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Background
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Information theoretic quantities

I let X;Y; Z 2 Rn random vectors

I denote elements of X = (X(1); : : : X(n))

I denote subvector (X(1); : : : ; X(s)) by Xs with X0 empty

I define entropy
H(X) := �E logPX

I define mutual information
I(X;Y ) := H(X)�H(X j Y )

I fact: I(X;Y ) = I(Y;X)
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Information theoretic quantities

I chain rule for entropy

I H(X j Y ) =
Pn

t=1
H(X(t) j Xt�1; Y )

I define causally conditioned entropy

H(X k Y ) :=

nX
t=1

H(X(t) j Xt�1
; Y

t)

I define directed information from X to Y by

I(X ! Y ) = H(Y )�H(Y k X);

and I(X ! Y ) 6= I(Y ! X) in general

I define directed information from X to Y causally conditioned on Z by

I(X ! Y k Z) = H(Y k Z)�H(Y k X;Z)
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Directed information (notation)

I suppose X = (X1; : : : ; Xm) is m stochastic processes over a time horizon n.

I so for i = 1; : : : ;m, Xi = (Xi(1); : : : ; Xi(n)) 2 Rn

I X is random object in Rm�n

I for A � [m], XA consists of (Xi)i2A 2 RjAj�n

I want to talk about causal relations between processes using directed information
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Directed information (sum of informations)

I I(Xi ! Xj k X�fi;jg) is a sum of informations

I(Xi ! Xj k X�fi;jg) = H(Xj k X�fi;jg)�H(Xj k X�fjg)

=

nX
t=1

H(Xj(t) j X
t�1
�fig)�H(Xj(t) j X

t�1)

=

nX
t=1

I(Xj(t); X
t�1
i j Xt�1

�fig)

I directed information is sum over horizon of information between Xj at current time and history of Xi

I if informations on right hand side are large, so is directed information

I condition on histories of all other processes
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Directed information (regret between predictors)

I build sequence of predictors pt : Rm�(t�1) ! �(R).

I map signals histories to distributions over Xj(t)

I have access to all signals

I build sequence of predictors qt : R(m�1)�(t�1) ! �(R)

I have acess to all signals except Xi

I measure quality of predictor by loss ` : �(R)� R ! R+

I measure regret with respect to loss between pt and qt

E

"
nX
i=1

`(qt(X
t�1
�fig); Xj(t)) � `(pt(X

t�1); Xj(t))

#

I class of predictors qt has more information than predictors pt, so

inf
qt

E
nX
i=1

`(qt(X
t�1
�fig); Xj(t)) > inf

pt

E
nX
i=1

`(pt(X
t�1
�fig); Xj(t))
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Directed information (regret between predictors)

I consider `(pt; �) = � log pt(�), the negative log likelihood

I the regret is

E
nX
t=1

log
pt(X

t�1)(Xj(T ))

qt(X
t�1
�fig)(Xj(t))

I select predictors pt = P (Xj(t) j X
t�1) and qt = P (Xj(t) j X

t�1
�fig), the true conditionals, regret is

E
nX
t=1

log
P (Xj(t) j X

t�1)

P (Xj(t) j X
t�1
�fig)

(?)
= I(Xi ! Xj) k X�fi;jg)

(?) requires proof, next slide

I directed information quantifies how much the history of Xi helps to predict Xj
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Directed information (regret between predictors)

I expanding directed information according to the definition yields

I(Xi ! Xj k X�fi;jg) = H(Xj k X�fi;jg)�H(Xj k X�fjg)

=

nX
t=1

H(Xj(t) j X
t�1
�fig)�

nX
t=1

H(Xj(t) j X
t�1)

= E
nX
t=1

� logP (Xj(t) j X
t�1
�fig) + logP (Xj(t) j X

t�1)

= E
nX
t=1

log
P (Xj(t) j X

t�1
�fig)

P (Xj(t) j Xt�1)

as desired
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Directed information graph

I let X a set of m stochastic processes of length n

I let G = (V;E) a directed graph where

I V = [m]

I and (i; j) 2 E if I(Xi ! Xj k X�fi;jg) > 0

I we call G the directed information graph of X

I generalization of linear dynamical graph

I edge from i to j if z-transform of linear response has non-zero entry j; i
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Random variable case

I let X a random vector (X1; : : : ; Xm)

I build predictors p : Rm�1 ! �(R) and q : Rm�2 ! �(R)

I p is a distribution for Xj as function of x�fjg, q is a distribution for Xj as function of x�fi;jg

I measure quality of predictor via loss ` : �(R)� R ! R+

I infq E[`(q; xj)] > infp E[`(p; xj)]

I study expected regret of q with respect to p: E[`(q; x)� `(p; x)]

I use `(p; �) = � log p(�), the negative log likelihood

I consider regret between ideal predictors, the true marginals P (Xj j X�fjg) and P (Xj j X�fi;jg)

E

�
log

P (Xj j X�fjg)

P (Xj j X�fi;jg)

�
= I(Xi; Xj j X�fi;jg)

I the regret of not knowing Xi in building a predictor for Xj is the conditional mutual information
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Random variable case: equivalence

I let X a random vector (X1; : : : ; Xm)

I the information graph has a node for each random variable and an edge if I(Xi; Xj j X�fi;jg) > 0.

I sparsity coincides with undirected graphical model which has edge if Xi ? Xj j X�fi;jg

I sparsity coincides with the mmse advantage
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Example Application: Simple Server Model
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Server Tree

I consider a simple server tree with 5 nodes

I every node required to service requests at A

I A is a source, new requests arrive from Poisson at rate �

I B sends one request to C and one to D for each it request from A

I D proxies requests to E

I C/E serve requests, complete request at time t w.p. p 2 (0; 1]

A

B

C D

E

source

fanout

proxy

server

server
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Example Trajectory

I system state is gross and complicated (origins, paths, blocking, destination)

I system output is simple and interpretable: number of requests processed and latency

I outputs over 900 time steps, � = 3, p = 1

I at time t = 300, E "breaks," i.e., E goes to p = 1=3

I at time t = 600, C "breaks," i.e., C goes to p = 1=3

A

B

C D

E

source

fanout

proxy

server

server
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Smoothed Output

I left: smoothed request load, can see E go up, then D go up

I right: smoothed latency of requests arriving at A

I computing the directed information on empirical data yields server tree
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