Directed Information

Nick Landolfi and Sanjay Lall Stanford University

Background

Information theoretic quantities

- ▶ let $X, Y, Z \in \mathbf{R}^n$ random vectors
 - denote elements of $X = (X(1), \ldots X(n))$
 - denote subvector $(X(1), \ldots, X(s))$ by X^s with X^0 empty
- ▶ define *entropy*

$$H(X) := -\operatorname{\mathsf{E}} \log P_X$$

▶ define *mutual information*

$$I(X,Y) := H(X) - H(X \mid Y)$$

• fact: I(X, Y) = I(Y, X)

Information theoretic quantities

- chain rule for entropy
 - $H(X | Y) = \sum_{t=1}^{n} H(X(t) | X^{t-1}, Y)$
- define causally conditioned entropy

$$H(X \parallel Y) := \sum_{t=1}^n H(X(t) \mid X^{t-1}, Y^t)$$

▶ define *directed information* from *X* to *Y* by

$$I(X \to Y) = H(Y) - H(Y \parallel X),$$

and $I(X \to Y) \neq I(Y \to X)$ in general

 \blacktriangleright define directed information from X to Y causally conditioned on Z by

$$I(X \to Y \parallel Z) = H(Y \parallel Z) - H(Y \parallel X, Z)$$

Directed information (notation)

- suppose $X = (X_1, \ldots, X_m)$ is m stochastic processes over a time horizon n.
- ▶ so for $i=1,\ldots,m,$ $X_i=(X_i(1),\ldots,X_i(n))\in \mathsf{R}^n$
- X is random object in $\mathbf{R}^{m \times n}$
- ▶ for $A \subset [m]$, X_A consists of $(X_i)_{i \in A} \in \mathsf{R}^{|A| imes n}$
- > want to talk about causal relations between processes using directed information

Directed information (sum of informations)

▶ $I(X_i \to X_j \parallel X_{-\{i,j\}})$ is a sum of informations

$$egin{aligned} &I(X_i o X_j \parallel X_{-\{i,j\}}) = H(X_j \parallel X_{-\{i,j\}}) - H(X_j \parallel X_{-\{j\}}) \ &= \sum_{t=1}^n H(X_j(t) \mid X_{-\{i\}}^{t-1}) - H(X_j(t) \mid X^{t-1}) \ &= \sum_{t=1}^n I(X_j(t), X_i^{t-1} \mid X_{-\{i\}}^{t-1}) \end{aligned}$$

- directed information is sum over horizon of information between X_j at current time and history of X_i
- ▶ if informations on right hand side are large, so is directed information
- condition on histories of all other processes

Directed information (regret between predictors)

- ▶ build sequence of predictors $p_t : \mathbf{R}^{m \times (t-1)} \to \Delta(R)$.
 - map signals histories to distributions over $X_j(t)$
 - have access to all signals
- ▶ build sequence of predictors $q_t : \mathbf{R}^{(m-1)\times(t-1)} \to \Delta(\mathbf{R})$
 - have acess to all signals except X_i
- ▶ measure quality of predictor by loss ℓ : $\Delta(\mathbf{R}) \times \mathbf{R} \rightarrow \mathbf{R}_+$
- \blacktriangleright measure regret with respect to loss between p_t and q_t

$$\mathsf{E}\left[\sum_{i=1}^{n} \ell(q_t(X_{-\{i\}}^{t-1}), X_j(t)) - \ell(p_t(X^{t-1}), X_j(t))\right]$$

 \blacktriangleright class of predictors q_t has more information than predictors p_t , so

$$\inf_{q_t} \mathsf{E} \sum_{i=1}^n \ell(q_t(X_{-\{i\}}^{t-1}), X_j(t)) > \inf_{p_t} \mathsf{E} \sum_{i=1}^n \ell(p_t(X_{-\{i\}}^{t-1}), X_j(t))$$

Directed information (regret between predictors)

• consider
$$\ell(p_t, \alpha) = -\log p_t(\alpha)$$
, the *negative log likelihood*

the regret is

$$\mathbb{E}\sum_{t=1}^n \log rac{p_t(X^{t-1})(X_j(T))}{q_t(X_{-\{i\}}^{t-1})(X_j(t))}$$

▶ select predictors $p_t = P(X_j(t) \mid X^{t-1})$ and $q_t = P(X_j(t) \mid X^{t-1}_{-\{i\}})$, the true conditionals, regret is

$$\mathsf{E} \sum_{t=1}^n \log rac{P(X_j(t) \mid X^{t-1})}{P(X_j(t) \mid X^{t-1}_{-\{i\}})} \stackrel{(*)}{=} I(X_i o X_j) \parallel X_{-\{i,j\}})$$

 (\star) requires proof, next slide

 \blacktriangleright directed information quantifies how much the history of X_i helps to predict X_j

Directed information (regret between predictors)

> expanding directed information according to the definition yields

$$\begin{split} I(X_i \to X_j \parallel X_{-\{i,j\}}) &= H(X_j \parallel X_{-\{i,j\}}) - H(X_j \parallel X_{-\{j\}}) \\ &= \sum_{t=1}^n H(X_j(t) \mid X_{-\{i\}}^{t-1}) - \sum_{t=1}^n H(X_j(t) \mid X^{t-1}) \\ &= \mathsf{E} \sum_{t=1}^n -\log P(X_j(t) \mid X_{-\{i\}}^{t-1}) + \log P(X_j(t) \mid X^{t-1}) \\ &= \mathsf{E} \sum_{t=1}^n \log \frac{P(X_j(t) \mid X_{-\{i\}}^{t-1})}{P(X_j(t) \mid X^{t-1})} \end{split}$$

as desired

Directed information graph

- let X a set of m stochastic processes of length n
- let G = (V, E) a directed graph where
 - \blacktriangleright V = [m]
 - ▶ and $(i,j) \in E$ if $I(X_i \rightarrow X_j \parallel X_{-\{i,j\}}) > 0$
- we call G the *directed information graph* of X
- generalization of linear dynamical graph
 - edge from i to j if z-transform of linear response has non-zero entry j, i

Random variable case

- let X a random vector (X_1, \ldots, X_m)
- ▶ build predictors $p: \mathbf{R}^{m-1} \to \Delta(\mathbf{R})$ and $q: \mathbf{R}^{m-2} \to \Delta(\mathbf{R})$
 - ▶ p is a distribution for X_j as function of $x_{-\{j\}}$, q is a distribution for X_j as function of $x_{-\{i,j\}}$
- ▶ measure quality of predictor via loss $l : \Delta(\mathbf{R}) \times \mathbf{R} \rightarrow \mathbf{R}_+$
 - $\blacktriangleright \ \inf_q \mathsf{E}[\ell(q,x_j)] > \inf_p \mathsf{E}[\ell(p,x_j)]$
 - ▶ study expected regret of q with respect to p: $\mathsf{E}[\ell(q, x) \ell(p, x)]$
 - use $\ell(p, \alpha) = -\log p(\alpha)$, the negative log likelihood
- consider regret between ideal predictors, the true marginals $P(X_j | X_{-\{j\}})$ and $P(X_j | X_{-\{i,j\}})$

$$\mathsf{E}\left[\log\frac{P(X_{j} \mid X_{-\{j\}})}{P(X_{j} \mid X_{-\{i,j\}})}\right] = I(X_{i}, X_{j} \mid X_{-\{i,j\}})$$

• the regret of not knowing X_i in building a predictor for X_j is the *conditional mutual information*

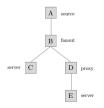
Random variable case: equivalence

- let X a random vector (X_1, \ldots, X_m)
- ▶ the information graph has a node for each random variable and an edge if $I(X_i, X_j \mid X_{-\{i,j\}}) > 0$.
- ▶ sparsity coincides with undirected graphical model which has edge if $X_i \perp X_j \mid X_{-\{i,j\}}$
- sparsity coincides with the mmse advantage

Example Application: Simple Server Model

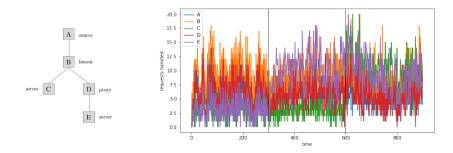
Server Tree

- consider a simple server tree with 5 nodes
- every node required to service requests at A
 - \blacktriangleright A is a source, new requests arrive from Poisson at rate λ
 - ▶ B sends one request to C and one to D for each it request from A
 - D proxies requests to E
 - ▶ C/E serve requests, complete request at time t w.p. $p \in (0, 1]$



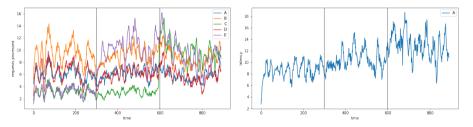
Example Trajectory

- system state is gross and complicated (origins, paths, blocking, destination)
- system output is simple and interpretable: number of requests processed and latency
- outputs over 900 time steps, $\lambda = 3$, p = 1
 - ▶ at time t = 300, E "breaks," *i.e.*, E goes to p = 1/3
 - ▶ at time t = 600, C "breaks," *i.e.*, C goes to p = 1/3



Smoothed Output

- \blacktriangleright left: smoothed request load, can see E go up, then D go up
- ▶ right: smoothed latency of requests arriving at A



computing the directed information on empirical data yields server tree