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Motivation: classification

I we have a dataset of records u1; : : : ; un 2 U and v1; : : : ; vn 2 V with V a finite set of classes

I we want to build a classifier G : U ! V and use it to classify a new independent variable u as G(u)

I for example, U = R2 and V = f0; 1g
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I the point uk is colored red if vk = 0 and blue if vk = 1

I the region
�
u 2 R2

�� G(u) = 0
	

is shaded red and
�
u 2 R2

�� G(u) = 1
	

is shaded blue
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Example application

I for example, U = R1000 and V = f0; 1g

I u represents the expression signature of 1000 genes

I v indicates the condition of mutation of a particular gene, upon which prognosis varies

Figure 1: visualization of gene expression data

I one approach is to produce a density over U for each class; called generative modeling

I for a new u, we define G(u) to be a class with maximum likelihood

I binary classification with normals: linear or quadratic discriminant analysis
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Tree densities
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Densities

I a density is a function f : Rd ! R with f � 0 and
R
f = 1

I the ith marginal density of f is fi : R! R so that

fi(�) =

Z
xi=�

f(x)dx

for all � 2 R, for i = 1; : : : ; d

I similarly, fij(�; 
) =
R
xi=�;xj=


f(x)

I the i; jth conditional of f is a function fijj : R2 ! R satisfying

fij(�; 
) = fijj(�; 
)fj(
)

for �; 
 2 R, for i; j = 1; : : : ; d and i 6= j

I our simpler densities will be products of these one-variable marginals and two-variable conditionals
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Tree density: example

I consider T = ff1; 2g; f2; 3g; f2; 4g; f4; 5g; f4; 6gg rooted at vertex 1

1

2

3 4

5 6

I if f is a density on R6, then by chain rule f always satisfies

f = f6j1;2;3;4;5f5j1;2;3;4f4j1;2;3f3j1;2f2j1f1

I we say f factors according to the tree T rooted at vertex 1 if f satisfies

f = f6j4f5j4f4j2f3j2f2j1f1

I so f6j1;2;3;4;5 = f6j4 (the conditional distribution does not depend on x1; x2; x3 or x5)

I and similarly for f5j4, f4j2 and f3j2
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Tree densities

I Definition: a density f on Rd factors according to a tree T on f1; : : : ; dg if it factors according to T
rooted at some vertex

I there exists i such that
f(x) = fi(xi)

Y
j 6=i

fjjpaj (xj ; xpaj )

I if true for one vertex, true for all

I a density f need not factor according to a tree; may factor according to many trees

I we care because it may require fewer parameters to specify a tree density

I for example, to specify a normal requires O(d2), if tree-structured then O(d).
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Tree density approximators
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Differential Kullback-Leibler divergence

I we want a criterion for how well a density f approximates a density g

I we will use the Kullback-Leibler divergence, defined by

dkl(g; f) = h(g; f)� h(g)

I where h(g) = �
R
supp(g)

g(x) log g(x)dx is called the differential entropy

I and h(g; f) = �
R
supp(g)

g(x) log f(x)dx is called the differential cross entropy

I we interpret dkl as a measure of the difference between two densities

I dkl(g; f) � 0 for all densities g and dkl(g; g) = 0.

I if we want to find a density f to
minimize dkl(g; f)

then f = g is a solution; later we constrain f

I dkl is not symmetric and so not a metric, though we do not mind
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Formulation

I have density g on Rd

I want to find density f on Rd and tree T on f1; : : : ; dg to

minimize dkl(g; f)

subject to f factors according to T

I called the tree density approximation of g

I call a solution pair an optimal tree density approximator and optimal approximator tree of g
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Tree density approximator: first theorem

I Theorem 1: Let g be a density on Rd. Let T be a tree on f1; : : : ; dg. Let pa(�) be defined by T rooted
at vertex i. Then the density f�T on Rd defined by

f�T = gi
Y
j 6=i

gjjpaj

achieves minimum Kullback-Leibler divergence to g among all distributions which factor according to T .
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Proof of theorem 1

I we express the differential cross entropy of f relative to g by

h(g; f) = �

Z
Rd

g log f

= �

Z
Rd

g(x)

 
log fi(xi) +

X
j 6=i

log fjjpaj (xj ; xpaj )

!
dx

= h(gi; fi) +
X
j 6=i

�Z
R
gpaj (�)h

�
gjjpaj (�; �); fjjpaj (�; �)

�
d�

�

I this problem separates across dimension

I one problem to find fi; a solution is fi = gi

I since gpaj � 0, minimize the integrand pointwise; a solution is fjjpaj = gjjpaj for j 6= i

14



Mutual information

I we want to characterize the optimal tree, need notion of mutual information graph

I the mutual information of fij is dkl(fij ; fifj)

I we denote the symmetric matrix of mutual informations of f by I(f), and define it by

I(g)ij = dkl(fij ; fifj)

I the mutual information graph of g is a weighted complete undirected graph on f1; : : : ; dg

I edge fi; jg is weighted by I(g)ij
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Tree density approximator: second theorem

I Theorem 2: Let g be a density on Rd. A tree T on f1; : : : ; dg is an optimal approximator tree of g if
and only if T is a maximum spanning tree of the mutual information graph of g.
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Proof of theorem 2

I let f�T achieve minimum K-L divergence among densities which factor according to tree T

I we express the differential cross entropy of f�T relative to g as

h(g; f�T ) = h(g1)�
X
j 6=1

�Z
Rd

g(x) log gjjpaj (xj ; xpaj )dx

�

= h(g1)�
X
j 6=1

�Z
Rd

g(x)
�
log gj;paj (xj ; xpaj )� log gpaj (xpaj )

�
dx

�

= h(g1)�
X
j 6=1

�Z
Rd

g(x)
�
log gj;paj (xj ; xpaj )� log gpaj (xpaj )� log gj(xj) + log gj(xj)

�
dx

�

=

dX
i=1

h(gi)�
X
j 6=1

I(g)j;paj

=

dX
i=1

h(gi)�
X

fi;jg2T

I(g)ij
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Approximating a normal
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Normal densities

I f : Rd ! R is a normal density on Rd if there exists � � 0 and � such that

f(x) =
1p

(2�)d det�
exp
�
�
1

2
(x� �)T��1(x� �)

�

we write f � N (�;�); call P = ��1 the precision matrix

I fi � N (�i;�ii) for i = 1; : : : ; d

I fij � N

��
�i

�j

�
;

�
�ii �ij

�ji �jj

��
for i; j = 1; : : : ; d and i 6= j

I fijj(�; �) � N
�
�i +�ii�

�1
jj �;�ii � �ij�

�1
jj �ji

�
for i; j = 1; : : : ; d and i 6= j

I define �ijj to be �ii � �ij�
�1
jj

�ji

I if f is a normal density, I(f)ij = � 1
2
log(1� �2ij), where �ij = �ij=

�p
�ii�jj

�
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Tree normal: example

I consider the same tree T = ff1; 2g; f2; 3g; f2; 4g; f4; 5g; f4; 6gg rooted at vertex 1

1

2

3 4

5 6

I if f � N (�;�) then

I f1 � N (�1;�11)

I f2j1(�; �) � N
�
�21�

�1
11 �;�22 � �21�

�1
11 �12

�
I f3j2(�; �) � N

�
�32�

�1
22 �;�33 � �32�

�1
22 �23

�
I f4j2(�; �) � N

�
�42�

�1
22 �;�44 � �42�

�1
22 �24

�
I f5j4(�; �) � N

�
�54�

�1
44 �;�55 � �54�

�1
44 �45

�
I f6j4(�; �) � N

�
�64�

�1
44 �;�66 � �64�

�1
44 �46

�
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Approximating a normal

I if g is normal, we have expressions for gijj

I Theorem: Let g be a normal density with mean � 2 Rd and covariance � 2 Sd
++. Let T be an optimal

approximator tree of g. Let f be a normal density with mean � and precision matrix P where

I P11 = ��1
11 +

P
paj=1

�2
j1�

�2
11 �

�1
jj1

I for i = 2; : : : ; d, Pii = ��1
ijpai

+
P

paj=i
�2
ji
��2
ii

��1
jji

I i; j = 1; : : : d and i = paj , Pij = Pji = ��ji�
�1
jj

��1
jji

Then f is optimal tree approximator of g.

I f is also a normal density
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Normal case proof

I use Theorem 1 to express f�T as

(1=c) exp

 
�
1

2

 
��1
11 �x

2
1 +
X
i6=1

�
�xi � �i;pai�

�1
pai;pai �xpai

�2
��1
ijpai

!!

with �xi = xi � �i and c =
q

(2�)d�11

Q
i 6=1

�ijpai .

I expand to express quadratic in the exponential as

��1
11 �x

2
1 +
X
i6=1

�
��1
ijpai

�x2i � 2�i;pai�
�1
pai;pai�

�1
ijpai

�xi�xpai +�2
i;pai�

�2
pai;pai�

�1
ijpai

�x2pai
�

so, with P defined as on previous slide �xTP �x gives above

I c is
p

(2�)d detP�1 since f�T integrates to one.
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Example: the empirical normal

I let x1; : : : ; xn 2 Rd; the empirical normal density is a normal with

I where �x = 1
n

Pn

k=1
xk is the empirical mean

I and S = 1
n

Pn

k=1
(xk � �x)(xk � �x)T is the empirical covariance

I recall: these are the solutions to multivariate normal maximum likelihood density selection

I Theorem on previous slides gives following algorithm:

1. compute empirical mean and covariance of data

2. find maximum spanning tree of mutual information graph (edge weights are correlations)

3. take empirical mean, use empirical covariance to find the precision matrix
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Maximum likelihood with tree normals
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Maximum likelihood with tree normal

I have dataset x1; : : : ; xn 2 Rd and want to find density f and tree T to

maximize
1

n

nX
k=1

log f(xk)

subject to f is normal and factors according to T

I Theorem: a normal density that factors according to a tree is a maximum likelihood density if and only
if it is a optimal tree approximator of the empirical normal

I on one hand, maximum likelihood leads us to approximating the empirical normal

I on the other hand, our results about approximating normals solve the maximum likelihood problem
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Proof of maximum likelihood equivalence

I let g � N (�g;�g), f � N (�f ;�f ) and Pf = ��1
f .

I recall d(g; f) = h(g; f)� h(g); second term constant w.r.t f , express first as:

h(g; f) = �

Z
Rd

g log f =
1

2

�Z
Rd

g tr
�
(x� �f )

T��1
f (x� �f )

�
+ log det�f + log(2�)d

�

if �f = �g then objective of approximation problem is equivalent to objective tr�gPf � log detPf

I for optimizer, f matches g on one-variable marginals and so their means match

I likewise, express negative average log likelihood

�
1

n

nX
k=1

log f(xk) =
1

n

1

2

nX
k=1

tr
�
(x� �f )

T��1
f (x� �f )

�
+ log det�f + log(2�)d

I if �f is the empirical mean, then likelihood objective is equivalent to trSPf � log detPf

I for optimizer, �f = 1
n

Pn

k=1
xk from first order conditions on objective
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Takeaways

I we know how to approximate any density with one that factors according to a tree

I to be useful, need to know more about density, for example that it is normal

I picking the maximum likelihood tree normal is the same as approximating the empirical normal
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Future work

I generalization to tree linear cascades

I use for Gaussian processes

I use in Kalman filters
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