. Let distribution p on S^d factor according to T rooted at vertex i. If j ∈ {1,..., d} with pa_j = i, then p factors according to T rooted at vertex j.
 - ▶ the assumption on p means $p = p_i \prod_{k \neq i} p_k_{|\mathbf{pa}_k} = p_i p_j_{|i} \prod_{k \neq i,j} p_k_{|\mathbf{pa}_k}$
 - ▶ since p is a distribution, $p_{j|i}p_i = p_{ij} = p_{j|i}p_j$
 - lacksimso we conclude $p=p_jp_{j\,|i}\prod_{k
 eq i,j}p_{k|{ extsf{pa}}_k}$
 - \blacktriangleright which means p factors according to T rooted at j

Tree-structured probability: existence and uniqueness

a distribution p need not factor according to a tree

- ▶ for example, consider a distribution p on $\{0,1\}^3$ with p(1,1,1) = 4/11 and $p(u_1, u_2, u_3) = 1/11$ otherwise
- there does not exist a tree according to which p factors, requires checking cases (symmetry reduces number)
- compare with: p always factors according to chain rule
- ▶ a distribution *p* may factor according to multiple trees
 - ▶ for example, consider a distribution p on $\{0,1\}^3$ with $p = p_1 p_2 p_3$
 - ▶ then *p* factors according to every tree on {1, 2, 3}
- we conclude that there is not a one-to-one correspondence between trees and distributions
- rather, trees specify subsets of distributions

Tree-structured probability: why

- ▶ these distributions *can be stored* feasibly in computer memory
 - ▶ linear in d rather than exponential in d; 2d vs. 2^d for the case $S = \{0, 1\}$
- ▶ we will see, they *can be estimated* efficiently
 - \blacktriangleright algorithm polynomial in dimension d and size of data set n
- broadly speaking, they are useful baseline probabilistic models
- ▶ roughly speaking, they are specified by few parameters, which reduces overfitting
- > and, also roughly speaking, they may still *capture important dependencies*

Approximation Problem & Solution

Relative entropy approximation

- we have a distribution q on \mathcal{S}^d
- \blacktriangleright we want to find a distribution p on \mathcal{S}^d and tree T on $\{1, \ldots, d\}$ to

minimize $d_{kl}(q, p)$ subject to p factors according to T

- called the Chow-Liu problem to approximate q
- ▶ we refer to a solution pair as a *Chow-Liu distribution* and a *Chow-Liu tree* of *q*
 - > a Chow-Liu tree always exists, but need not be unique
- ▶ we will solve by finding best parameters for a fixed tree, then finding best tree

Relative entropy approximation: maximum likelihood interpretation

 \blacktriangleright we have data set u^1, \ldots, u^n with empirical distribution q

d

▶ the Chow-Liu problem to approximate q is equivalent to minimizing average negative log likelihood, since

$$\begin{aligned} & _{kl}(q,p) = H(q,p) - H(q) \\ &= -\sum_{u \in \mathcal{U}} (q(u)\log p(u)) - H(q) \\ &= -\frac{1}{n}\sum_{k=1}^{n}\log p(u^k) - H(q) \\ & \underbrace{\text{avg. neg. log likelihood}}_{\text{avg. neg. log likelihood}} \end{aligned}$$

- ▶ and H(q) does not depend on p or T
- \blacktriangleright in this case, we refer to a Chow-Liu tree T as a maximum likelihood tree

Approximation: first theorem

▶ first, we will see how to select the probability parameters for a given tree

later we will see how to select the tree

► Theorem 1: Let q be a distribution on S^d. Let T be a tree on {1,...,d}. Let pa_(.) be defined by T rooted at vertex i. Then the distribution p on S^d defined by

$$p = q_i \prod_{j
eq i} q_{j \mid \mathsf{pa}_j}$$

achieves minimum Kullback-Leibler divergence to q among all distributions which factor according to T.

Approximation: proof of Theorem 1

- \blacktriangleright $i = 1, \ldots, d$ is an arbitrary vertex and p factors according to T rooted at i
- we express the cross entropy of p relative to q

$$egin{aligned} H(q,p) &= -\sum_{u\in\mathcal{U}} q(u)\log p(u) \ &= -\sum_{u\in\mathcal{U}} q(u) \left(\log p_i(u_i) + \sum_{j
eq i}\log p_{j\mid \mathsf{pa}_j}(u_j,u_{\mathsf{pa}_j})
ight) \ &= H(q_i,p_i) + \sum_{j
eq i}\sum_{b\in S} q_{\mathsf{pa}_j}(b)H(q_{j\mid \mathsf{pa}_j}(\cdot,b),p_{j\mid \mathsf{pa}_j}(\cdot,b)) \end{aligned}$$

- ▶ this problem *separates across dimension d*
 - ▶ one problem to find p_i ; solution is $p_i = q_i$

$$lacksim d-1$$
 problems to find $p_{j\,|{
m pa}_j}$ for $j
eq i$; solutions are $p_{j\,|{
m pa}_j}=q_{j\,|{
m pa}_j}$

- ▶ this theorem will tell us how to select the tree structure
 - \blacktriangleright recall that the mutual information graph is undirected on $\{1, \ldots, d\}$ and edge $\{i, j\}$ has weight $I(q)_{ij}$

Theorem 2: Let q be a distribution on S^d . A tree T on $\{1, \ldots, d\}$ is a Chow-Liu tree of q if and only if T is a maximum spanning tree of the mutual information graph of q.

Approximation: proof of Theorem 2 (1/2)

▶ first theorem tells us the optimal choice of p that factors according to a tree T, we write it p_T^*

- recall that $d_{kl}(q,p) = H(q,p) H(q)$
 - ▶ H(q) does not depend on p, so we focus on the cross entropy term
- we will see that we can express the cross entropy

$$H(q, p_T^*) = \sum_{i=1}^d H(q_i) - \sum_{\{i,j\} \in T} I(q)_{ij}$$

- ▶ notation $\{i, j\} \in T$ means $\{i, j\}$ is an edge of T
- ▶ for each i = 1, ..., d, $H(q_i)$ does not depend on T
- ▶ the minimize in the Chow-Liu problem results in a maximization over the second sum

Approximation: proof of Theorem 2 (2/2)

 \blacktriangleright we express the cross entropy of p_T^* relative to q as

$$\begin{split} H(q, p_T^*) &= H(q_1) - \sum_{j \neq 1} \sum_{u \in \mathcal{U}} q(u) \log q_{j \mid \mathsf{pa}_j}(u_j, u_{\mathsf{pa}_j}) \\ &= H(q_1) - \sum_{j \neq 1} \sum_{u \in \mathcal{U}} q(u) \left(\log q_{j, \mathsf{pa}_j}(u_j, u_{\mathsf{pa}_j}) - \log q_{\mathsf{pa}_j}(u_{\mathsf{pa}_j}) \right) \\ &= H(q_1) - \sum_{j \neq 1} \sum_{u \in \mathcal{U}} q(u) \left(\log q_{j, \mathsf{pa}_j}(u_j, u_{\mathsf{pa}_j}) - \log q_{\mathsf{pa}_j}(u_{\mathsf{pa}_j}) - \log q_j(u_j) + \log q_j(u_j) \right) \\ &= \sum_{i=1}^d H(q_i) - \sum_{j \neq 1} I(q)_{j, \mathsf{pa}_j} \end{split}$$

▶ this completes the proof, so we want a maximum spanning tree of the mutual information graph

Approximation: algorithm (for data)

 \blacktriangleright given records $u^1, \ldots, u^n \in \mathcal{S}^d$ with empirical distribution q

- 1. compute the mutual information matrix of the empirical distribution
- 2. find a maximum spanning tree of the mutual information graph
 - ▶ tree structure represented as element of $\{1, \ldots, d\}^d$
- 3. construct distribution $\hat{p} = q_1 \prod_{i \neq 1} q_i|_{\mathsf{pa}_i}$ (pa_i is parent function for T rooted at vertex 1)
 - ▶ \hat{p}_1 : prior distribution of u_1 represented as $|\mathcal{S}|$ -dimensional vector
 - ▶ $\hat{p}_{i \mid \mathsf{pa}_i}$ for $i \neq 1$: d-1 conditional distributions represented as $|S| \times |S|$ -dimensional matrices
- return distribution \hat{p} on \mathcal{S}^d
 - the model is specified by $O(d|S|^2)$ parameters
 - ▶ the runtime is $O(nd^2 + d^2 \log d)$, for computing I(q) and then finding T

Example: Binary MNIST

Data set

- ▶ train set of 60,000 records, test set of 10,000 records; both constructed by thresholding MNIST
 - ▶ originally 28 by 28 gray scale images with pixel values in $\{0, 1, 2, 3, ..., 255\}$
 - construct binary images by taking pixels as 1 if original pixel is positive (i.e., not 0)
- so $\mathcal{U} = \{0, 1\}^{784}$ and $\mathcal{V} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- ▶ we can visualize as 28 by 28 binary images, some examples:

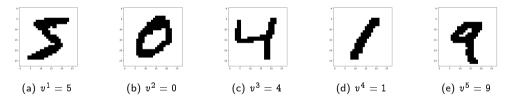
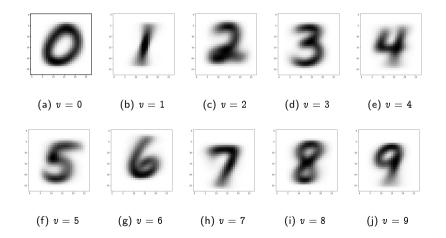


Figure 4: First five images in data set

- ▶ for each class, we construct a distribution p^{v} over \mathcal{U} using the train set, for v = 0, ..., 9
 - we split into ten subsets based on a record's class
 - we approximate the empirical distribution of each class
 - \blacktriangleright we obtain ten distributions on $\{0,1\}^{784}$
- \blacktriangleright we define a classifier $G:\mathcal{U}
 ightarrow\mathcal{V}$ so that $G(u)\in \mathrm{argmax}_v\,p^v(u)$
 - ▶ we classify points according to the class with the maximum likelihood

Distribution sample averages

▶ we can roughly visualize the distributions by drawing 5000 samples and averaging



Confusion matrix

we want a quantitative way to judge our classifier G

- ▶ the confusion matrix $C \in \mathbb{R}^{m \times m}$ of G on u^1, \ldots, u^n summarizes performance
 - C_{ij} is the number of records for which $G(u^k) = i$ and $v^k = j$
 - \blacktriangleright in other words, the number of records we classified as *i* and the actual class was *j*
- ▶ the *accuracy* of G on u^1, \ldots, u^n is the proportion of records correctly classified

▶ can be expressed as
$$\frac{1}{n} \sum_{i=1}^{m} C_{ii}$$

- ▶ the *error* of G on $u^1 \ldots, u^n$ is the proportion of records misclassified
- \blacktriangleright we want high accuracy and low error on a test set not used to construct G

Training confusion matrix

- ▶ we train with 60,000 data pairs
- here is the train set confusion matrix

$C^{train} =$	5742	1	27	30	4	20	31	7	12	22
	3	6586	37	22	18	14	22	24	100	12
	33	80	5617	133	16	10	10	53	87	6
	9	6	54	5579	0	105	2	18	212	55
	9	25	51	4	5538	2	7	74	45	94
	26	4	6	116	7	5102	98	17	153	43
	40	6	16	2	22	32	5692	1	18	1
	0	5	33	37	18	4	0	5606	10	169
	60	18	107	163	24	110	56	44	5117	81
	1	11	10	45	195	22	0	421	97	5466

 \blacktriangleright entry *ij* is the number of records for which we predicted class *i* and the actual class was *j*

Test confusion matrix

- ▶ we test with 10,000 data pairs
- here is the test set confusion matrix

$C^{test} =$	953	0	15	10	3	3	14	2	6	6]
	0	1099	5	0	0	2	4	8	3	6
	1	13	952	14	1	1	0	20	15	7
	1	0	16	917	2	27	1	5	38	4
	2	4	9	0	940	0	3	9	5	19
	8	0	0	31	0	830	12	2	25	10
	7	7	4	0	5	8	915	0	4	0
	3	0	7	6	5	1	0	897	10	24
	4	12	23	22	3	15	9	12	849	11
	1	0	1	10	23	5	0	73	19	922

again, entry *ij* is the number of records for which we predicted class *i* and the actual class was *j* we confuse sevens for nines and eights for threes (highlighted in red)

Summary of numerical experiments

train error (60,000 pairs): 6.59%; test error (10,000 pairs): 7.26%;

- \blacktriangleright indicated accuracy is pprox 93%
- \blacktriangleright state of the art (neural networks) is pprox 99%
- ▶ julia code runs in about 5 minutes to construct distributions
 - ▶ nearly all of that time is spent finding second order distributions (counting co-occurrences)
- model specified by 15,680 parameters; compare with $2^{784} 1$
 - > 784 integers for structure of each tree (specifying parent of each node)
 - > 784 floating point numbers for log conditional probabilities in each tree
- ▶ inference time is trivial

Extensions

- can define relative entropy for two measures
 - \blacktriangleright if P and Q are probability measures and $P \ll Q$, define the relative entropy

$$d_{kl}(P,Q) = \int \log\left(rac{dP}{dQ}
ight) \, dP$$

- > will give probability mass function and probability density function cases
- $\blacktriangleright\,$ less aesthetic patches for cases when $P \ll Q$
- ▶ can derive Chow-Liu for Gaussian density estimation
 - corresponds to sparsity in the precision matrix