Causal Models

Nick Landolfi and Sanjay Lall
Stanford University

Example to have a mind

- consider writing down a mathematical model for causal situations
- here's an example to consider: firing squad
- there is a court, which may order the execution of a prisoner
- if the court orders the captain signals
- if the the captain signals two separate rifleman will fire killing the prisoner
- how could we evaluate statements like:
- "if the prisoner is dead, then even if one rifeman witheld, the prisoner would be dead"
- the key word of counterfactuals: "would"

A second example to keep in mind: why regression models are not causal

- a second example: hours studied and grades
- students study a number of hours for an exam, x
- students take an exam and receives a mark, y
- regression does not distinguish between $y \approx f(x)$ or $x \approx g(y)$ (but you could estimate g)

Basic Concepts

Typed Graph

- let (V, E) a graph and let $\left\{A_{v}\right\}_{v \in V}$ a collection of sets
- call $\left(V, E,\left\{A_{v}\right\}\right)$ a typed graph
- for vertex $v \in V$, call A_{v} the domain of v
- for subset of vertices $U \subset V$, denote product of domains (w.r.t. fixed order) by $A_{U}=\prod_{u \in U} A_{u}$
- if (V, E) is directed
- call $\{u \in V \mid(u, v) \in E\}$ the parents of v; denote the parents of v by P_{v}
- call $v \in V$ exogenous if P_{v} is empty, otherwise call v endogenous

Example: (Directed) Typed Graph

- example with $V=\{1,2,3,4,5\}$ and $E=\{(1,2),(2,3),(2,4),(3,5),(4,5)\}$

- and boolean domains $A_{v}=\{0,1\}$ for each $v=1,2,3,4,5$

Graphical Variable Model

- let $\left(V, E,\left\{A_{v}\right\}\right)$ a typed directed graph
- let X a subset of the domain of exogenous vertices
- let $f_{v}: A_{P_{v}} \rightarrow A_{v}$ for each endogenous vertex
- call ($\left.V, E,\left\{A_{v}\right\}, X,\left\{f_{v}\right\}\right)$ a graphical variable model
- call elements of V variables
- call elements of X circumstances
- call f_{v} the dynamics for variable v

Interpretation: Graphical Variable Model

- let $\left(V, E,\left\{A_{\nu}\right\}, X,\left\{f_{v}\right\}\right)$ a graphical variable model
- interpretation: a system of equations defined by relations in $\left\{f_{v}\right\}$ and structure in E
- denote the product domain of the endogenous variables by Y
- let $F: X \times Y \rightarrow Y$ such that $F_{v}(x, y)=F_{v}(z)=f_{v}\left(z_{P_{v}}\right)$
- for fixed x, call solutions y of $F(x, y)=y$ the outcomes
- may be none, one or many solutions
- corresponds to root finding of $G(y ; x)=F(x, y)-y$
- leads to question: when will we know there will be one unique outcome?

Example: Graphical Variable Model

- example with $V=\{1,2,3,4,5,6\}$ and $E=\{(1,4),(2,5),(3,6),(4,5),(5,6),(6,4)\}$

- real domains $A_{v}=\mathbf{R}$ for each $v=1,2,3,4,5,6$
- dynamics $f_{4}\left(x_{1}, y_{3}\right)=x_{1}+a_{13} y_{3}, f_{5}\left(x_{2}, y_{1}\right)=x_{2}+a_{21} y_{1}$, and $f_{6}\left(x_{3}, y_{2}\right)=x_{3}+a_{32} y_{2}$
- outcomes are solutions, for fixed x, of

$$
F(x, y)=x+\left[\begin{array}{ccc}
0 & 0 & a_{13} \\
a_{21} & 0 & 0 \\
0 & a_{32} & 0
\end{array}\right] y=y
$$

Causal Model

- motivation: if (V, E) of graphical variable model is acyclic, then
- there exists a unique solution to system of equations for fixed exogenous values
- computational implication: topologically sort graph, set exogenous variables and evaluate f_{v}
- definition: call $\left(V, E,\left\{A_{v}\right\}, X,\left\{A_{\nu}\right\}\right)$ with (V, E) acyclic a causal graphical variable model
- call it a causal model for short
- call $f: X \rightarrow Y$, outcome map, denoting the product domain of the exogenous variables by Y
- call $f(x)$ the outcome of circumstance x
- call graph of f the possibilities; denote the graph of f by Γ_{f}

Interpretation: Causal Model

- given a set of (endogenous) variables to model and (exogenous) variables external to model
- given specified values for these exogenous variables (circumstances)
- use the model to determine the values for endogenous variables (outcomes)
- computationally: topologically sort the graph, then evaluate the f_{v}

Example: Causal Model

- same typed graph as before, with circumstances $X=\{0,1\}$ for vertex 1

- specify dynamics functions for each of the vertices
- $f_{2}, f_{3}, f_{4} \equiv$ id (the identity function)
- $f_{5}(a, b)=a \vee b$ (the logical or function)
- use circumstances and dynamics to find set of possibilities $\{(0,0,0,0,0),(1,1,1,1,1)\}$

Evidence, Intervention, and Counterfactual Model

- let $\left(V, E,\left\{A_{v}\right\}, X,\left\{f_{v}\right\}\right)$ with outcome map $f: X \rightarrow Y$
- let U a set of endogenous vertices and $\left\{\phi_{u}: A_{P_{u}} \rightarrow A_{u}\right\}_{u \in U}$, call $\left(U,\left\{\phi_{u}\right\}\right)$ an intervention
- let $W \subset V$ and $w \in A_{U}$, call (U, w) evidence
- define a counterfactual causal model ($G, X^{\prime},\left\{f_{v}^{\prime}\right\}$) for evidence (E, e) and an intervention ($U,\left\{\phi_{u}\right\}$)
- $X^{\prime}=\left\{z_{V_{x}} \mid z \in \Gamma_{f}\right.$ and $\left.z_{E}=e\right\} ;$
- interpretation: only include circumstances consistent with the evidence
- $f_{v}^{\prime}=\phi_{v}$ if $v \in U$ and $f_{v}^{\prime}=f_{v}$ otherwise
- interpretation: change dynamics of variables in U, do not change structure E

Example: Counterfactual Model

- causal model as before, with circumstances $X=\{0,1\}$ for vertex 1 ,
- and dynamics $f_{2}, f_{3}, f_{4} \equiv$ id and $f_{5}(a, b)=a \vee b$

- use evidence ($\{5\},(0)$) and intervention ($\{3\},\left\{\phi_{3} \equiv 1\right\}$)
- only circumstance consistent with evidence is (0)
- intervention fixes variable 3 at value 1
- using "new" dynamics we find only possibility of counterfactual model is ($0,0,1,0,1$)

Example: Firing Squad

Example: Firing Squad Interpretation

- causal model as before; attach firing squad interpretation

- each boolean variable corresponds to indicator of the action or event
- in english, "if the court orders, the captain signals and the rifleman (A and B) fire, killing the prisoner"
- two possibilities: $\{(0,0,0,0,0),(1,1,1,1,1)\}$
- circumstance (0): court witholds, captain witholds, riflemen withold, prisoner lives
- circumstance (1): court orders, captain signals, riflemen shoot, prisoner dies

Example: Prediction

- same causal model, with outcome map f

- for all $z \in \Gamma_{f}, \neg z_{3} \Longrightarrow \neg z_{5}$
- in english, "if rifleman A did not shoot, then the prisoner is alive"
- example of prediction, as in all orders of $V, 3 \prec 5$

Example: Abduction

- same causal model, with outcome map f

- for all $z \in \Gamma_{f}, \neg z_{5} \Longrightarrow \neg z_{2}$
- in english, "if the prisoner is alive, then the captain did not signal"
- example of abduction, as in all orders of $V, 5 \succ 2$

Example: Transduction

- same causal model, with outcome map f

- for all $z \in \Gamma_{f}, z_{3} \Longrightarrow z_{4}$
- in english, "if rifleman A shot, then rifleman B shot"
- example of transduction, as there exists an order in which $3 \prec 4$ and one in which $3 \succ^{\prime} 4$

Example: Intervention

- intervention causal model, with outcome map g; intervention ($\{3\},\left\{\phi_{3} \equiv 1\right\}$),

- for all $z \in \Gamma_{g}, \neg z_{2} \Longrightarrow \neg z_{4} \wedge z_{5}$
- in english, "if the captain witholds, but rifleman A shoots, then rifleman B witholds and the prisoner dies"
- example of an action modifying the model, as normally rifleman A follows the captain

Example: Counterfactual

- counterfactual causal model with outcome map g; evidence ($\{5\},(1)$), intervention $\left(\{3\},\left\{\phi_{3} \equiv 0\right\}\right)$

- for all $z \in \Gamma_{g}, z_{5}$
- in english, "if the prisoner is dead, then even if rifleman A withheld, the prisoner would be dead"
- example of a counterfactual, as rifleman A did not in fact withold

Parameters \& Probabilities

Parameterized Graphical Variable Model

- let Θ a set
- let $\left\{\left(V, E,\left\{A_{v}\right\}, X,\left\{f_{v}(\cdot ; \theta)\right\}\right)\right\}_{\theta \in \Theta}$ a familiy of graphical variable models
- call ($\left.V, E,\left\{A_{v}\right\}, X,\left\{f_{v}(\cdot ; \theta)\right\}\right)$ a parameterized graphical variable model
- call θ the parameters

Probabilistic Graphical Variable Model

- let $\left(V, E,\left\{A_{v}\right\}\right)$ a typed graph
- let X a subset of the product domain of exogenous variables and \mathcal{X} a σ-alebgra on X
- let Y the product domain of endogenous variables and \mathcal{Y} a σ-algebra on Y
- let $\mathbf{P}_{X}: \mathcal{X} \rightarrow[0,1]$ a probability measure on (X, \mathcal{X})
- let $f_{v}: A_{P_{v}} \rightarrow A_{v}$ measurable for v endogenous
- call $\left(V, E,\left\{A_{v}\right\}, \mathbf{P}_{X},\left\{f_{v}\right\}\right)$ a probabilistic graphical variable model
- call \mathbf{P}_{X} the exogenous distribution
- denote the measure $\mathbf{P}_{X} \circ f$ by \mathbf{P}_{Y}; call it the endogenous distribution
- let $\left(\Gamma_{f}, \mathcal{X} \times \mathcal{Y}\right)$ the product measurable space with induced measure \mathbf{P}; call \mathbf{P} the model distribution
- interpretation: identify each vertex with a random variable

Parameterized Probabilistic Causal Model

- let Θ a set
- let $\left\{\left(V, E,\left\{A_{v}\right\}, \mathbf{P}_{X}(\cdot ; \theta),\left\{f_{v}(\cdot ; \theta)\right\}\right)\right\} \theta \in \Theta$ a family of probabilistic causal models
- call ($\left.V, E,\left\{A_{v}\right\}, \mathbf{P}_{X}(\cdot ; \theta),\left\{f_{v}(\cdot ; \theta)\right\}\right)$ parameterized probabilistic causal model
- call θ the parameters
- denote the model distribution by \mathbf{P}_{θ}, indicating the dependence on the parameters

Notions akin to Causation

Influence

- let $f: X \rightarrow Y$ the outcome map of a causal model and x a circumstance
- let $v \in V$, and $U \subset V$ with $v \notin U$
- let $\left(\{U\},\left\{\phi_{u}\right\}\right)$ an intervention inducing outcome map g
- denote $(x, f(x))$ by z and $(x, g(x))$ by \tilde{z}
- if there exists an intervention on U such that $z_{v} \neq \tilde{z}_{v}$, we say U influences v in circumstance x
- additionally, we say U influences v if it influences v in at least one circumstance
- proposition: if $\{u\}$ influences v, then u is an ancestor of v
- a simple necessary condition on structure for influence
- corollary: if variable v is exogenous then it has no influencers
- proposition: if U influences v and $U \subset W$, then W influences v

Responsibility

- let $f: X \rightarrow Y$ the outcome map of a causal model and x a circumstance
- let $v \in V$ boolean (i.e., $\left.A_{v}=\{0,1\}\right), U \subset V$ with $v \notin U$ and $z_{v}=1$
- if U influences v in x we say U is responsible for s in x
- influence requires changing the value of z_{v}, which in this case has only two options
- interpretation: intervening on U could have prevented v in circumstance x
- proposition: if U responsible and $U \subset W$, then W is responsible
- interpretation: any set containing a responsible set is responsible
- if there exists $Q \subset U, Q \neq U$ such that Q is responsible, we call U reducible
- if U is not reducible we call it irreducible

Influence \& Responsibility Example: Firing Squad

- consider $v=z_{5}$ and circumstance (1); in this circumstance z_{5} is 1

- any subset of $\{1,2,3,4\}$ influence 5 ; in this circumstance, responsibility is more limited
- both $\{1\}$ (court) and $\{2\}$ (captain) are responsible; both irreducible
- neither $\{3\}$ (rifleman A) nor $\{4\}$ (rifleman B) is responsible
- however, $\{3,4\}$ (set of rifleman A and B) is responsible for the prisoner's death; final irreducible set
- this example disproves the following "chain-of-responsibility" proposition:
- if $\{u\}$ is responsible for v, \exists path $\left(\left(u, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{p}, v\right)\right)$ with $\left\{v_{i}\right\}$ is responsible for v for $i=1, \ldots, p$

Multiple Responsible Sets

Problem of Multiple Responsible Sets

- let s a boolean variable in a causal model taking value 1 in circumstance x
- problem: there are generally several responsible $U \subset V$ for s in x
- simple issues:
- can have multiple responsible sets of the same cardinality
- can have multiple different interventions corresponding to each responsible set
- subtle issues:
- U and W have same cardinality, but variables in W pre-empt those in U
- $U \subset W$ and $U \neq W$ but the intervention certifying W 's responsibility is "more reasonable"
- does concept of reducibility go far enough?
- prior example $\{2,3,4\}$ has irreducible responsible subsets $\{2\}$ and $\{3,4\}$

Naive Solution of Multiple Responsible Sets

- let $h: \mathcal{I} \rightarrow \mathbf{R}$, where \mathcal{I} denotes the set of interventions, and define the order \preceq on \mathcal{I} by

$$
\left(U,\left\{\phi_{u}\right\}\right) \preceq\left(\tilde{U},\left\{\phi_{\tilde{u}}\right\}\right) \text { if and only if } h\left(\left(U,\left\{\phi_{u}\right\}\right)\right) \leq h\left(\left(\tilde{U},\left\{\phi_{\tilde{u}}\right\}\right)\right) .
$$

- example: cardinality ordering
- fix $r: A_{V} \rightarrow[0,1)$ and define $h\left(\left(U,\left\{\phi_{u}\right\}\right)\right)=|U|+r(z)$
- where $z=(x, g(x))$ and g is outcome map corresponding to intervention
- if $|U| \leq|\tilde{U}|$, then $\left(U,\left\{\phi_{u}\right\}\right) \preceq\left(\tilde{U},\left\{\phi_{\tilde{u}}\right\}\right)$
- interpretation: order by cardinality first, then by rating r
- example: distance to evidence
- let (E, e) evidence and $\left(A_{E}, d\right)$ a metric space, define $h\left(\left(U,\left\{\phi_{u}\right\}\right)\right)=d\left(e, z_{E}\right)$
- example: likelihood ordering
- fix P a distribution on A_{v} and define $\left.h\left(\left(U,\left\{\phi_{u}\right\}\right)\right)=-\log (P(z))\right)$
- where $z=(x, g(x))$ and g is outcome map corresponding to intervention
- interpretation: order by likelihood of possibility induced by intervention

Minimal Responsible Set: Problem

- define "minimal" responsible sets U as solutions of

$$
\begin{aligned}
\operatorname{minimize} & h\left(\left(U,\left\{\phi_{u}\right\}\right)\right) \\
\text { subject to } & z_{v}=0 \\
& z=(x, g(x)) \\
& g \text { is outcome map for }\left(U,\left\{\phi_{u}\right\}\right) \\
& U \subset V-\{v\} \text { and } \phi_{u}: A_{P_{u}} \rightarrow A_{u}
\end{aligned}
$$

with decision variable ($U,\left\{\phi_{u}\right\}$)

- interpretation: find the "smallest" intervention preventing $z_{v}=1$ in circumstance x
- the equality constraint $z_{v}=0$ certifies that U is responsible for v in x
- challenging: $O\left(2^{|V|}\right)$ possible responsible sets, ϕ_{u} need not live in finite dimensional space

Minimal Responsible Set: Simplification

- proposition: w.l.o.g. can consider constant interventions $\phi_{u} \equiv c_{u}$ for $c_{u} \in A_{u}$
- can write equivalent problem

```
    minimize \(h\left(\left(U,\left\{\phi_{u}\right\}\right)\right)\)
subject to \(z_{v}=0\)
    \(z=(x, g(x))\)
    \(g\) is outcome map for \(\left(U,\left\{\phi_{u} \equiv c_{u}\right\}\right)\)
    \(U \subset V-\{v\}\) and \(c_{u} \in A_{u}\)
```

- interpretation of decision variables: choose intervention points U and values $\left\{c_{u}\right\}$

Parents Mediate Responsibility

- motivation: want to use a local property about responsibility to make a global statement
- proposition: if P_{s} is not a responsible set for s, then there is no responsible set for s in $V-\{s\}$
- in fact, a refinement holds: if $\nexists Q \subset P_{s}$ responsible, then $\nexists R \subset V-\{s\}$
- interpretation: if the parents are not responsible, then no one is responsible
- intuition: all responsibility has to go through the parents
- contrapositive: if there exists $R \subset V-\{s\}$ responsible for s, then $\exists Q \subset P_{s}$ responsible for s

Firing Squad Example: Parents Mediate Responsibility

- consider $v=z_{5}$ and circumstance (1); in this circumstance z_{5} is 1

- we saw that $\{1\}$ and $\{2\}$ are responsible
- proposition tells us that $\{3,4\}$ is responsible
- if (not true here) no intervention on $\{3,4\}$ would change z_{5}, no intervention on $\{1\}$ and $\{2\}$ would

Derivative Responsibility

- suppose U is a responsible set for boolean variable s
- partition U into U_{x} and U_{n}
- denote set $W=\left\{v \in V \mid v \in P_{u}\right.$ for $\left.u \in U_{n}\right\}$
- if $U_{x} \cup W$ is responsible for s then we call U derivative
- if U is not derivative, then we call it original
- proposition: if $U \subset V_{x}$ is responsible for s, then U is original
- interpretation: an exogenous intervention is always original
- existence of responsible set equivalent to responsibility of the parent set
- originality of parent set allows us to ignore rest of graph

Firing Squad Example: Derivative Responsibility

- consider $v=z_{5}$ and circumstance (1); in this circumstance z_{5} is 1

- we saw that $\{1\},\{2\}$, and $\{3,4\}$ are responsible
- only the set $\{1\}$ is original (obvious: it only contains exogenous variables)
- the sets $\{2\}$ and $\{3,4\}$ are derivative
- $\{3,4\}$ can be derived from intervening on $\{2\}$
- $\{2\}$ can be derived from intervening on $\{1\}$

Structural Equation Models

Structural Equation Model

- a structural equation model (SEM) is a probabilistic causal model
- it has p mutually independent exogenous variables, each with one child
- i.e., there is one exogenous variable corresponding to each endogenous variable
- call these p exogenous variables the noise variables
- call subgraph (U, F) where U is the set of endogenous vertices and $F:=\{(u, v) \in E \mid u, v \in U\}$ endogenous subgraph

(Linear) Additive Structural Equation Model (with Gaussian Errors)

- let $\left(V, E,\left\{A_{v}\right\}, \mathbf{P}_{X},\left\{f_{v}\right\}\right)$ a SEM, denote the endogenous parents of v by \bar{P}_{v}
- if $f_{v}\left(z_{\bar{P}_{v}}, \varepsilon_{v}\right)=\sum_{u \in \bar{P}_{v}} f_{(u, v)}\left(z_{u}\right)+\varepsilon_{v}$, we call it an additive structural equation model
- if the exogenous distribution of an additive SEM is Gaussian we call it an additive SEM with Gaussian errors - if the dynamics of an additive SEM are linear, i.e., $f_{(u, v)}(a)=\theta_{(u, v)} a$, we all it a linear additive SEM
- if both the exogenous distribution is Gaussian and the dynamics linear, we call it a linear gaussian SEM

Example: linear Gaussian structural equation model

- let $V=\{1,2,3,4,5,6,7,8\}$ and $E=\{(1,2),(2,6),(3,7),(4,8),(5,6),(5,7),(6,8),(7,8)\}$

- let \mathbf{P}_{X} be $N(0,1)$ and dynamics
- $f_{5}\left(\varepsilon_{1}\right)=\varepsilon_{1}$
- $f_{6}\left(\gamma_{1}, \varepsilon_{2}\right)=\theta_{1} \gamma_{1}+\varepsilon_{2}$
- $f_{7}\left(\gamma_{2}, \varepsilon_{3}\right)=\theta_{2} \gamma_{2}+\varepsilon_{3}$
- $f_{8}\left(\gamma_{2}, \gamma_{3}, \varepsilon_{4}\right)=\theta_{3} \gamma_{2}+\theta_{4} \gamma_{3}+\varepsilon_{4}$

Structure Learning

Structure Learning

- frequently called "causal inference" or "causal discovery"
- let $\left\{\left(V, E,\left\{A_{v}\right\}, \mathbf{P}_{X}(\cdot ; \theta),\left\{f_{v}(\cdot ; \theta)\right\}\right)\right\}_{\theta \in \Theta}$ a family of probabilistic causal models
- question: how to go from \mathbf{P} to (θ, E) in class of parameterized causal models
- wait: assumes access to P?!
- often results are given with this assumption
- to go from data to structure, first go from data to \mathbf{P}

Structures \& Representation

- let V a set (of vertices)
- call the set $\mathcal{E}=\{E \in V \times V \mid(V, E)$ directed, acyclic $\}$ the structures on V
- let $\left\{\left((V, E), \mathbf{P}_{X}(\cdot ; \theta),\left\{f_{v}(\cdot ; \theta)\right\}\right)\right\}_{\theta \in \Theta}$ a family of probabilistic causal models
- for $\theta \in \Theta, E \in \mathcal{E}$, denote the model distribution of $\left((V, E), \mathbf{P}_{X}(\cdot ; \theta),\left\{f_{v}(; ; \theta)\right\}\right)$ by \mathbf{P}_{θ}
- likewise for θ, E^{\prime}, denote the model distribution by $\mathbf{P}_{\theta}^{\prime}$
- if $(E, \theta) \in \mathcal{E} \times \Theta$ has model distribution \mathbf{P}_{θ} we that (E, θ) represents \mathbf{P}

Faithfulness

- let $\left(V, E,\left\{A_{v}\right\}, \mathbf{P}_{X}(\cdot ; \theta),\left\{f_{v}(\cdot ; \theta)\right\}\right)$ with model distribution \mathbf{P}_{θ}
- then the model class is faithful if there does not exist E, E^{\prime}, θ such that $\mathbf{P}_{\theta}^{\prime}=\mathbf{P}_{\theta}$
- interpretation: once we have fixed a structure then no edges "disappear" by choice of θ
- examples of faithfulness failing exist even for linear gaussian models

Minimality

- define a relation on \mathcal{E} where $E \preceq E^{\prime}$ if for all $\theta \in \Theta$ there exists $\theta^{\prime} \in \Theta$ such that $\mathbf{P}_{\theta}=\mathbf{P}_{\theta^{\prime}}^{\prime}$
- interpretation: E precedes E^{\prime} if every distribution representable by E is representable by E^{\prime}
- if $E \in \mathcal{E}$ and there does not exist $E^{\prime} \neq E$ with $E^{\prime} \preceq E$ then we call E minimal
- interpretation: choose the simplest structure representing E
- simplest means representing the fewest possible distributions

Minimal Representing Structure

- let $\left\{\left((V, E), \mathbf{P}_{X}(\cdot ; \theta),\left\{f_{v}(\cdot ; \theta)\right\}\right)\right\}_{\theta \in \Theta}$ a family of probabilistic causal models
- let \mathbf{P} a distribution on $\left(\Gamma_{f}, \mathcal{X} \times \mathcal{Y}\right)$
- call the set $\mathcal{R}(\mathbf{P})=\{E \in \mathcal{E} \mid \exists \theta \in \Theta$ so that (E, θ) represents $\mathbf{P})\}$ the representing structures
- if $E \in \mathcal{R}(\mathbf{P})$ is minimal we call it the minimal representing strcture

Bounded Linear Example

Bounded Linear Example

- parameters of model: positive integer n and vector $\alpha \in \mathbf{R}^{n}$
- typed graph $V=\{1, \ldots, n+1\}$ and $E=\{(1, n+1),(2, n+1), \ldots,(n, n+1)\}$

and domains $A_{i}=[0,1]$ for $i=1, \ldots, n$ and $A_{n+1}=[1, n]$
- circumstances $X=[0,1]^{n}$
- dynamics $f_{n+1}\left(x_{1}, \ldots, x_{n+1}\right)=\sum_{i} \alpha_{i} x_{i}$
- $\{i\}$ influences $n+1$ if $\alpha_{i} \neq 0$

Bounded Linear Example: All Responsible

- consider $n=3$ and $\alpha=1$ basic bounded linear model with one additional boolean node (5)

so the dynamics are $f_{4}(a, b, c)=a+b+c$ (sum) and $f_{5}(a)=1$ if $a \geq \tau$ (indicator of threshold)
- consider circumstance $(1,1,1)$ and $\tau=2.5$
- any subset of $\{1,2,3,4\}$ is responsible for 5
- intuitively, $\{1\}\{2\}$ and $\{3\}$ are each individually responsible
- weird artifact of model: $\{4\}$ is responsible
- could have defined dynamics of 5 directly as $f_{5}(a, b, c)=1$ if $a+b+c \geq \tau$

Bounded Linear Example: One Responsible

- consider $n=3$ and $\alpha=1$ basic bounded linear model with one additional boolean node (5)

so the dynamics are $f_{4}(a, b, c)=a+b+c$ (sum) and $f_{5}(a)=1$ if $a \geq \tau$ (indicator of threshold)
- consider circumstance $(1.0,0.1,0.1)$ and $\tau=0.5$
- again, $\{4\}$ is de facto responsible
- but now only $\{1\}$ is responsible, not $\{2\}$ or $\{3\}$
- justification for 2 and 3 not responsible: $1+\xi+.1 \geq 0.5$ for all $\xi \geq 0$

Bounded Linear Example: Two Responsible

- consider $n=3$ and $\alpha=1$ basic bounded linear model with one additional boolean node (5)

so the dynamics are $f_{4}(a, b, c)=a+b+c$ (sum) and $f_{5}(a)=1$ if $a \geq \tau$ (indicator of threshold)
- consider circumstance $(1,1,1)$ and $\tau=1.5$
- again, $\{4\}$ is de facto responsible
- now, none of $\{1\}\{2\}$ or $\{3\}$ are responsible
- justification for no individual responsibility: $1+1+\xi \geq 1.5$ for all $\xi \geq 0$
- however, the sets $\{1,2\},\{2,3\}$ and $\{1,3\}$ are each responsible

