Tree Distributions

Nick Landolfi and Sanjay Lall
Stanford University

Outline

Overview

Notation

Trees and Distributions

Approximation Problem \& Solution

Example: Binary MNIST

Overview

Motivation: classification

- we have a data set of records $u^{1}, \ldots, u^{n} \in \mathcal{U}$ and $v^{1}, \ldots, v^{n} \in \mathcal{V}$ with \mathcal{V} a finite set of classes
- we want to build a classifier $G: \mathcal{U} \rightarrow \mathcal{V}$ and use it to classify a new independent variable u as $G(u)$
- for example, $\mathcal{U}=\mathbf{R}^{2}$ and $\mathcal{V}=\{0,1\}$

- the point u^{k} is colored red if $v^{k}=0$ and blue if $v^{k}=1$
- the region $\left\{u \in \mathbf{R}^{2} \mid G(u)=0\right\}$ is shaded red and $\left\{u \in \mathbf{R}^{2} \mid G(u)=1\right\}$ is shaded blue

Our setting

- we consider independent variables in a large discrete set
- $\mathcal{U}=\mathcal{S}^{d}$ where S is a finite set; $d>100$, so \mathcal{S}^{d} is large
- in particular, \mathcal{U} is not \mathbf{R}^{2} as on the previous slide
- for example, $\mathcal{U}=\{0,1\}^{784}$ and $\mathcal{V}=\{0,1,2,3,4,5,6,7,8,9\}$

(a) $v^{1}=5$

(b) $v^{2}=0$

(c) $v^{3}=4$

(d) $v^{4}=1$

(e) $v^{5}=9$
- one approach is to produce a distribution over \mathcal{U} for each class; called generative modeling
- for a new u, we define $G(u)$ to be a class with maximum likelihood

Overview

- so we want to estimate and store a distribution over a large discrete space \mathcal{S}^{d}
- for example, $\mathcal{S}=\{0,1\}$ and $d=784$ with \mathcal{S}^{d} representing 28×28 binary images
- but estimating and storing a distribution over so many outcomes is infeasible
- for a distribution on $\{0,1\}^{784}$ we need $2^{784}-1$ parameters to represent the distribution
- so we do not look at all distributions, because that space is too large, we consider a subset
- roughly, only consider distributions which are a product of so-called second-order distributions
- we will see an efficient algorithm for estimating such distributions
- original work by Chow and Liu in 1968

Notation

Notation: probability

- $p: \mathcal{U} \rightarrow \mathbf{R}$ is a distribution on $\mathcal{U}=\mathcal{S}^{d}$ with \mathcal{S} finite; as usual $p \geq 0$ and $\sum_{u \in \mathcal{U}} p(u)=1$
- p_{i} is a distribution on \mathcal{S}, called the i th marginal distribution, for $i=1, \ldots, d$
- defined by $p_{i}(a)=\sum_{u_{i}=a} p(u)$
- $p_{i \mid j}$ is a conditional distribution, called the i, j th conditional distribution, for $i, j=1 \ldots, d$ and $i \neq j$
- first, we define the second-order i, j th marginal distribution $p_{i j}$ on S^{2}

$$
p_{i j}(a, b)=\sum_{u_{i}=a, u_{j}=b} p(u)
$$

- then we define $p_{i \mid j}$ by $p_{i \mid j}(a, b) p_{j}(b)=p_{i j}(a, b)$ for all $a, b \in \mathcal{S}$
- often we will drop the arguments and write $p_{i j}=p_{i \mid j} p_{j}$
- we will use similar notation for conditioning on multiple variables: for example, $p_{i \mid j k l}$
- roughly speaking, we will approximate a distribution p using terms like p_{i} and $p_{i \mid j}$

Notation: Kullback-Leibler divergence

- we want a criterion to judge how well a distribution p approximates a given distribution q
- we will use the Kullback-Leibler divergence, defined by

$$
d_{k l}(q, p)=H(q, p)-H(q)
$$

- where $H(q)=-\sum_{a} q(a) \log q(a)$ is called the entropy of q
- and $H(q, p)=-\sum_{a} q(a) \log p(a)$ is called the cross entropy of p relative to q
- we interpret $d_{k l}$ as a measure of the difference between two distributions
- $d_{k l}(q, p) \geq 0$ for all distributions q and p and $d_{k l}(q, q)=0$
- if we want to find a distribution p to

$$
\operatorname{minimize} \quad d_{k l}(q, p)
$$

then $p=q$ is a solution; later we will constrain p

- $d_{k l}$ is not symmetric and so not a metric, though we do not mind

Notation: empirical distribution

- the distribution we will approximate is the natural one associated with data
- we are given n records u^{1}, \ldots, u^{n} with $u^{k} \in \mathcal{U}$ a finite set
- the empirical distribution of u^{1}, \ldots, u^{n} is the distribution q on \mathcal{U} defined by

$$
q(u)=\frac{1}{n}\left|\left\{u^{k} \mid u^{k}=u\right\}\right|
$$

- $q(u)$ is the proportion of records which are u
- the empirical distribution is a useful summary of data, but unwieldy, so we approximate it

Notation: mutual information graph

- a solution to our approximation will be characterized by mutual informations of the empirical distribution
- the mutual information of $p_{i j}$ is $d_{k l}\left(p_{i j}, p_{i} p_{j}\right)$
- we denote the symmetric matrix of mutual informations of p by $I(p)$, and define it by

$$
I(p)_{i j}=d_{k l}\left(p_{i j}, p_{i} p_{j}\right)
$$

- the mutual information graph of p is a weighted complete undirected graph on $\{1, \ldots, d\}$
- edge $\{i, j\}$ is weighted by $I(p)_{i j}$
- roughly speaking, good approximations will model interactions between vertices with heavy edges

Trees and Distributions

Rooted trees

- we use trees to discuss factoring a discrete probability distribution
- we will use such distributions to approximate, since they require fewer parameters
- a tree T is an undirected acyclic connected (finite) graph
- there is a unique path between any two vertices
- we root a tree by selecting a vertex and orienting all edges away from it
- and so obtain a directed tree
- we call the distinguished vertex the root
- each vertex (except the root) has only one parent

Rooted trees: example

- consider tree $T=(\{1,2,3,4,5,6\},\{\{1,2\},\{2,3\},\{2,4\},\{4,5\},\{4,6\}\})$

Figure 2: A tree and two possible roots

- in a rooted tree, each vertex except the root has one parent
- we write $\mathrm{pa}_{j}=i$ to mean that the parent of vertex j is vertex i
- in panel (b), $\mathrm{pa}_{2}=1, \mathrm{pa}_{3}=2, \mathrm{pa}_{4}=2, \mathrm{pa}_{5}=4$, and $\mathrm{pa}_{6}=4$

Tree-structured probability: example

- consider the same tree $T=(\{1,2,3,4,5,6\},\{\{1,2\},\{2,3\},\{2,4\},\{4,5\},\{4,6\}\})$, rooted at vertex 1

- if p is a distribution on \mathcal{S}^{6}, then by chain rule p always satisfies

$$
p=p_{6 \mid 1,2,3,4,5} p_{5 \mid 1,2,3,4} p_{4 \mid 1,2,3} p_{3 \mid 1,2} p_{2 \mid 1} p_{1}
$$

- we say p factors according to the tree T rooted at vertex 1 if p satisfies

$$
p=p_{6 \mid 4} p_{5 \mid 4} p_{4 \mid 2} p_{3 \mid 2} p_{2 \mid 1} p_{1}
$$

- so $p_{6 \mid 1,2,3,4,5}=p_{6 \mid 4}$ (the conditional distribution does not depend on u_{1}, u_{2}, u_{3} or u_{5})
- and similarly for $p_{5 \mid 4}, p_{4 \mid 2}$ and $p_{3 \mid 2}$

Tree-structured probability: rooted definition

- Definition: Let T be a tree on $\{1, \ldots, d\}$. A distribution p on \mathcal{S}^{d} factors according to T rooted at vertex i if

$$
p=p_{i} \prod_{j \neq i} p_{j \mid \mathrm{pa}_{j}}
$$

- reminder that this statement is for all $u \in \mathcal{U}$ but drops arguments
- we call p_{i} and $p_{j \mid \mathrm{pa}}^{j}$ for $j \neq i$ the factors of p
the distribution p is a product of d factors
- this definition says how a distribution factors according to a rooted tree

Tree-structured probability: defining theorem

- Theorem: Let T be a tree on $\{1, \ldots, d\}$ and let p be a distribution on S^{d}. If p factors according to T rooted at some vertex, then p factors according to T rooted at any vertex in $\{1, \ldots, d\}$.
- in other words: if p factors according to one choice of root, it factors according to all choices
- Definition: A distribution p on \mathcal{S}^{d} factors according to a tree T on $\{1, \ldots, d\}$ if it factors according to T rooted at any vertex.

Tree-structured probability: defining theorem intuition

- we can successively exchange a root with one of its children to root the tree at the child

(a) rooted at 1

(b) rooted at 2

(c) rooted at 4

(d) rooted at 5

Figure 3: Moving from rooted at 1 to rooted at 5

- the root vertex is red
- in (b), (c) and (d), the only edge differing from (a), (b) and (c), respectively, is red

Tree-structured probability: proof of defining theorem

- roughly, the theorem says
- p factors according to one possible root if and only if it factors according to every possible root
- proof of the theorem is repeated application of following lemma
- Lemma: Let T be a tree on $\{1, \ldots, d\}$. Let distribution p on \mathcal{S}^{d} factor according to T rooted at vertex i. If $j \in\{1, \ldots, d\}$ with $\mathrm{pa}_{j}=i$, then p factors according to T rooted at vertex j.
- the assumption on p means $p=p_{i} \prod_{k \neq i} p_{k \mid \mathbf{p a}_{k}}=p_{i} p_{j \mid i} \prod_{k \neq i, j} p_{k \mid \mathrm{pa}}^{k} ⿵ 冂$
- since p is a distribution, $p_{j \mid i} p_{i}=p_{i j}=p_{j \mid i} p_{j}$
- so we conclude $p=p_{j} p_{j \mid i} \prod_{k \neq i, j} p_{k \mid \mathbf{p a}_{k}}$
- which means p factors according to T rooted at j

Tree-structured probability: existence and uniqueness

- a distribution p need not factor according to a tree
- for example, consider a distribution p on $\{0,1\}^{3}$ with $p(1,1,1)=4 / 11$ and $p\left(u_{1}, u_{2}, u_{3}\right)=1 / 11$ otherwise
- there does not exist a tree according to which p factors, requires checking cases (symmetry reduces number)
- compare with: p always factors according to chain rule
- a distribution p may factor according to multiple trees
- for example, consider a distribution p on $\{0,1\}^{3}$ with $p=p_{1} p_{2} p_{3}$
- then p factors according to every tree on $\{1,2,3\}$
- we conclude that there is not a one-to-one correspondence between trees and distributions
- rather, trees specify subsets of distributions

Tree-structured probability: why

- these distributions can be stored feasibly in computer memory
- linear in d rather than exponential in $d ; 2 d$ vs. 2^{d} for the case $S=\{0,1\}$
- we will see, they can be estimated efficiently
- algorithm polynomial in dimension d and size of data set n
- broadly speaking, they are useful baseline probabilistic models
- roughly speaking, they are specified by few parameters, which reduces overfitting
- and, also roughly speaking, they may still capture important dependencies

Approximation Problem \& Solution

Relative entropy approximation

- we have a distribution q on \mathcal{S}^{d}
- we want to find a distribution p on \mathcal{S}^{d} and tree T on $\{1, \ldots, d\}$ to

$$
\begin{aligned}
\operatorname{minimize} & d_{k l}(q, p) \\
\text { subject to } & p \text { factors according to } T
\end{aligned}
$$

- called the Chow-Liu problem to approximate q
- we refer to a solution pair as a Chow-Liu distribution and a Chow-Liu tree of q
- a Chow-Liu tree always exists, but need not be unique
- we will solve by finding best parameters for a fixed tree, then finding best tree

Relative entropy approximation: maximum likelihood interpretation

- we have data set u^{1}, \ldots, u^{n} with empirical distribution q
- the Chow-Liu problem to approximate q is equivalent to minimizing average negative log likelihood, since

$$
\begin{aligned}
d_{k l}(q, p) & =H(q, p)-H(q) \\
& =-\sum_{u \in \mathcal{U}}(q(u) \log p(u))-H(q) \\
& =\underbrace{-\frac{1}{n} \sum_{k=1}^{n} \log p\left(u^{k}\right)}_{\text {avg. neg. log likelihood }}-H(q)
\end{aligned}
$$

- and $H(q)$ does not depend on p or T
- in this case, we refer to a Chow-Liu tree T as a maximum likelihood tree

Approximation: first theorem

- first, we will see how to select the probability parameters for a given tree
- later we will see how to select the tree
- Theorem 1: Let q be a distribution on \mathcal{S}^{d}. Let T be a tree on $\{1, \ldots, d\}$. Let pa (\cdot) be defined by T rooted at vertex i. Then the distribution p on \mathcal{S}^{d} defined by

$$
p=q_{i} \prod_{j \neq i} q_{j \mid \mathrm{pa}_{j}}
$$

achieves minimum Kullback-Leibler divergence to q among all distributions which factor according to T.

Approximation: proof of Theorem 1

- $i=1, \ldots, d$ is an arbitrary vertex and p factors according to T rooted at i
- we express the cross entropy of p relative to q

$$
\left.\begin{array}{rl}
H(q, p) & =-\sum_{u \in \mathcal{U}} q(u) \log p(u) \\
& =-\sum_{u \in \mathcal{U}} q(u)\left(\log p_{i}\left(u_{i}\right)+\sum_{j \neq i} \log p_{j \mid \mathrm{pa}}^{j}\right.
\end{array}\left(u_{j}, u_{\mathrm{pa}_{j}}\right)\right),
$$

- this problem separates across dimension d
- one problem to find p_{i}; solution is $p_{i}=q_{i}$
- $d-1$ problems to find $p_{j \mid \mathrm{pa}}^{j}$ for $j \neq i$; solutions are $p_{j \mid \mathrm{pa}}^{j}$ $=q_{j \mid \mathrm{pa}}^{j}$

Approximation: second theorem

- this theorem will tell us how to select the tree structure
- recall that the mutual information graph is undirected on $\{1, \ldots, d\}$ and edge $\{i, j\}$ has weight $I(q)_{i j}$
- Theorem 2: Let q be a distribution on \mathcal{S}^{d}. A tree T on $\{1, \ldots, d\}$ is a Chow-Liu tree of q if and only if T is a maximum spanning tree of the mutual information graph of q.

Approximation: proof of Theorem $2(1 / 2)$

- first theorem tells us the optimal choice of p that factors according to a tree T, we write it p_{T}^{*}
- recall that $d_{k l}(q, p)=H(q, p)-H(q)$
- $H(q)$ does not depend on p, so we focus on the cross entropy term
- we will see that we can express the cross entropy

$$
H\left(q, p_{T}^{*}\right)=\sum_{i=1}^{d} H\left(q_{i}\right)-\sum_{\{i, j\} \in T} I(q)_{i j}
$$

- notation $\{i, j\} \in T$ means $\{i, j\}$ is an edge of T
- for each $i=1, \ldots, d, H\left(q_{i}\right)$ does not depend on T
- the minimize in the Chow-Liu problem results in a maximization over the second sum

Approximation: proof of Theorem 2 (2/2)

- we express the cross entropy of p_{T}^{*} relative to q as

$$
\begin{aligned}
H\left(q, p_{T}^{*}\right) & =H\left(q_{1}\right)-\sum_{j \neq 1} \sum_{u \in \mathcal{U}} q(u) \log q_{j \mid \mathrm{pa}_{j}}\left(u_{j}, u_{\mathrm{pa}_{j}}\right) \\
& =H\left(q_{1}\right)-\sum_{j \neq 1} \sum_{u \in \mathcal{U}} q(u)\left(\log q_{j, \mathrm{pa}_{j}}\left(u_{j}, u_{\mathrm{pa}_{j}}\right)-\log q_{\mathrm{pa}_{j}}\left(u_{\mathrm{pa}_{j}}\right)\right) \\
& =H\left(q_{1}\right)-\sum_{j \neq 1} \sum_{u \in \mathcal{U}} q(u)\left(\log q_{j, \mathrm{pa}_{j}}\left(u_{j}, u_{\mathrm{pa}_{j}}\right)-\log q_{\mathrm{pa}_{j}}\left(u_{\mathrm{pa}_{j}}\right)-\log q_{j}\left(u_{j}\right)+\log q_{j}\left(u_{j}\right)\right) \\
& =\sum_{i=1}^{d} H\left(q_{i}\right)-\sum_{j \neq 1} I(q)_{j, \mathrm{pa}_{j}}
\end{aligned}
$$

- this completes the proof, so we want a maximum spanning tree of the mutual information graph

Approximation: algorithm (for data)

- given records $u^{1}, \ldots, u^{n} \in \mathcal{S}^{d}$ with empirical distribution q

1. compute the mutual information matrix of the empirical distribution
2. find a maximum spanning tree of the mutual information graph

- tree structure represented as element of $\{1, \ldots, d\}^{d}$

3. construct distribution $\hat{p}=q_{1} \prod_{i \neq 1} q_{i \mid \mathrm{pa}_{i}}$ (pa_{i} is parent function for T rooted at vertex 1)

- \hat{p}_{1} : prior distribution of u_{1} represented as $|S|$-dimensional vector
- $\hat{p}_{i \mid \mathbf{p a}_{i}}$ for $i \neq 1: d-1$ conditional distributions represented as $|\mathcal{S}| \times|\mathcal{S}|$-dimensional matrices
- return distribution \hat{p} on \mathcal{S}^{d}
- the model is specified by $O\left(d|S|^{2}\right)$ parameters
- the runtime is $O\left(n d^{2}+d^{2} \log d\right)$, for computing $I(q)$ and then finding T

Example: Binary MNIST

Data set

- train set of 60,000 records, test set of 10,000 records; both constructed by thresholding MNIST
- originally 28 by 28 gray scale images with pixel values in $\{0,1,2,3, \ldots, 255\}$
- construct binary images by taking pixels as 1 if original pixel is positive (i.e., not 0)
- so $\mathcal{U}=\{0,1\}^{784}$ and $\mathcal{V}=\{0,1,2,3,4,5,6,7,8,9\}$
- we can visualize as 28 by 28 binary images, some examples:

(a) $v^{1}=5$

(b) $v^{2}=0$

(c) $v^{3}=4$

(d) $v^{4}=1$

(e) $v^{5}=9$

Figure 4: First five images in data set

Classifier

- for each class, we construct a distribution p^{v} over \mathcal{U} using the train set, for $v=0, \ldots, 9$
- we split into ten subsets based on a record's class
- we approximate the empirical distribution of each class
- we obtain ten distributions on $\{0,1\}^{784}$
- we define a classifier $G: \mathcal{U} \rightarrow \mathcal{V}$ so that $G(u) \in \operatorname{argmax}_{v} p^{v}(u)$
- we classify points according to the class with the maximum likelihood

Distribution sample averages

- we can roughly visualize the distributions by drawing 5000 samples and averaging

(a) $v=0$

(f) $v=5$
(g) $v=6$
(h) $v=7$
(i) $v=8$
(j) $v=9$

Confusion matrix

- we want a quantitative way to judge our classifier G
- the confusion matrix $C \in \mathbf{R}^{m \times m}$ of G on u^{1}, \ldots, u^{n} summarizes performance
- $C_{i j}$ is the number of records for which $G\left(u^{k}\right)=i$ and $v^{k}=j$
- in other words, the number of records we classified as i and the actual class was j
- the accuracy of G on u^{1}, \ldots, u^{n} is the proportion of records correctly classified
- can be expressed as $\frac{1}{n} \sum_{i=1}^{m} C_{i i}$
- the error of G on $u^{1} \ldots, u^{n}$ is the proportion of records misclassified
- we want high accuracy and low error on a test set not used to construct G

Training confusion matrix

- we train with 60,000 data pairs
- here is the train set confusion matrix

$$
C^{\text {train }}=\left[\begin{array}{cccccccccc}
5742 & 1 & 27 & 30 & 4 & 20 & 31 & 7 & 12 & 22 \\
3 & 6586 & 37 & 22 & 18 & 14 & 22 & 24 & 100 & 12 \\
33 & 80 & 5617 & 133 & 16 & 10 & 10 & 53 & 87 & 6 \\
9 & 6 & 54 & 5579 & 0 & 105 & 2 & 18 & 212 & 55 \\
9 & 25 & 51 & 4 & 5538 & 2 & 7 & 74 & 45 & 94 \\
26 & 4 & 6 & 116 & 7 & 5102 & 98 & 17 & 153 & 43 \\
40 & 6 & 16 & 2 & 22 & 32 & 5692 & 1 & 18 & 1 \\
0 & 5 & 33 & 37 & 18 & 4 & 0 & 5606 & 10 & 169 \\
60 & 18 & 107 & 163 & 24 & 110 & 56 & 44 & 5117 & 81 \\
1 & 11 & 10 & 45 & 195 & 22 & 0 & 421 & 97 & 5466
\end{array}\right]
$$

- entry $i j$ is the number of records for which we predicted class i and the actual class was j

Test confusion matrix

- we test with 10,000 data pairs
- here is the test set confusion matrix

$$
C^{\text {test }}=\left[\begin{array}{cccccccccc}
953 & 0 & 15 & 10 & 3 & 3 & 14 & 2 & 6 & 6 \\
0 & 1099 & 5 & 0 & 0 & 2 & 4 & 8 & 3 & 6 \\
1 & 13 & 952 & 14 & 1 & 1 & 0 & 20 & 15 & 7 \\
1 & 0 & 16 & 917 & 2 & 27 & 1 & 5 & 38 & 4 \\
2 & 4 & 9 & 0 & 940 & 0 & 3 & 9 & 5 & 19 \\
8 & 0 & 0 & 31 & 0 & 830 & 12 & 2 & 25 & 10 \\
7 & 7 & 4 & 0 & 5 & 8 & 915 & 0 & 4 & 0 \\
3 & 0 & 7 & 6 & 5 & 1 & 0 & 897 & 10 & 24 \\
4 & 12 & 23 & 22 & 3 & 15 & 9 & 12 & 849 & 11 \\
1 & 0 & 1 & 10 & 23 & 5 & 0 & 73 & 19 & 922
\end{array}\right]
$$

- again, entry $i j$ is the number of records for which we predicted class i and the actual class was j
- we confuse sevens for nines and eights for threes (highlighted in red)

Summary of numerical experiments

- train error (60,000 pairs): 6.59%; test error (10,000 pairs): 7.26%;
- indicated accuracy is $\approx 93 \%$
- state of the art (neural networks) is $\approx 99 \%$
- julia code runs in about 5 minutes to construct distributions
- nearly all of that time is spent finding second order distributions (counting co-occurrences)
- model specified by 15,680 parameters; compare with $2^{784}-1$
- 784 integers for structure of each tree (specifying parent of each node)
- 784 floating point numbers for log conditional probabilities in each tree
- inference time is trivial

Extensions

- can define relative entropy for two measures
- if P and Q are probability measures and $P \ll Q$, define the relative entropy

$$
d_{k l}(P, Q)=\int \log \left(\frac{d P}{d Q}\right) d P
$$

- will give probability mass function and probability density function cases
- less aesthetic patches for cases when $P \ll Q$
- can derive Chow-Liu for Gaussian density estimation
- corresponds to sparsity in the precision matrix

