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We study the optimal pricing strategies of a monopolist selling a divisible good (service) to consumers who are embedded
in a social network. A key feature of our model is that consumers experience a (positive) local network effect. In particular,
each consumer’s usage level depends directly on the usage of her neighbors in the social network structure. Thus, the
monopolist’s optimal pricing strategy may involve offering discounts to certain agents who have a central position in
the underlying network. Our results can be summarized as follows. First, we consider a setting where the monopolist
can offer individualized prices and derive a characterization of the optimal price for each consumer as a function of her
network position. In particular, we show that it is optimal for the monopolist to charge each agent a price that consists
of three components: (i) a nominal term that is independent of the network structure, (ii) a discount term proportional to
the influence that this agent exerts over the rest of the social network (quantified by the agent’s Bonacich centrality), and
(iii) a markup term proportional to the influence that the network exerts on the agent. In the second part of the paper,
we discuss the optimal strategy of a monopolist who can only choose a single uniform price for the good and derive an
algorithm polynomial in the number of agents to compute such a price. Third, we assume that the monopolist can offer the
good in two prices, full and discounted, and we study the problem of determining which set of consumers should be given
the discount. We show that the problem is NP-hard; however, we provide an explicit characterization of the set of agents
who should be offered the discounted price. Next, we describe an approximation algorithm for finding the optimal set of
agents. We show that if the profit is nonnegative under any feasible price allocation, the algorithm guarantees at least 88%
of the optimal profit. Finally, we highlight the value of network information by comparing the profits of a monopolist who
does not take into account the network effects when choosing her pricing policy to those of a monopolist who uses this
information optimally.
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1. Introduction
Inarguably, social networks that describe the pattern and
level of interaction of a set of agents1 are instrumental
in the propagation of information and act as conduits of
influence among its members. Their importance is best
exemplified by the overwhelming success of online social
networking communities such as Facebook and Twitter.
The ubiquity of these Internet-based services that are built
around social networks has made possible the collection of
vast amounts of data on the structure and intensity of social
interactions. The question that arises naturally is whether
firms can intelligently use the available data to improve
their business strategies.

In this paper, we focus on the question of using
the potentially available data on network interactions to
improve the pricing strategies of a seller who offers a

divisible good (service). A main feature of the products
we consider is that they exhibit a local (positive) network
effect: increasing the usage level of a consumer has a
positive impact on the usage levels of her peers. As con-
crete examples of such goods, consider online games
(e.g., World of Warcraft, Second Life) and social net-
working tools and communities (e.g., online dating ser-
vices, employment websites, etc.). More generally, the local
network effect can capture word-of-mouth communication
among agents: agents typically form their opinions about
the quality of a product based on the information they
obtain from their peers.

How can a monopolist exploit the above network effects
and maximize her revenues? In particular, in such a setting
it is plausible that an optimal pricing strategy may involve
favoring certain agents by offering the good at a discounted
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price and subsequently exploiting the positive effect of their
usage on the rest of the consumers. At its extreme, such a
scheme would offer the product for free to a subset of con-
sumers, hoping that this would have a large positive impact
on the purchasing decisions of the rest. Although such
strategies have been used extensively in practice, mainly in
the form of ad hoc or heuristic mechanisms, the available
data enable companies to effectively target the agents to
maximize that impact.

The goal of the present paper is to characterize opti-
mal pricing strategies as a function of the underlying social
interactions in a stylized model, which features consumers
that are embedded in a given social network and influenc-
ing each other’s decisions. In particular, a monopolist first
chooses a pricing strategy and then consumers choose their
usage levels so as to maximize their own utility. We capture
the local positive network effect by assuming that a con-
sumer’s utility is increasing in the usage level of her peers.
Specifically, we assume that a consumer’s utility function
is quadratic in her own usage level and linear in the usage
level of her peers. This linear-quadratic functional form is
important for tractability and enables us to obtain structural
insights on the optimal pricing strategies.

We study three variations of the baseline model by
imposing different assumptions on the set of available pric-
ing strategies that the monopolist can implement. First,
we allow the monopolist to set an individual price for
each of the consumers. We show that the optimal price
for each agent can be decomposed into three components:
a fixed cost that does not depend on the network struc-
ture, a markup, and a discount. Both the markup and the
discount are proportional to the Bonacich centrality of the
agent’s neighbors in the social network structure, which is
a sociological measure of network influence. The Bonacich
centrality measure, introduced by Bonacich (1987), can be
understood in terms of a random walk on the underlying
network structure. The agents with the highest centrality
are the ones that are visited by the random walk most
frequently. Intuitively, an agent is central in the Bonacich
sense if she is connected to other central agents. In social
networks, two agents with the same degree, i.e., same num-
ber of direct connections, may not exert the same level of
influence when one of these agents is connected to more
central agents. The Bonacich centrality measure captures
this phenomenon and identifies agents whose peers are
also central as the central agents. Informally, we show that
agents get a discount proportional to the amount they influ-
ence their peers to purchase the product, and they receive
a markup if they are strongly influenced by other agents in
the network. Our results also provide an economic founda-
tion for this sociological measure of influence.

Perfect price differentiation is typically hard to imple-
ment. Therefore, in the second part of the paper we study a
setting where the monopolist offers a single uniform price
for the good. Intuitively, this price might make the prod-
uct unattractive for a subset of consumers who end up not

purchasing, but the monopolist recovers the revenue losses
from the rest of the consumers. We develop an algorithm
that finds the optimal single price in time polynomial in the
number of agents. The algorithm considers different subsets
of the consumers and finds the optimal price provided that
only the consumers in the given subset purchase a positive
amount of the good. First, we show that given a subset S
we can find the optimal price pS under the above constraint
in closed form. Then, we show that we only need to con-
sider a small number of such subsets. In particular, we rank
the agents with respect to a weighted centrality index and
iteratively construct a sequence of sets by removing the
consumer with the smallest such index at each step. The
optimal solution is then obtained by comparing the profits
the monopolist makes for each of those subsets.

Finally, we consider an intermediate setting, where the
monopolist can choose one of a small number of prices for
each agent. For expositional purposes, we restrict the dis-
cussion to two prices, full and discounted. Unlike the pre-
vious two settings, we first consider the case when the two
prices are exogenously given, and we study the problem of
determining the optimal subset of consumers to offer the
discounted price. We show that the problem is NP-hard,2

and we provide an approximation algorithm that recovers
(in polynomial time) at least 88% of the optimal revenue
for the case of two prices. Finally, we discuss how we can
relax the assumption of exogenous prices and provide a
simple procedure that can be used to search for the best
full and discounted prices.

To further highlight the importance of network effects,
we compare the profits of a monopolist who ignores them
when choosing her pricing policy to those of a monopo-
list who exploits them optimally. We are able to provide
a concise characterization of the discrepancy in profits as
a function of the level of interaction between the agents.
Informally, the value of information about the network
structure increases with the level of asymmetry of interac-
tions among the agents.

As mentioned above, a main feature of our model is
the positive impact of a consumer’s purchasing decision to
the purchasing behavior of other consumers. This effect,
known as network externality, is extensively studied in the
literature (e.g., Farrell and Saloner 1985, Katz and Shapiro
1986, and, more recently, Johari and Kumar 2010). How-
ever, the network effects in those studies are of global
nature, i.e., the utility of a consumer depends directly on
the behavior of the whole set of consumers. In our model,
consumers interact directly only with a subset of agents.
Although interaction is local for each consumer, her utility
may depend on the global structure of the network, because
each consumer potentially interacts indirectly with a much
larger set of agents than just her peers.

Given a set of prices, our model takes the form of a
network game among agents that interact locally. A recent
series of papers studies such games, e.g., Ballester et al.
(2006), Bramoullé and Kranton (2007), Corbo et al. (2007),
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Galeotti and Goyal (2009). A key modeling assumption
in Ballester et al. (2006), Bramoullé and Kranton (2007),
Corbo et al. (2007) and Bramoullé et al. (2012), which we
also adopt in our setting, is that the best reply functions
are linear. Ballester et al. (2006) were the first to note the
linkage between Bonacich centrality and Nash equilibrium
outcomes in a single-stage game with local payoff com-
plementarities. Our characterization of optimal prices when
the monopolist can perfectly price differentiate is reminis-
cent of their results, because prices are inherently related to
the Bonacich centrality of each consumer. However, both
the motivation and the analysis are quite different, because
ours is a two-stage game, where a monopolist chooses
prices to maximize her revenue subject to equilibrium con-
straints. Also, Bramoullé and Kranton (2007), Corbo et al.
(2007), and, most recently, Bramoullé et al. (2012) study
a similar game to the one in Ballester et al. (2006) and
interpret their results in terms of public good provision.
A number of recent papers (Campbell 2012, Galeotti et al.
2010, and Sundararajan 2007) have a similar motivation to
ours, but take a completely different approach: they make
the assumption of limited knowledge of the social network
structure, i.e., they assume that only the degree distribu-
tion is known, and thus derive optimal pricing strategies
that depend on this first degree measure of influence of a
consumer. In our model, we make the assumption that the
monopolist has complete knowledge of the social network
structure and, thus, obtain qualitatively different results:
the degree is not the appropriate measure of influence, but
rather prices are proportional to the Bonacich centrality of
the agents. On the technical side, note that assuming more
global knowledge of the network structure increases the
complexity of the problem in the following way: if only
the degree of an agent is known, then essentially there
are as many different types of agents as there are differ-
ent degrees. This is no longer true when more is known:
then, two agents of the same degree may be of different
type because of the difference in the characteristics of their
neighbors, and therefore, optimal prices charged to agents
may be different.

Furthermore, there is a recent stream of literature in
computer science that studies a set of algorithmic ques-
tions related to marketing strategies over social networks.
Kempe et al. (2003) discuss optimal network-seeding strate-
gies over social networks, when consumers act myopically
according to a prespecified rule of thumb. In particular, they
distinguish between two basic models of diffusion: the lin-
ear threshold model, which assumes that an agent adopts a
behavior as soon as adoption in her neighborhood of peers
exceeds a given threshold; and independent cascade model,
which assumes that an adopter infects each of her neigh-
bors with a given probability. The main question they ask is
finding the optimal set of initial adopters, when their num-
ber is given, so as to maximize the eventual adoption of
the behavior, when consumers behave according to one of
the diffusion models described above. They show that the

problem of influence maximization is NP-hard and provide
a greedy heuristic that achieves a solution that is provably
within 63% of the optimal.

More recently, Hartline et al. (Hartline et al. 2008—
see also follow-up work by Akhlaghpour et al. 2010 and
Haghpanah et al. 2011) discuss the optimal marketing
strategies of a monopolist. Specifically, they assume a gen-
eral model of influence, where an agent’s willingness to pay
for the good is given by a function of the subset of agents
that have already bought the product, i.e., ui2 2V →�+,
where ui is the willingness to pay for agent i and V is
the set of consumers. They restrict the monopolist to the
following set of marketing strategies: the seller visits the
consumers in some sequence and makes a take-it-or-leave-
it offer to each one of them. Both the sequence of visits
as well as the prices are chosen by the monopolist. They
provide a dynamic programming algorithm that outputs the
optimal pricing strategy for a symmetric setting, i.e., when
the agents are ex ante identical (the sequence of visits
is irrelevant in this setting). Not surprisingly, the optimal
strategy offers discounts to the consumers that are visited
earlier in the sequence and then extracts revenue from the
rest. The general problem, when agents are heterogeneous,
is NP-hard; thus, they consider approximation algorithms.
They show, in particular, that influence-and-exploit strate-
gies that offer the product for free to a strategically cho-
sen set A, and then offer the myopically optimal price to
the remaining agents, provably achieve a constant factor
approximation of the optimal revenues under some assump-
tions on the influence model. However, this paper does not
provide a qualitative insight on the relation between optimal
strategies and the structure of the social network. In con-
trast, we are mainly interested in characterizing the optimal
strategies as a function of the underlying network.

The most closely related paper to ours is an independent
work by Bloch and Quérou (2011). They study a pricing
setting with linear utility functions and private valuations.
They consider externalities resulting either from local net-
work interactions or from prices (aspiration-based refer-
ence pricing), and they distinguish between a single, global
monopoly and several local monopolies. Their results also
point out the importance of network centrality for pricing
decisions; however, their model and overall pricing game
is considerably different than ours.

The rest of paper is organized as follows. Section 2 intro-
duces the model. In §3, we begin our analysis by character-
izing the usage level of the consumers at equilibrium given
the vector of prices chosen by the monopolist. In §4 we turn
attention to the pricing stage (first stage of the game) and
characterize the optimal strategy for the monopolist under
three different settings: when the monopolist can perfectly
price discriminate (§4.1), when the monopolist chooses a
single uniform price for all consumers (§4.2), and finally,
when the monopolist can choose between two exogenously
given prices, the full and the discounted (§4.3). In §5, we
compare the profits of a monopolist that has no information
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about the network structure (and thus chooses her pricing
strategy as if consumers did not interact with one another)
with those of a monopolist that has full knowledge over
the network structure and can perfectly price discriminate
consumers. Finally, we conclude in §6. To ease exposition
of our results, we decided to relegate the proofs to the
appendix.

2. Model
The society consists of a set I = 811 0 0 0 1 n9 of agents
embedded in a social network represented by the adjacency
matrix G. The ijth entry of G, denoted by gij , represents
the strength of the influence of agent j on i. We assume
that gij ¾ 0 for all i1 j , and we normalize gii = 0 for all i.
A monopolist introduces a divisible good in the market and
chooses a vector p of prices from the set of allowable pric-
ing strategies P. In its full generality, p ∈ P is simply a
mapping from the set of agents to �n, i.e., p2 I → �n0
In particular, p4i5, or equivalently pi, is the price that the
monopolist offers to agent i for one unit of the divisible
good. Then, the agents choose the amount of the divisi-
ble good they will purchase at the announced price. Their
utility is given by an expression of the following form:

ui4xi1x−i1 pi5= aixi − bix
2
i + xi ·

∑

j∈811 0001 n9

gij · xj −pixi1 (1)

where xi ∈ 601�5 is the amount of the divisible good that
agent i chooses to purchase, and x−i denotes the consump-
tion levels of all agents but i. The first two terms represent
the utility that agent i derives from consuming xi units of
the good irrespective of the consumption of her peers, and
are quantified by the model parameters ai and bi. The third
term represents the (positive) network effect of her social
group and, finally, the last term is the cost of usage. The
quadratic form of the utility function allows for tractable
analysis, but also serves as a good second-order approxi-
mation for the broader class of concave payoffs.

We next describe the two-stage pricing-consumption
game that models the interaction between the agents and
the monopolist:

Stage 1 (Pricing). The monopolist chooses the pricing
strategy p so as to maximize profits, i.e., maxp∈P

∑

i pixi −
cxi1 where c denotes the marginal cost of producing a unit
of the good and xi denotes the amount of the good that
agent i purchases in the second stage of the game.

Stage 2 (Consumption), Agent i chooses to purchase xi
units of the good, so as to maximize her utility given the
prices chosen by the monopolist and x−i, i.e.,

xi ∈ arg max
yi∈601�5

ui4yi1x−i1 pi50

We are interested in the subgame-perfect equilibria of the
two-stage pricing-consumption game.

For a fixed vector of prices p = 6pi7i chosen by
the monopolist, the equilibria of the second-stage game,
referred to as the consumption equilibria, are defined as
follows:

Definition 1 (Consumption Equilibrium). For a given
vector of prices p, a vector x is a consumption equilibrium
if, for all i ∈I,

xi ∈ arg max
yi∈601�5

ui4yi1x−i1 pi50

We denote the set of consumption equilibria at a given price
vector p by C6p7.

For a given vector of prices p, we denote by G =

8I1 8ui9i∈I1 601�5i∈I9 the second-stage game where the
set of players is I, each player i ∈ I chooses her strat-
egy (consumption level) from the set 601�5, and her utility
function, ui, has the form in (1). We make the following
assumption that ensures that in this game the optimal con-
sumption level of each agent is bounded.

Assumption 1. For all i ∈I, 2bi >
∑

j∈I gij .

Note that this assumption does not imply that the
network effects are small. In particular, an agent whose
neighbors consume large amounts of the good might be
deriving most of her utility through the networks effects.
The assumption imposes that after a significant amount of
consumption, there is negative marginal utility in increas-
ing one’s consumption. The importance of Assumption 1
is evident from the following example: assume that the
adjacency matrix, which represents the level of influence
among agents, takes the following simple form: gij = 1 for
all i1 j such that i 6= j , i.e., G represents a complete graph
with unit weights. Also, assume that 0 < bi = b < 4n−15/2
and 0 < ai = a for all i ∈ I. It can be seen from (1) that
in this setting, for any given vector of prices p, starting
from consumption levels xi = x0 for all i ∈ I, all agents
have incentive to increase their consumptions provided that
x0 is sufficiently large. Thus, if Assumption 1 does not
hold, in the consumption game, consumers may choose to
unboundedly increase their usage irrespective of the vector
of prices.3

We begin our analysis by the second stage (the consump-
tion subgame, studied in §3) and then discuss the opti-
mal pricing policies for the monopolist given that agents
purchase according to the consumption equilibrium of the
subgame defined by the monopolist’s choice of prices.
As already mentioned in the introduction, we consider three
variants of the monopolist’s pricing problem. In the first,
we allow the monopolist to fully price discriminate among
the users, i.e., charge an individual price for each one of
them (§4.1). Then, we study a setting where the monop-
olist offers a single uniform price for the good (§4.2)
and, finally, we consider an intermediate setting where the
monopolist offers two (exogenous) prices. The question
then becomes who is offered the discount (§4.3). Because
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our objective is to obtain qualitative insights on the struc-
ture of the monopolist’s optimal pricing policies, we mainly
conduct our analysis for the cases of perfect price dis-
crimination and two exogenous prices, under simplifying
assumptions that allow us to state our results in closed
form. In particular, we assume that it is always optimal
for the monopolist to set prices that induce positive con-
sumption by all agents, i.e., the optimal solution is interior
(Assumptions 2 and 3 below). However, we also provide
a discussion of how our analysis can be extended if this
assumption is relaxed.

3. Consumption Equilibria
In this section, we study the second stage of the game
defined in §2 under Assumption 1 and characterize the
equilibria of the consumption game among the agents for
a given vector of prices p. In particular, we show that
the equilibrium is unique and we provide a closed-form
expression for it. To express the results in a compact form,
we define the vectors x1a1p ∈ �n such that x = 6xi7i,
a = 6ai7i, p = 6pi7i. We also define a matrix å ∈ �n×n as
follows:

åi1 j =

{

2bi if i = j

0 otherwise.

Let �i4x−i5 denote the best response of agent i when the
rest of the agents choose consumption levels represented
by the vector x−i. From (1) it follows that:

�i4x−i5= max
{

ai −pi

2bi
+

1
2bi

∑

j∈I

gijxj10
}

0 (2)

Our first result shows that the equilibrium of the consump-
tion game is unique for any price vector.

Theorem 1. Under Assumption 1, the game G=8I18ui9i∈I,
601�5i∈I9 has a unique equilibrium.

Intuitively, Theorem 1 follows from the fact that increas-
ing one’s consumption incurs a positive externality on her
peers, which further implies that the game involves strategic
complementarities, and therefore the equilibria are ordered.
The proof exploits this monotonic ordering to show that the
equilibrium is actually unique.4

We conclude this section by characterizing the unique
equilibrium of G. Suppose that x is this equilibrium, and
xi > 0 only for i ∈ S. Then, it follows that

xi = �i4x−i5=
ai −pi

2bi
+

1
2bi

∑

j∈I

gijxj

=
ai −pi

2bi
+

1
2bi

∑

j∈S

gijxj (3)

for all i ∈ S. Denoting by xS the vector of all xi such that
i ∈ S, and defining the vectors aS , bS , pS and the matrices
GS , åS similarly, Equation (3) can be rewritten as

åSxS = aS −pS +GSxS 0 (4)

Note that Assumption 1 holds for the graph restricted to the
agents in S; hence, I −å−1

S GS is invertible (cf. Lemma 4
in the appendix). Therefore, (4) implies that

xS = 4åS −GS5
−14aS −pS50 (5)

Therefore, the unique equilibrium of the consumption game
takes the following form:

xS = 4åS −GS5
−14aS −pS51

xI−S = 01
(6)

for some subset S of the set of agents I. This charac-
terization suggests that consumptions of players (weakly)
decrease with the prices. The following lemma, which is
used in the subsequent analysis, formalizes this fact.

Lemma 1. Let x4p5 denote the unique consumption equi-
librium in the game where each player i ∈ I is offered
the price pi. Then, xi4p5 is weakly decreasing in p for all
i ∈I, i.e., if p̂j ¾ pj for all j ∈I, then xi4p̂5¶ xi4p5.

4. Optimal Pricing
In this section, we turn attention to the first stage of
the game, where a monopolist sets the vector of prices.
We distinguish between three different scenarios. In the
first subsection, we assume that the monopolist can per-
fectly price discriminate the agents, i.e., there is no restric-
tion imposed on the prices. In the second subsection, we
consider the problem of choosing a single uniform price,
whereas in the third we allow the monopolist to choose
between two exogenous prices, pL and pH , for each con-
sumer. In our terminology, in the first case P =��I�, in the
second P = 84p1 0 0 0 1 p59, for p ∈ 601�5, and finally, in the
third, P = 8pL1 pH9

�I�.

4.1. Perfect Price Discrimination

In this section, we first make the following assumption that
ensures that in the absence of network effects, the monop-
olist would find it optimal to charge individual prices low
enough so that all consumers purchase a positive amount
of the good.

Assumption 2. For all i ∈I, ai > c.

Assumption 2 also guarantees that when the monopo-
list sets prices optimally, all consumers purchase a positive
amount of the good, i.e., the equilibrium features an inte-
rior consumption vector (see Lemma 7 in the appendix).
This enables us to state our results in closed form and draw
explicitly the connection between the optimal pricing strat-
egy of the monopolist and a measure of network influence,
the Bonacich centrality, defined below. Later in this section,
we relax this assumption and show that a similar relation
between the prices and the network influence can still be
established.

We start by providing a preliminary characterization of
optimal prices (Theorem 2) under Assumption 2. When
stating our results, we use the shorthand notation 1 to
denote the vector of all 1s.
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Theorem 2. Under Assumptions 1 and 2, the optimal
prices are given by

p= a− 4å−G5

(

å−
G+GT

2

)−1 a− c1
2

0 (7)

The following corollary is an immediate consequence of
Theorem 2.

Corollary 1. Let Assumptions 1 and 2 hold. Moreover,
assume that the interaction matrix G is symmetric. Then,
the optimal prices satisfy

p=
a+ c1

2
1

i.e., the optimal prices do not depend on the network
structure.

This result implies that when players affect each other in
the same way, i.e., when the interaction matrix G is sym-
metric, then the graph topology has no effect on the opti-
mal prices. Intuitively, this happens because when deciding
what price to offer to an agent, the monopolist considers
the trade-off between the profit loss due to (potentially)
subsidizing the agent and the increase in profits due to
the influence this agent exerts over her peers. The profit
loss is proportional to the consumption of the agent, and it
increases with the influence of the network on this agent.
The profit increase term, on the other hand, relates to the
influence of the agent on the rest of the network. When
matrix G is symmetric, these opposing effects cancel each
other and the optimal prices do not depend on the network
structure.

It can also be seen from Corollary 1 that agents with
large ai parameters are charged with higher prices, i.e.,
the monopolist charges higher prices to agents who value
the good the most (absent of network effects, for low con-
sumption levels). Finally, Assumption 2 implies that in the
symmetric setting the optimal prices are always above the
cost parameter c.

Next, we present two results that build on Theorem 2 and
better illustrate the effect of the network structure on prices.
Before doing so, we provide the definition of Bonacich
Centrality (see also Bonacich 1987), which we use sub-
sequently to obtain an alternative characterization of the
optimal prices.

Definition 2 (Bonacich Centrality). For a network
with (weighted) adjacency matrix G and scalar �, the
Bonacich centrality vector of parameter � is given by
K4G1�5 = 4I −�G5−11 provided that 4I −�G5−1 is well
defined and nonnegative.

To gain a better understanding of the concept of
Bonacich centrality, consider a random walk, which has a
uniform initial distribution and is defined over the network.
Note that when the spectral radius of �G matrix is smaller
than 1, we have 4I −�G5−1 =

∑�

k=04�G5k. The Bonacich

centrality of a node is proportional to the expected number
of visits (weighted by �k at time k) of the random walk to
this node.

To simplify exposition, we first present a characterization
of the optimal prices when agents differ only in terms of
their network position, i.e., ai = a0, bi = b0 for all i ∈I.

Theorem 3. Under Assumptions 1, 2, and when ai = a0,
bi = b0 for all i ∈I, the vector of optimal prices is given by

p=
a0 + c

2
1+

a0 − c

8b0

GK

(

G+GT

2
1

1
2b0

)

−
a0 − c

8b0

GTK

(

G+GT

2
1

1
2b0

)

0

The network 4G + GT 5/2 is the average interaction net-
work, and it represents the average interaction between
pairs of agents in network G. Intuitively, the central-
ity K44G+GT 5/211/42b055 measures how “central” each
agent is with respect to the average interaction network.

The optimal prices in Theorem 3 have three components.
The first component can be thought of as a nominal price,
which is charged to all agents irrespective of the network
structure. The second term is a markup that the monopolist
can impose on the price of a consumer due to the utility
this agent derives from her peers. Finally, the third com-
ponent can be seen as a discount term that is offered to
a consumer, because increasing her consumption increases
the consumption level of her peers. Note that Theorem 3
suggests that for a given agent i the optimal markup term
can be obtained by multiplying the Bonacich centrality vec-
tor K with the ith row of G, whereas the discount term
involves the ith column of G. In other words, the markup
term is proportional to the amount the agent is influenced
by her central peers, whereas prices offered are discounted
proportionally to the influence the agent exerts on central
agents. Therefore, it follows that the agents that are offered
the most favorable prices are the ones that influence highly
central agents.

Optimal prices have some interesting properties. For
instance, Example 1 demonstrates that the optimal solu-
tion may involve offering some individuals prices below
marginal cost c. Hence, the monopolist may sell the good
to some agents at a loss to ensure larger profits from the
remaining agents.

Example 1. Consider a network with three agents and
assume that the problem parameters are such that c = 1,
a1 = a2 = a3 = 2, b1 = b2 = b3 = 6, and the weight matrix
is given by

G=





0 10 0
1 0 1
0 10 0



 0

The G matrix describes a line network where agent 2 is
neighbors with agents 1 and 3 and can exert larger influence
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over these agents compared to what they can exert over
her. It can be readily seen that the problem parameters sat-
isfy Assumptions 1 and 2; hence, Theorem 3 applies. The
optimal price vector for this problem instance is given by:

6p11 p21 p37≈ 62012100561201270

The price offered by the monopolist to agent 2 is lower than
the cost (c = 1), because it is in the interest of the monopo-
list to incentivize this agent, who has a large influence over
her peers, to purchase larger amounts of the good.

Note that Theorem 3 can be modified in a simple way to
relate the optimal prices to centrality measures in the under-
lying graph when agents are not symmetric with respect
to their 8ai9 and 8bi9 parameters. In particular, when the
parameters 8ai9 and 8bi9 are not identical, the discount and
markup terms are proportional to a weighted version of the
Bonacich centrality measure, defined below.

Definition 3 (Weighted Bonacich Centrality). For
a network with (weighted) adjacency matrix G, diagonal
matrix D, and weight vector v, the weighted Bonacich cen-
trality vector is given by K̃4G1D1v5 = 4I −GD5−1v pro-
vided that 4I −GD5−1 is well defined and nonnegative.

We next characterize the optimal prices in terms of the
weighted Bonacich centrality measure.

Theorem 4. Under Assumptions 1 and 2 the vector of opti-
mal prices is given by

p=
a+ c1

2
+Gå−1K̃4G̃1å−11 ṽ5−GTå−1K̃4G̃1å−11 ṽ51

where G̃= 4G+GT 5/2 and ṽ = 4a− c15/2.

We next discuss the solution of the optimal pricing prob-
lem when Assumption 2 does not hold. Recall that this
assumption is used to guarantee that all agents purchase
positive amounts of the good at the optimal solution, and
hence, when we relax it, the optimal solution may involve
agents not purchasing the good at all.

Assume that the monopolist knows in advance the set of
agents (say S) who purchase a positive amount of the good
at an optimal solution. Then, she can offer prices that are
arbitrarily large to the remaining agents, and the optimal
prices and consumption levels for agents in S satisfy the
best response condition in (4). The proofs of Theorems 2,
3, and 4 all rely on (4), and Assumption 2 is only used
to guarantee that S is the set of all agents. Hence, these
theorems still hold, when we restrict attention to the agents
in set S. Thus, the optimal prices offered to agents in S
can still be expressed in terms of the centralities of these
agents, where centralities are now defined with respect to
the subgraph of agents in S.

We next focus on the question of finding the set of agents
who purchase a positive amount of the good at the optimal
solution. Assume that the consumption vector at an equi-
librium is equal to x. We can relate x with a price vector

using Equations (2) and (4). Note that because some agents
may not consume the good, the price vector corresponding
to this equilibrium need not be unique. In particular, we can
increase the prices offered to the agents who do not con-
sume the good, and the corresponding consumption levels
remain the same. However, the corresponding equilibrium
profits are unique, because only the prices offered to agents
who do not consume the good can take different values.

Exploiting this relation between the consumption vec-
tors and the corresponding prices, we can rewrite the profit
maximization problem of the firm by using consumption
levels as variables. Assume, for instance, that the monop-
olist wants to guarantee a consumption vector of x, and
hence sets prices according to p = a − 4å − G5x (using
(4)). Substituting this, her profit can be written as

xT p− cxT 1= xT 4a− c15+ xT 4G−å5x0

Thus, to find the optimal consumption levels, the monopo-
list needs to solve the following optimization problem:

max
x¾0

xT 4a− c15− xT 4å−G5x0

Furthermore, a price vector corresponding to the optimal
consumption levels can be calculated (using (4)) as p= a−

4å−G5x. Note that this problem is a convex optimization
problem as long as 4å−G5+ 4å−G5T = 2å− 4G+GT 5
is positive semidefinite.

Thus, we conclude that the monopolist can solve for the
optimal prices even when Assumption 2 does not hold, pro-
vided that 8bi9 and 8gij9 are such that 2å − 4G + GT 5 is
positive semidefinite. Additionally, the optimal prices and
centralities of agents are still related as in Theorems 3 and
4, after restricting attention to the set of agents who pur-
chase the good.

4.2. Choosing a Single Uniform Price

In this subsection we characterize the equilibria of the
pricing-consumption game, when the monopolist can only
set a single uniform price, i.e., pi = p0 for all i. In this case,
for any fixed p0, the payoff function of agent i is given by

ui4xi1x−i1 pi5= aixi − bix
2
i + xi ·

∑

j∈811 0001 n9

gij · xj −p0xi1

and the payoff function for the monopolist is given by

max
p0∈601�5

4p0 − c5
∑

i

xi

s0t0 x ∈C6p071

where p0 = 4p01 0 0 0 1 p05. Note that Theorem 1 implies that
even when the monopolist offers a single price, the con-
sumption game has a unique equilibrium point.

Following a similar approach to §4.1, we first assume
that all agents purchase a positive amount of the good
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at the optimal solution. It follows from (5) that when all
prices are set to p0, provided that all agents consume the
good, the corresponding consumption vector is given by
x = 4å−G5−14a−p015. Thus, the profit function takes the
form 4p0 − c51T 4å−G5−14a−p015. Using first-order con-
ditions, in this case the optimal price p0 is simply given as

p0 =
1
2
1T 4å−G5−14a+ c15

1T 4å−G5−11
0 (8)

Next, we analyze the case where some agents potentially
do not purchase the good at the optimal solution. We show
that applying first-order conditions iteratively, the set of
agents that consume the good at the optimal solution, and
the optimal price can be computed. Moreover, the optimal
price turns out to have a similar form to the one provided
in (8).

We begin our analysis by a lemma that states that the
consumption of each agent decreases monotonically in the
price.

Lemma 2. Let x4p05 denote the unique equilibrium in the
game where pi = p0 for all i. Then, xi4p05 is weakly
decreasing in p0 for all i ∈ I and strictly decreasing for
all i such that xi4p05 > 0.

Next, we introduce the notion of the centrality gain.5

Definition 4 (Centrality Gain). In a network with
(weighted) adjacency matrix G, for any diagonal matrix
D and weight vector v, the centrality gain of agent i is
defined as

Hi4G1D1v5=
K̃i4G1D1v5

K̃i4G1D115
0

The following theorem provides a characterization of the
consumption vector at equilibrium as a function of the sin-
gle uniform price p.

Theorem 5. Consider game Ḡ = 8I1 8ui9i∈I1 601�5i∈I9,
and define

D1 =argmin
i∈I

Hi4G1å−11a5 and p1 =min
i∈I

Hi4G1å−11a50

Moreover, let Ik =I−
⋃k

i=1 Di and define

Dk+1 = arg min
i∈Ik

Hi4GIk
1å−1

Ik
1aIk5 and

pk+1 = min
i∈Ik

Hi4GIk
1å−1

Ik
1aIk51

for k ∈ 81121 0 0 0 1 n− 19. Then,
(1) pk strictly increases in k.
(2) Given a p such that p < p1, all agents purchase a

positive amount of the good, i.e., xi4p5 > 0 for all i ∈ I,
where x4p5 denotes the unique consumption equilibrium at
price p. If k ¾ 1, and p is such that pk ¶ p ¶ pk+1, then
xi4p5 > 0 if and only if i ∈ Ik. Moreover, the corresponding
consumption levels are given as in (6), where S = Ik.

Theorem 5 also suggests a polynomial-time algorithm for
computing the optimal uniform price popt. Intuitively, the
algorithm sequentially removes consumers with the low-
est centrality gain and computes the optimal price for the
remaining consumers under the assumption that the price
is low enough so that only these agents purchase a positive
amount of the good at the associated consumption equi-
librium. In particular, using Theorem 5, it is possible to
identify the set of agents who purchase a positive amount
of the good for price ranges 6pk1 pk+17, k ∈ 811 0 0 0 1 n− 19.
Observe that given a set of players, who purchase a positive
amount of the good, the equilibrium consumption levels
can be obtained in closed form as a linear function of the
offered price, and, thus, the profit function of the monop-
olist takes a quadratic form in the price. It follows that
for each price range, the maximum profit can be found by
solving a quadratic optimization problem. Thus, Theorem 5
suggests Algorithm 1 for finding the optimal single uniform
price popt.

Algorithm 1 (Compute the optimal single uniform
price popt)

Step 1. Preliminaries:
—Initialize the set of active agents: S 2=I.
—Initialize k = 1 and p0 = 0,

p1 = mini∈IHi4GI1å
−1
I 1aI5

—Initialize the monopolist’s revenues with Reopt = 0
and popt = 0.

Step 2.
—Let p̂ =

1
2 41

T 4åS −GS5
−14aS + c155/

41T 4åS −GS5
−115

—IF p̂¾ pk, let p = pk.
ELSE IF p̂¶ pk−1, let p = pk−1 ELSE p = p̂.

—Re = 4p− c51T · 4åS −GS5
−14aS −p15.

—IF Re >Reopt THEN Reopt =Re and popt = p.
—D = arg mini∈S Hi4GS1å

−1
S 1aS5 and S 2= S −D.

—Increase k by 1 and let
pk = mini∈S Hi4GS1å

−1
S 1aS50

—Return to STEP 2 if S 6= � ELSE Output popt0

The algorithm solves a series of subproblems, where
the monopolist is constrained to choose a price p in a
given interval 6pk1 pk+17 with appropriately chosen end-
points. In particular, from Theorem 5 it follows that we can
choose those endpoints, so as to ensure that only a par-
ticular set S of agents purchase a positive amount of the
good when p ∈ 6pk1 pk+17. In this case, the consumption at
price p is given by 4åS −GS5

−14aS −p15 and the profit of
the monopolist is equal to 4p−c51T 4åS −GS5

−14aS −p15.
Thus, it follows that the maximum profit, by restrict-
ing attention to p ∈ 6pk1 pk+17, is achieved either at p̂ =
1
2 41

T 4åS −GS5
−14aS + c155/41T 4åS −GS5

−115, or p̂ ∈

8pk1 pk+19, as can be seen from the first-order optimal-
ity conditions. Then, the overall optimal price is found by
comparing the monopolist’s profits achieved at the optimal
solutions of the constrained subproblems. The complexity
of the algorithm is O4n45, because there are at most n
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such subproblems (again from Theorem 5) and each such
subproblem simply involves a matrix inversion (O4n35) in
computing the centrality gain and the maximum achiev-
able profit.

4.3. The Case of Two Prices: Full and Discounted

In this subsection, we consider a monopolist who can offer
the good in two prices, pL and pH 4pL < pH5. For clarity
of exposition we call pL and pH the discounted and the
full price, respectively. We first assume that pL and pH are
exogenously specified, and analyze the allocation problem,
i.e., determining the subset of agents that should be offered
the discounted price, so as for the monopolist to maximize
her profits. We then discuss how to optimize over the choice
of pL and pH .

In an analogous fashion to §§4.1 and 4.2, we start our
analysis under the following assumption, which guarantees
that all agents purchase a positive amount of the good at
equilibrium.

Assumption 3. The exogenous prices pL1 pH are such that
pL1 pH < mini∈I ai.

Note that this assumption guarantees that all agents pur-
chase a positive amount of the good, regardless of the
consumption of their peers. Hence, under this assump-
tion, the consumption levels satisfy x =å−14a− p+Gx51
and hence x = 4å − G5−14a − p50 This characterization
allows for expressing the monopolist’s problem only in
terms of prices. In particular, the monopolist’s problem
takes the form:

4OPTs5 max 4p− c15T 4å−G5−14a−p5

s0t0 pi ∈ 8pL1 pH9 for all i ∈I1

where å � 0 is a diagonal matrix, G is such that G¾ 0
(where the inequality is entrywise), diag4G5 = 0, and
Assumption 1 holds.

Let pN
4

= 4pH + pL5/2, � 4

= pH − pN , â 4

= a − pN , and
ĉ

4

= pN − c ¾ �. Using these variables, and noting that any
feasible price allocation can be expressed as p = �y+ pN ,
where yi ∈ 8−1119, OPT can alternatively be expressed as

max 4�y+ ĉ15T 4å−G5−14â− �y5

s0t0 yi ∈ 8−1119 for all i ∈I0
(9)

We next show that OPT is NP-hard and provide an algo-
rithm that achieves an approximately optimal solution.
To obtain our results, we relate the alternative formulation
of OPT in (9) to the MAX-CUT problem (see Garey and
Johnson 1979, Goemans and Williamson 1995).6

Theorem 6. Let Assumptions 1, 2, and 3 hold. Then, the
monopolist’s optimal pricing problem, i.e., problem OPT,
is NP-hard.

Theorem 7 exploits the relation of OPT to the MAX-
CUT problem, and establishes that there exists an algorithm
that provides a solution with a provable approximation
guarantee.

Theorem 7. Let Assumptions 1 and 3 hold and WOPT

denote the optimal profits for the monopolist, i.e., WOPT is
the optimal value for problem OPT. Then, there exists a
randomized polynomial-time algorithm that outputs a solu-
tion with objective value WALG such that E6WALG7 + m >
008784WOPT +m51 where

m= �21TA1+ �1T �Aâ−AT ĉ1� − ĉ1TAâ− 2�2 Trace4A51

and A= 4å−G5−1.

Clearly, if m¶ 0, which, for instance, is the case when
� is small, this algorithm provides at least an 00878-optimal
solution of the problem. On the other hand, if m> 0, we
obtain 00878 optimality after a constant (m) addition to the
objective function. This suggests that for small m> 0, the
algorithm still provides near-optimal solutions.

Next, we provide a characterization of the optimal prices
in OPT. In particular, we argue that the pricing problem
faced by the monopolist is equivalent to finding the cut
with maximum weight in an appropriately defined weighted
graph. For simplicity, assume that bi = b0, and ai = a0 for
all i, i.e., agents are heterogeneous only in terms of their
network position (captured by the adjacency matrix G).
In this case, the profit-maximization problem in (9) can be
rewritten as:

max −�2yTAy+ �yTAâ1− �yTAT ĉ1

s0t0 yi ∈ 8−1119 for all i ∈I1
(10)

where A = 4å − G5−1 and we ignore the constant term.
We can further simplify the optimization problem by noting
that y2

i = 1 for all i and hence, yTAy = Trace4A5+ yT Ây1
where Â = A− diag4A5. Because, Trace4A5 is a constant,
we can ignore it without any loss of generality. Finally, we
observe that because yT Ây = yT ÂT y = yT 44Â + ÂT 5/25y,
using the shorthand notation Q̂ = 4Â+ÂT 5/2, an equivalent
optimization problem can be written as

max 6y3 z7TQ6y3 z7

s0t0 yi ∈ 8−1119 for all i ∈I1

z ∈ 8−11191

(11)

where

Q =

[

−�2Q̂ �/24âA1− ĉAT 15

�/24â1TA− ĉ1TA5 0

]

0

Note that if 6y3 z7 is a feasible solution of (11), then so is
−6y3 z7, and these solutions have the same objective value.
Thus, we can assume without any loss of generality that
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z = 1 at the optimal solution, and the equivalence of the
objective values in (10) and (11) immediately follows.

It can now be seen that this optimization problem is
equivalent to an instance of the MAX-CUT problem, where
the weight matrix is given by −Q.7 In this problem, in addi-
tion to the nodes corresponding to agents in the social net-
work, we introduce an extra (dummy) node that always
belongs to the “positive” cut-set (z= 1). The weights of the
edges corresponding to the agents other than the dummy
one are given by the off-diagonal entries of Q̂ scaled by
�2, whereas the weights of the edges corresponding to the
dummy node are a function of â and ĉ. The agents that
belong to the same cut-set as the dummy node in the opti-
mal solution of the MAX-CUT problem are charged the
full price, whereas the rest are offered the discount (recall
that p= �y+pN ; hence, yi = 1 corresponds to a full price).

Observe that 4å − G5−11 = 41/42b0554I −

41/42b055G5−11; hence, the ith row sum of the entries of
the matrix A= 4å−G5−1 is proportional to the centrality
of the ith agent in the network. Consequently, the 4i1 j5th
entry of A gives a measure of how much the edge between
i and j contributes to the centrality of agent i. Thus, the
4i1 j5th entry of Q̂ captures how much the edge between
agents i and j contributes to the nodes’ total centrality.
Therefore, the MAX-CUT interpretation roughly suggests
that the optimal solution of the pricing problem is achieved
when the monopolist tries to price discriminate agents that
influence each other significantly, however, at the same
time takes into account the agents’ value of consumption
in the absence of network effects (represented by the edges
between the agents and the dummy node).

So far in this section we have assumed that the two
prices, full and discounted, are exogenously given. We next
describe a simple procedure for relaxing this assumption
and searching over pL and pH to increase the profits.
For simplicity, we assume that the monopolist seeks opti-
mal pL and pH in 601 pmax7, where pmax ∈ 401mini ai5.
Consider the set of prices PD = 801 �/L

√

�I�1 0 0 0 1 pmax9,
where � > 0 is some constant and L is the Lipschitz con-
stant of the profit function 4p− c15T 4å−G5−14a−p5. Let
�D denote the maximum profit the monopolist can achieve
if pL and pH belong to PD, and �0 denote the maximum
profit if they belong to 601 pmax7. Because L is the Lipschitz
constant, it follows that �D ¾ �0 − �. For any pL and pH

that belong to PD, we can compute a policy that satisfies
the approximate optimality condition in Theorem 7 in poly-
nomial time. In particular, consider pL and pH , which can
achieve �D profit. If these pL and pH are known, Theo-
rem 7 implies that in polynomial time we can find a pol-
icy that in expectation achieves profit (weakly) larger than
00878�D − 41 − 008785m, where m is defined as in The-
orem 7. If m ¶ 0, it follows that searching over all price
tuples in PD (by identifying the corresonding policy Theo-
rem 7 suggests) a policy that achieves 00878 fraction of �D

can be found in polynomial time in the number of agents
and Lpmax/�. Therefore, we conclude that in the case of

two prices, assuming that prices are restricted to 601 pmax7
for some pmax ∈ 401mini ai5, a policy that obtains profit �,
where � ¾ 00878�D ¾ 008784�0 − �5 can be obtained in
polynomial time for any � > 0. Hence, for small �, this pro-
cedure attains almost 00878 optimality. Similarly, if m> 0,
an approximate optimality condition in terms of m can still
be provided using Theorem 7.

We conclude this section by discussing how the results
change if Assumption 3 is relaxed. Clearly, in this case, the
complexity result still holds, because NP-hardness of the
special case we focus on in Theorem 6 implies NP-hardness
of the more general case. The approximation algorithm
Theorem 7 suggests for cases where Assumption 3 holds
strongly relies on representing the underlying optimiza-
tion problem as a binary quadratic optimization problem
as in OPT. However, when this assumption does not hold,
in order to be able to write an analogous optimization
formulation, we need to identify the set of agents who will
purchase a positive amount of the good when the monopo-
list prices optimally. Unfortunately, due to the combinato-
rial structure of the problem, we do not have an immediate
characterization of this set. Therefore, we do not have an
approximation algorithm analogous to the one suggested
by Theorem 7, when Assumption 3 does not hold. Addi-
tionally, due to the restriction that there are two different
prices, we cannot follow a similar approach to the one in
the perfect price discrimination case, reformulate a prob-
lem over the consumption variables, and obtain a solution
to the pricing problem. We leave the question of finding an
approximate optimal pricing policy, when the monopolist
can only use two distinct prices and Assumption 3 does not
hold, as an interesting future problem.

4.4. Comparing the Three Settings: Example

In this section, we compare the pricing rules developed
in §§4.1–4.3 and obtain qualitative insights by applying
them to a simple example. In particular, we consider a line
network that consists of 11 nodes that are located at the
integer points in 601107. The parameters of the problem are
given as follows: c = 0, ai = 2, and bi = 205 for all i ∈ I.
We also assume that the influence matrix G is such that

gi+11 i = 10
(

1
4

−

(

1
2

−
i

10

)2)

for i < 10

gi−11 i = 10
(

1
4

−

(

1
2

−
i

10

)2)

for i > 0

and gi1 j = 0 for remaining 4i1 j5. That is, agent i, such that
0 < i < 10, influences her neighbors with weights 104 1

4 −

4 1
2 − i/10525 (agent 0 influences only agent 1, and similarly

agent 10 influences only agent 9). By this construction,
agents in the center of the line influence their neighbors
more than those at the end points. That is, although the
agents are homogeneous in terms of their own consump-
tion parameters, they differ with regards to their overall
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Figure 1. Prices (left) and the corresponding consumption levels (right) for different agents.
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influence because of their network position. Also, it can
be easily seen that for these parameters, Assumptions 1
and 2 hold.

In this setting, if the monopolist can offer just a single
price, the optimal such price should be equal to p0 = 1 (this
follows by applying Algorithm 1). For the two-prices case,
we assume that the prices are given exogenously and are
equal to pL = 0085, and pH = 1015, i.e., ±%15 from the
optimal single price. Note that for these prices, Assump-
tion 3 also holds. We then compute the optimal alloca-
tion when the monopolist can only use these two prices,
and when she can perfectly price discriminate. The opti-
mal prices and the corresponding consumption levels for
all agents are given in Figure 1. This example suggests
that for the three pricing rules we consider, the resulting
consumption profiles are very similar. We observe that the
agents who are the most influential—i.e., influence the rest
of the agents more than they are influenced—consume the
largest amounts of the good. Moreover, as predicted by
our analysis, it is precisely these agents that are offered
the most favorable prices by the monopolist. Finally, even
when the monopolist is constrained to two prices, she tries
again to favor those central agents, who end up getting the
discounted price.

5. How Valuable Is It to Know the
Network Structure?

Throughout our analysis, we have assumed that the monop-
olist has perfect knowledge of the interaction structure of
the consumers and can use it optimally when choosing her
pricing policy. In this section, we ask the following ques-
tion: when is this information most valuable? In particu-
lar, we compare the profits generated in the following two
extreme cases: (i) the monopolist prices optimally assum-
ing that no network externalities are present, i.e., gij = 0
for all i1 j ∈ I (however, consumers take network exter-
nalities into account when deciding their consumption lev-
els); (ii) the monopolist has perfect knowledge of how
consumers influence each other, i.e., knows the adjacency

matrix G and can perfectly price discriminate (as in §4.1).
We will denote the profits generated in these settings by ç0

and çN , respectively. The next lemma provides a closed-
form expression for ç0 and çN .

Lemma 3. Under Assumptions 1 and 2, the profits ç0 and
çN are given by:

ç0 =

(

a− c1
2

)T

4å−G5−1

(

a− c1
2

)

(12)

and

çN =

(

a− c1
2

)T(

å−
G+GT

2

)−1(a− c1
2

)

0 (13)

The impact of network externalities in the profits is
captured by the ratio ç0/çN . For any problem instance,
with fixed parameters a1 c1å1G, this ratio can be com-
puted using Lemma 3. The rest of the section focuses
on relating this ratio to the properties of the underlying
network structure. To simplify the analysis, we make the
following assumption.

Assumption 4. The matrix å−G is positive definite.

Note that if å − G is not symmetric, we still refer to
this matrix as positive definite if xT 4å − G5x > 0 for all
x 6= 0. A sufficient condition for Assumption 4 to hold can
be given in terms of the diagonal dominance of å − G.
For instance, this assumption holds8 if for all i ∈I, 2bi >
∑

j∈I gij and 2bi >
∑

j∈I gji.
Theorem 8 provides bounds on çN /ç0 using the spectral

properties of å−G.

Theorem 8. Under Assumptions 1, 2, and 4,

0 ¶ 1
2

+�min

(

MM−T +MTM−1

4

)

¶ ç0

çN

¶ 1
2

+�max

(

MM−T +MTM−1

4

)

¶ 11 (14)

where M = å − G and �min4 · 5, �max4 · 5 denote the min-
imum and the maximum eigenvalues of their arguments,
respectively.
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Note that when G is asymmetric, so is the matrix M =

å − G. Hence, it need not have real eigenvalues. In the
proof of Theorem 8, we show that even when G is asym-
metric, as long as M is positive definite (in the sense
defined above) the eigenvalues of 4MM−T + MTM−15/4
lie between −1/2 and 1/2; hence, the above bounds make
sense.

If the underlying network structure is symmetric, i.e.,
G = GT , then MM−T = MTM−1 = I and the bounds in
Theorem 8 take the following form:

1
2

+�min

(

MM−T +MTM−1

4

)

=
ç0

çN

=
1
2

+�max

(

MM−T +MTM−1

4

)

= 10 (15)

This is consistent with Corollary 1, in which we show that
if the network is symmetric, then the monopolist does not
gain anything by accounting for network effects. As already
mentioned in the introduction, the benefit of accounting
for network effects is proportional to how asymmetric the
underlying interaction structure is. The minimum and max-
imum eigenvalues of matrix 44MM−T + MTM−15/45 that
appear in the bounds of Theorem 8 quantify this formally,
because they can be viewed as a measure of the deviation
from symmetric networks.

Finally, we provide a set of simulations whose goal is
twofold: first, we show that the bounds of Theorem 8
are quite tight by comparing them to the actual value of
the ratio of profits (which can be directly computed by
Lemma 3) and, second, we illustrate that accounting for
network effects can significantly boost profits, i.e., that the
ratio can be much lower than 1. In all our simulations we
choose the parameters so that M = å − G is a positive
definite matrix.

Star Networks. In our first set of simulations, we consider
star networks with n= 100 agents. In particular, there is a
central agent (without loss of generality agent 1) that has

Figure 2. Star networks. Left: bi = n/10; right: bi = n/20 for all i ∈I.
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edges to the remaining agents, and these are the only edges
in the network. Consider the following two extremes:

(1) The central agent is influenced by all her neighbors
but does not influence any of them, i.e., if we denote the
corresponding interaction matrix by G1, then G1

ij = 1 if
i = 1, j 6= i, and G1

ij = 0 otherwise.
(2) The central agent influences all her neighbors but

is not influenced by any of them, i.e., if we denote the
corresponding interaction matrix by G2, then G2

ij = 1 if
j = 1, j 6= i, and G2

ij = 0 otherwise.
We compute the ratio of profits ç0/çN for a class of net-

work structures given by matrices G� = �G1 + 41 −�5G2,
where � ∈ 60117 (� = 1 and � = 0 correspond to the two
extreme scenarios described above). In order to isolate the
effect of the network structure, we assume that ai = a1,
and bi = b1 for all i ∈ I. In particular, in our first simu-
lation we set bi = n/10 and in the second simulation we
set bi = n/20 for all i ∈ I. For both simulations, we set
ai − c = 1 for all i ∈I.9

The results are presented in Figure 2. In both simula-
tions, the lower bound equals to the ratio ç0/çN , implying
that the bound provided in the theorem is tight. The upper
bound is very close to 1 for all �.10 When � =

1
2 , net-

work effects become irrelevant, as the network is symmet-
ric. On the other hand, for �= 0 and �= 1, i.e., when the
star network is most “asymmetric,” accounting for network
effects leads to a 25% increase in profits when bi = n/10
and to a 100-fold increase when bi = n/20. Choosing
smaller bi increases the relative significance of network
effects and, therefore, the increase in profits is much higher
in the second case, when bi = n/20. Although star networks
are extreme, this example showcases that taking network
effects into consideration can lead to significant improve-
ments in profits.

From Asymmetric to Symmetric Networks. In this set of
simulations, we replicate the above for arbitrary asymmet-
ric networks. Again, we consider two extreme settings: let
U denote a fixed upper-triangular matrix, and define the
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Figure 3. Random asymmetric matrices. Left: bi = n/4; right: bi = n/6 for all i ∈I.
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interaction matrices G1 = U and G2 = U T . The first, G1,
corresponds to the case where agent 1 is influenced by all
her neighbors, but does not influence any other agent; and
G2 corresponds to the polar opposite where agent 1 influ-
ences all her neighbors. As before, we plot the ratio of
profits for a class of matrices parameterized by � ∈ 60117,
G� = �G1 + 41 − �5G2. Specifically, we randomly gener-
ate 100 upper-triangular matrices U . (Each nonzero entry
is an independent random variable, uniformly distributed in
60117.) We again consider two cases: bi = n/4 and bi = n/6
for all i ∈ I. For each of these cases and randomly gener-
ated instances, assuming ai − c = 1 for all i ∈I, we obtain
the ratio ç0/çN and the bounds as given by Theorem 8 (for
the generated networks, we verify that the assumptions of
the theorem hold). The plots of the corresponding averages
over all randomly generated instances are given in Figure 3.

Similar to the previous set of simulations, when �=
1
2 ,

i.e., the network is symmetric, there is no gain in exploiting
the network effects. On the other hand, for � = 0 and
�= 1, i.e., when the network is at the asymmetric extremes,
exploiting network effects can boost profits by almost

Figure 4. Preferential attachment network example. Left: bi = 1; right: bi = 3/4 for all i ∈I.
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15% or 40% depending on the value of bi. Consistently
with our earlier simulations, we observe that when bi is
smaller, exploiting network effects leads to a more signifi-
cant improvement in the profits. Note that for this network,
the lower bound is not tight.

Preferential Attachment Graphs. Finally, we consider
networks that are generated according to a preferential
attachment process, which is prevalent when modeling
interactions in social networks. Networks are generated
according to this process as follows: initially, the network
consists of two agents and at each time instant a sin-
gle agent is born and she is linked to two other agents
(born before her) with probability proportional to their
degrees. The process terminates when the population of
agents is 100.

Given a random graph generated according to the pro-
cess above, consider the following two extremes: (i) only
newly born agents influence agents born earlier, i.e., the
influence matrix G1 is such that G1

ij > 0 for all i1 j that are
linked in the preferential attachment graph, and j is born
after i; (ii) only older agents influence new agents, i.e., the
influence matrix G2 is such that G2

ij > 0 for all i1 j that are
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linked in the preferential attachment graph, and j is born
before i. We assume that the nonnegative entries in each
row of G1 are equal and such that G1

ij = 1/di, where di is
the number of nonnegative entries in row i (equal influence)
and similarly for G2 (i.e., G2

ij = 1/di whenever G2
ij > 0).

As before, we consider a family of networks parameterixed
by �2 G� = �G1 + 41 − �5G2. The interaction matrix G�

models the situation in which agents weigh the consump-
tion of the agents that are “born” earlier by 1 −�, and that
of the new ones by �. Note that because G1 and G2 are
normalized separately, in this model G� need not be sym-
metric, and in fact it turns out that for all � there is a profit
loss due to ignoring network effects.

In this model we consider two values for bi: bi = 1 and
bi = 3/4 for all i ∈I. Also, we impose the symmetry con-
ditions, ai − c = 1 for all i ∈ I. Note that by construc-
tion, each preferential attachment graph is a random graph.
For each �, we generate 100 graph instances and report
the averages of ç0/çN and the bounds over all instances.
We also numerically verify that the assumptions of Theo-
rem 8 hold for the generated networks.

The plots (given in Figure 4) are not symmetric because,
as mentioned above, G1 and G2 are normalized differ-
ently. Interestingly, the profit loss from ignoring network
effects is larger when older agents influence agents born
later (�= 0). This can be explained by the fact that older
agents are expected to have higher centrality and act as
interaction hubs for the network. As before, we see a larger
improvement in profits when bi is small.

6. Conclusions
The paper studies a stylized model of pricing of divisible
goods (services) over social networks, when consumers’
actions are influenced by the choices of their peers. We pro-
vide a concrete characterization of the optimal scheme for a
monopolist under different restrictions on the set of allow-
able pricing policies when consumers behave according to
the unique Nash equilibrium profile of the corresponding
game. We also illustrate the value of knowing the network
structure by providing an explicit bound on the profit gains
enjoyed by the monopolist due to this knowledge.

Certain modeling choices, i.e., Assumptions 1, 2 and 3,
were dictated by the need for tractability and were also
essential for clearly illustrating our insights. For example,
as discussed in §4, removing Assumptions 2 or 3 poten-
tially leads to solutions, where a subset of the agents does
not consume the good at all. Consequently, the relation
between optimal prices and the network structure holds
only after restricting attention to the subgraph of agents
who purchase the good. Because simpler explicit expres-
sions can be obtained when all agents purchase positive
amounts of the good, for most of our analysis we make
assumptions that guarantee this. However, for complete-
ness, we also discuss how the solution changes when these
assumptions are relaxed.

Throughout the paper, we consider a setting of static
pricing: the monopolist first sets prices and then the con-
sumers choose their usage levels. Moreover, the game we
define is essentially of complete information, because we
assume that both the monopolist and the consumers know
the network structure and the utility functions of the pop-
ulation. Extending our analysis by introducing incomplete
information is an interesting direction for future research.
Concretely, consider a monopolist that introduces a new
product of unknown quality to a market.11 Agents benefit
the monopolist in two ways when purchasing the product;
directly by increasing her revenues, and indirectly by gen-
erating information about the product’s quality and making
it more attractive to the rest of the consumer pool. What is
the optimal (dynamic) pricing strategy for the monopolist?

Finally, note that in the current setup we consider a sin-
gle seller (monopolist) so as to focus on explicitly char-
acterizing the optimal prices as a function of the network
structure. A natural departure from this model is studying a
competitive environment. The simplest such setting would
involve a small number of sellers offering a perfectly sub-
stitutable good to the market. Then, pricing may be even
more aggressive than in the monopolistic environment: sell-
ers may offer even larger discounts to “central” consumers,
so as to subsequently exploit the effect of their decisions
to the rest of the network. Potentially one could relate the
intensity of competition with the network structure. In par-
ticular, one would expect the competition to be less fierce
when the network consists of disjoint large subnetworks,
because then sellers would segment the market at equi-
librium and exercise monopoly power in their respective
segments.

Electronic Companion

An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1066.

Appendix

Proof of Theorem 1. The proof makes use of the following
lemmas.

Lemma 4. Under Assumption 1, the spectral radius of å−1G is
smaller than 1, and the matrix I −å−1G is invertible.

Proof. Let v be an eigenvector of å−1G, with � being the cor-
responding eigenvalue. Let vi be the largest entry of v in absolute
values, i.e., �vi� ¾ �vj � for all j ∈ I. Because, 4å−1G5v = �v, it
follows that

��vi�=�4å−1G5iv�¶
∑

j∈I

4å−1G5ij �vj �¶
1

2bi
�vi�

∑

j∈I

gij < �vi�1

where 4å−1G5i denotes the ith row of 4å−1G5, the first and sec-
ond inequalities use the fact that 4å−1G5ij = gij/2bi ¾ 0, and the
last inequality follows from Assumption 1. Because this is true for
any eigenvalue-eigenvector pair, it follows that the spectral radius
of å−1G is strictly smaller than 1.
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Note that each eigenvalue of I −å−1G can be written as 1−�
where � is an eigenvalue of å−1G. Because the spectral radius of
å−1G is strictly smaller than 1, it follows that none of the eigen-
values of I −å−1G is zero; hence, the matrix is invertible. �
Lemma 5. Under Assumption 1, the pure Nash equilibrium sets
of games G = 8I1 8ui9i∈I1 601�5i∈I9 and Ḡ = 8I, 8ui9i∈I,
601 x̄7i∈I9, where x̄ > maxi4�ai −pi�5/42bi −

∑

j∈I gij5, coincide.

Proof. Consider a strategy profile x and let i denote the agent
with the largest consumption, i.e., xi ¾ xj , for all j 6= i. Observe
that the best response function (in both games) is such that

�i4x−i5=
ai −pi

2bi
+

1
2bi

∑

j∈I

gijxj ¶
�ai −pi�

2bi
+

xi
2bi

∑

j∈I

gij 1

provided that �i4x−i5 > 0. Because at equilibrium xi = �i4x−i5,
the above inequality implies that we have xi ¶ 4�ai − pi�5/
42bi −

∑

j∈I gij5 < x̄ at equilibria in both games, i.e., at equilib-
ria all players consume strictly less than x̄. Because G and Ḡ
have the same payoff functions, and the set of strategy profiles in
both games contain 601 x̄7�I�, the equilibrium sets of these games
coincide. �

We next show that Ḡ is a supermodular game. Supermodular
games are games that are characterized by strategic comple-
mentarities, i.e., the strategy sets of players are lattices, and
the marginal utility of increasing a player’s strategy raises with
increases in the other players’ strategies. For details and properties
of these games, see Topkis (1998).

Lemma 6. The game Ḡ= 8I1 8ui9i∈I1 601 x̄7i∈I9 is supermodular.

Proof. It is straightforward to see that the payoff functions are
continuous, the strategy sets are compact subsets of �, and for
any players i1 j ∈I, ¡2ui/4¡xi¡xj5¾ 0. Hence, the game is super-
modular. �

Now we are ready to complete the proof of the theorem.
Because the set of equilibria of games G and Ḡ coincide, we can
focus on the equilibrium set of Ḡ. Because Ḡ is a supermodular
game, the equilibrium set has a minimum and a maximum ele-
ment (Topkis 1998). Let x denote the maximum of the equilibrium
set, and let set S be such that xi > 0 only if i ∈ S. If S = �, there
cannot be another equilibrium point, because x = 0 is the maxi-
mum of the equilibrium set. Thus, for the sake of contradiction,
we assume that S 6= � and there exists another equilibrium, x̂, of
the game.

By supermodularity of the game, it follows that xi ¾ x̂i for all
i ∈I. Let k ∈ arg maxi∈S xi − x̂i. Because x and x̂ are not identical
and x is the maximum of the equilibrium set, xk − x̂k > 0.

Note that at any equilibrium z of G, no player has incentive
to increase her consumption; thus, 4¡ui4yi1 z−i1 pi5/¡yi5�yi=zi

¶
0. Moreover, if zi > 0, because player i does not have
incentive to decrease her consumption, it also follows that
4¡ui4yi1 z−i1 pi5/¡yi5�yi=zi

= 0. Recall that

ui4xi1x−i1 pi5= aixi − bix
2
i + xi ·

∑

j∈811 0001 n9

gij · xj −pixi3

hence, from this condition it follows that (Gk denotes the kth row
of G) at equilibria x and x̂ we have

ak −pk = 2bkxk −Gkx

ak −pk ¶ 2bkx̂k −Gkx̂1

where the latter condition holds with equality if x̂k > 0. Using
these inequalities and Assumption 1, it follows that

xk − x̂k ¶
1

2bk
Gk4x− x̂5=

1
2bk

∑

j

gkj4xj − x̂j5

¶ xk − x̂k
2bk

∑

j

gkj < xk − x̂k0

We reach a contradiction; hence, both G and Ḡ have a unique
equilibrium.

Proof of Lemma 1. Define price vectors p� = �p̂ + 41 − �5p
for � ∈ 60117. Because p¶ p̂ (where the inequality is entrywise),
for all � we have p ¶ p� ¶ p̂. Let x� denote the consumption
vector corresponding to p� (note that x0 corresponds to p and x1

corresponds to p̂). To prove the claim, it is sufficient to show that
x1
i ¶ x0

i for every i. We show this by induction on the number
of agents.

First assume that there is only a single agent, say i. In this
case there are no network effects, and it follows from the def-
inition of the best response function given in (2) that x�i =

max84ai −p�
i 5/2bi109. Because p�

i is increasing in � by construc-
tion, it immediately follows that x1

i ¶ x0
i .

Assume that the claim holds when there are k agents. We next
prove that the claim holds for a network with �I� = k+ 1 agents.
We consider two cases: (i) we assume that at price p0 only a
subset S of agents consumes the good and S 6= I, and (ii) we
assume that at p0 all agents consume the good.

We start with the case where only agents in S consume the
good at p0, and S 6=I. Because xI−S = 0, the best response con-
dition in (2) suggests that if agents in I − S were not part of
the network, then for the remaining agents, at price vector p0

S the
consumption equilibrium would be given by y0

S = x0
S (where p0

S

and x0
S denote the entries of p0 and x0 vectors corresponding to

agents in S). Because p1
S ¾ p0

S and �S� ¶ k, using the induction
hypothesis, it follows that if only the agents in S were present
and the price vector was set to p1

S , then the consumption vector
y1
S would be such that y0

S ¾ y1
S . We next show that when all agents

in I are present, at the equilibrium corresponding to p1 the con-
sumption levels are such that x1

S = y1
S , and x1

i = 0 for all i y S.
Because y1

S is the equilibrium corresponding to price vector p1
S

(when agents in I − S are not present), it immediately follows
that agents in i ∈ S have no incentive to change their consumption
levels when all agents in I are present and x1

i = 0, for all i y S.
Also, because p1 ¾ p0 and x1

S ¶ x0
S by construction, an agent i y S

has less incentive to purchase the good when compared to the
case price offered was p0 (as can be seen from (2)). Because,
under p0 agents in I − S do not consume the good, it follows
that they do not have incentive to consume it under p1 as well.
Thus, we conclude that x1

S = y1
S , and x1

i = 0, for all i y S is the
unique equilibrium under price vector p1, and moreover x1 ¶ x0.

Finally, we consider the case where at p0, all agents consume
the good. Observe that for � ∈ 60117 all agents consume a positive
amount of the good at the equilibrium if and only if

x� = 4å−G5−14a−p�5 > 01 (16)

where the necessity follows from (6) and sufficiency follows
from (2). Let �0 > 0 be the first value of � for which this equa-
tion does not hold. Due to continuity of (16) in prices, we con-
clude there exists a subset S of I such that yS = 44å−G5−1 ·
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4a−p�055k > 0 for k ∈ S and yI−S = 44å−G5−14a− p�055k = 0
for k ∈ I − S. It follows from (2) that the consumption vectors
yS and yI−S = 0 satisfy the best response conditions, and hence
constitute an equilibrium where only the set of agents S consume
the good, i.e., x�0

S = yS , and x�0
I−S = 0.

By Lemma 4 and Assumption 1, it follows that the matrix
å − G is invertible and the spectral radius of å−1G is smaller
than 1. Therefore,

4å−G5−1
= 4I −å−1G5−1å−1

=

�
∑

k=0

4å−1G5kå−11 (17)

where the last equation follows because the spectral radius of
å−1G is smaller than 1. Observe that entries of å−1G and å−1

are nonnegative. Thus, it follows from (17) that the entries of
4å − G5−1 are nonnegative. Therefore, each entry of the vector
4å−G5−14a− p5 is weakly decreasing in p. This, together with
the definition of �0, imply that x0 ¾ x�0 .

Because under consumption vector x�0 some agents do not
consume the good and p1 ¾ p�0 , it follows that the consumption
vectors are such that x�0 ¾ x1 (as can be seen from part (i) of the
induction claim). Because we have already established x0 ¾ x�0 , it
follows that x0 ¾ x1. Thus, we conclude that the induction claim
holds for k+ 1 agents as well, and the lemma follows. �

Proof of Theorem 2. The proof makes use of the following
lemma, which states that under Assumptions 1 and 2, it is optimal
for the monopolist to offer prices so that all agents purchase a
positive amount of the good. �

Lemma 7. Let Assumptions 1 and 2 hold, and let p∗ denote an
optimal solution of the first stage of the pricing-consumption
game. At the consumption equilibrium, x∗, corresponding to p∗,
all consumers purchase a positive amount of the good, i.e., x∗

i > 0
for all i ∈I.

Proof. For the sake of contradiction, let 4p∗1x∗5 be such that
x∗
i = 0 for some i ∈I. We will construct a different price vector

p′ by decreasing the price offered to player i and increasing the
prices offered to the rest of the agents. In our construction, we
will ensure that if p′ is used, at equilibrium, agent i purchases a
positive amount of the good, and the consumptions of the remain-
ing agents do not change. This will imply that the profit of the
firm increases if p′ is used.

Consider agent k’s utility maximization problem. Recall that
for a given price vector p the best response function satisfies:

�k4x−k5= max
{

ak −pk

2bk
+

1
2bk

∑

j∈I1 j 6=k

gkjxj 10
}

0 (18)

Because at equilibrium x∗, none of the agents have incentive
to unilaterally deviate, it follows that x∗

k = 4ak − p∗
k5/42bk5 +

41/2bk5
∑

j∈I1 j 6=k gkjx
∗
j 1 if x∗

k > 0, and x∗
k = 0 ¾ 4ak −p∗

k5/42bk5+
41/2bk5

∑

j∈I1 j 6=k gkjx
∗
j otherwise.

Consider a price vector p′ such that p′
i = c+ �, where 0 < � <

ai − c (such an � exists from Assumption 2) and

p′

j =p∗

j +gji

(

ai−p′
i

2bi
+

1
2bi

∑

k∈I1k 6=i

gikx
∗

k

)

1 for all j 6= i0 (19)

Note that because ai > c + � = p′
i, it follows that p′

j > p∗
j

from (19). Let 8x′
k9 be a consumption vector such that x′

k = x∗
k

if k 6= i and x′
i = 4ai − p′

i5/42bi5 + 41/2bi5
∑

j∈I1j 6=i gijx
∗
j > 0.

From (18) for all k ∈I we have

�k4x
′

−k5= max
{

ak −p′
k

2bk
+

1
2bk

∑

j∈I1 j 6=k

gkjx
′

j 10
}

(20)

under price vector p′. It follows from (20) and the definition of
the consumption vector 8x′

k9 that x′
i is a best response to x′

−i when
price offered to agent i is p′

i, i.e., x′
i = �4x′

−i5. Combining (19)
with (20), we obtain for any agent k 6= i:

�k4x
′

−k5

= max
{

ak −p′
k

2bk
+

1
2bk

∑

j∈I1 j 6=k

gkjx
′

j 10
}

= max
{

ak −p′
k

2bk
+

1
2bk

gkix
′

i +
1

2bk

∑

j∈I1 j 6=k1 j 6=i

gkjx
∗

j 10
}

= max
{

ak −p∗
k

2bk
−

gki
2bk

(

ai −p′
i

2bi
+

1
2bi

∑

j∈I1 j 6=i

gijx
∗

j

)

+
1

2bk
gkix

′

i +
1

2bk

∑

j∈I1 j 6=k1 j 6=i

gkjx
∗

j 10
}

= max
{

ak −p∗
k

2bk
+

1
2bk

∑

j∈I1 j 6=k1 j 6=i

gkjx
∗

j 10
}

1

where the second equality uses x∗
k = x′

k for all k 6= i, the third
equality follows by (19), and the last one follows from the def-
inition of x′

i. Because x∗ is the consumption equilibrium corre-
sponding to p∗ and x∗

i = 0 it follows that
∑

j∈I1 j 6=k1 j 6=i gkjx
∗
j =

∑

j∈I1 j 6=k gkjx
∗
j , and hence for k 6= i we obtain

�k4x
′

−k5= max
{

ak −p∗
k

2bk
+

1
2bk

∑

j∈I1 j 6=k

gkjx
∗

j 10
}

= x∗

k = x′

k0

Because as explained earlier it is also true that �i4x
′
−i5 = x′

i we
conclude that x′ is the unique consumption equilibrium corre-
sponding to price vector p′.

Moreover, from (20) we obtain that x′
i > �′ for some �′ > 0.

Because p′
i − c = �, and p′

j ¾ pj for all j ∈ I1 j 6= i, it follows
that the monopolist increases her profits by at least � · �′ and the
lemma follows. �

Lemma 7 and the fact that xS = 4åS −GS5
−14aS −pS5 when a

set of agents S consume the product (cf. Equation (5)) imply that
the optimal price p∗ and the corresponding equilibrium vector x∗

satisfy

a−åx∗
+Gx∗

= p∗0 (21)

Thus, the problem that the monopolist faces can be rewritten as:

max
p1x

∑

i

pixi − cxi

s0t0 ai − 2bixi +
∑

j∈I

gijxj −pi = 01 for every i0

xi ¾ 01

from which we obtain by the KKT conditions (and because we
have already established that x∗

i > 0 for all i ∈I):

a− c1= 42å− 4G+GT 55x∗1
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and hence

x∗
=

(

å−
G+GT

2

)−1 a− c1
2

0 �

Substituting x∗ to (21) the claim follows.

Proof of Theorem 3. By Lemma 4, 4å − G5 is nonsingular;
thus, rearranging terms in (7), it follows that

p= a− 4å−G5

(

å−G−
GT −G

2

)−1 a− c1
2

= a−

(

I −
GT −G

2
4å−G5−1

)−1 a− c1
2

0 (22)

To complete the proof, we need the matrix inversion lemma:

Lemma 8 (Matrix Inversion Lemma). Given square matrices of
appropriate size,

4A−UD−1V 5−1
=A−1

+A−1U4D−VA−1U5−1VA−1

if A and D are nonsingular.

From this lemma, by setting A1V = I , D = å − G and U =

4GT −G5/2, we obtain

(

I −
GT −G

2
4å−G5−1

)−1

= I +
GT −G

2

(

å−G−
GT −G

2

)−1

= I +
GT −G

2

(

å−
GT +G

2

)−1

0

Thus, from (22) it follows that

p=
a+ c1

2
−

GT −G

2

(

å−
GT +G

2

)−1 a− c1
2

0 (23)

When ai = a0, bi = b0 for all i ∈ I, substituting å = 2b0I and
a = a01, the vector of optimal prices can be rewritten as

p=
a0 + c

2
1+

a0 − c

8b0
GK

(

G+GT

2
1

1
2b0

)

−
a0 − c

8b0
GTK

(

G+GT

2
1

1
2b0

)

0 �

Proof of Theorem 4. Immediate from (23) and the definition of
the weighted Bonacich centrality.

Proof of Lemma 2. The weakly decreasing property of 8xi9 for
each i ∈I, immediately follows from Lemma 1. The equilibrium
characterization in (6) implies that if at price p0 a set of agents S
consume a positive amount of the good, then their consumption
vector is given by

xS4p05= 4åS −GS5
−14aS −p0150 (24)

As shown in the proof of Lemma 1, the entries of the matrix
4åS − GS5

−1 are nonnegative. Because the matrix is invertible,
none of the rows of the matrix 4åS −GS5

−1 are identically equal

to 0. Therefore, it follows that 44åS −GS5
−115i > 0; hence, (24)

implies that xi is strictly decreasing in p0 for all i ∈ S. �
Proof of Theorem 5. By Lemma 2, it follows that the con-
sumption vector at equilibrium is monotonically decreasing in p.
Moreover, if the set of agents that purchase a positive amount
of the good at equilibrium is given by S, then the consumption
vector is as in (24). In order to prove the claim, we show that
among a set of agents S, who purchase a positive amount of the
good, the agent who first stops purchasing the good as the price
increases is the one with the smallest centrality gain. Moreover,
the price at which this agent stops is proportional to her centrality
gain in the graph restricted to agent set S.

Consider a set of agents S and price p0 such that p0 <ai for all
i ∈ S. From (2), we obtain that all agents in S have an incentive
to purchase a positive amount of the good, regardless of the con-
sumption levels of their peers. Thus, it follows that if this price is
used at equilibrium, all agents in S purchase a positive amount of
the good. Using (24) and the definition of the weighted Bonacich
centrality, the consumption vector can be rewritten as

xS4p05=å−1
S 4I −GSå

−1
S 5−14aS −p015

=å−1
S K̃4GS1å

−1
S 1aS5

−p0å
−1
S K̃4GS1å

−1
S 1150 (25)

Equivalently, for any i ∈ S, the consumption of player i can be
given as

xi4p05=
1

2bi
4K̃i4GS1å

−1
S 1aS5−p0K̃i4GS1å

−1
S 11550

Therefore, it follows that when

p = min
i∈S

K̃i4GS1å
−1
S 1aS5

K̃i4GS1å
−1
S 115

= min
i∈S

Hi4GS1å
−1
S 1aS51 (26)

then for the first time a group of agents in S stops purchasing
the good.

It follows from (26) that if p < p1 all agents in I purchase
a positive amount of the good, and if the price is increased
to p1 = mini∈IHi4G1å−11a5, then agents in the set D1 =

arg mini∈IHi4G1å−11a5, stop purchasing the good. By mono-
tonicity, these agents do not purchase the good when the price
of the good is further increased. Furthermore, monotonicity also
implies that the agents in the set I − D1 stop purchasing the
good at a higher price. Using (26) iteratively, it can be seen that
the agents in Dk stop purchasing the good at price pk for k ∈

811 0 0 0 n9.
Thus, the first claim follows by construction of prices pk and

the monotonicity of the consumption vector. The second claim
follows from the fact that if p < p1, then all agents purchase a
positive amount of the good, and if pk ¶ p ¶ pk+1, then only
agents in I −

⋃k
l=1 Dl = Ik purchase a positive amount of the

good. Therefore, by (6), the claim follows. �
Proof of Theorem 6. Recall that the MAX-CUT problem (with
011 weights) is defined as follows.

Definition 5 (MAX-CUT Problem). Let G= 4V 1E5 be an undi-
rected graph and for all i1 j ∈ V , define gij such that gij = 1 if
4i1 j5 ∈E and gij = 0 otherwise. Find the cut with maximum size,
i.e., find a partition of the agent set V into S and V −S such that
the following sum is maximized:
∑

i∈S1 j∈V−S

gij 0
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Note that the MAX-CUT problem is equivalent to the following
optimization problem:

max
∑

4i1 j5∈E

Wij41 − xixj5

s0t0 xi ∈ 8−1119 for all i ∈ V 1

where W denotes the matrix of weights (we assume that Wij =

Wji ∈ 80119). The optimal solution of the above problem corre-
sponds to a cut as follows: let S be the set of agents that were
assigned value 1 in the optimal solution. Then, it is straightfor-
ward to see that the value of the objective function corresponds to
the size of the cut defined by S and V −S. We can further rewrite
the optimization problem as:

4P05 min xTWx

s0t0 xi ∈ 8−1119 for all i ∈ V 0

It is well-known that this problem is NP-hard (Garey and Johnson
1979). Consider the following related problem:

4P15 min xTWx

s0t0 xi ∈ 8−1119 for all i ∈ V 1

where W is a symmetric matrix with rational entries that satisfy
0 < W T = W < 1 (inequality is entrywise). We next show by
reduction from MAX-CUT that P1 is also NP-hard.

Lemma 9. P1 is NP-hard.

Proof. We prove the claim by reduction from P0. Let W be the
weight matrix in an instance of P0. Then, let W� = 1

2 4� + W5,
where � is a rational number such that 0 < � < 1/42n25 and
�V � = n. Observe that for any feasible x in P0 or P1 it follows that

2xTW�x− n2�¶ xTWx¶ 2xTW�x+ n2�0

Because the objective value of P0 is always an integer and n2� <
1
2 , it follows that the cost of P0 for any feasible vector x can be
obtained from the cost of P1 (with W�) by scaling and rounding.
Hence, it can be seen that from the optimal solution of the latter,
we can immediately obtain the optimal solution and the value
of the former (as rounding is a monotone operation). Therefore,
because P0 is NP-hard it follows that P1 is also NP-hard and the
claim follows. �

Next we prove Theorem 6 by using a reduction from P1 to
OPT. We consider the special instances of OPT for which we have
G=GT , c = 0, a = 6a1 0 0 0 1 a71 where a= pL + pH . Observe that
under this setting, Assumptions 2 and 3 hold and â = pN1 = ĉ1.
Hence, using (9), such instances of OPT can be rewritten as (by
adding a constant and scaling the objective function)

4OPT25 min xT 4å−G5−1x

s0t0 xi ∈ 8−1119 for all i ∈I0

Next we show that any instance of P1 can be transformed into
an instance of OPT2 (or equivalently OPT) where å and G are
matrices with rational entries, G=GT ¾ 0 (the inequality is entry
wise), diag4G5 = 0, åij = 0 if i 6= j , åkk > 0, å and G matrices
satisfy Assumption 1. Note that Assumption 1 is equivalent to

requiring 4å − G5k1 > 0 for all k, where 1 denotes the vector
with all entries equal to one, and 4å−G5k denotes the kth row
of 4å−G5. Observe that these requirements on å and G ensure
that the corresponding instance of OPT satisfies the assumptions
of the theorem.

Consider an instance of P1 with W > 0. Note that because
x2
i = 1, P1 is equivalent to

min xT 4W +�I5x

s0t0 xi ∈ 8−1119 for all i ∈ V 1
(27)

where we choose � as an integer such that � > 4 max8�4W5,
∑

i1 j Wij/minij Wij9, and �4 · 5 denotes the spectral radius of its
argument. Next, we show that this optimization problem is equiv-
alent to an instance of OPT2 by showing that 4W +�I5 =

4å−G5−1 for some å and G satisfying the requirements above.
The definition of � implies that the spectral radius of W/� is

smaller than 1. Therefore, it follows that

4W +�I5−1
=

1
�

(

I −
W

�
+

W 2

�2
· · ·

)

0

Observe that for all i1 j ∈ 81121 0 0 0 1 n9,

(

W −
W 2

�

)

ij

=Wij −

∑

kWikWkj

�
¾Wij −

∑

kWik

�

¾Wij −
minklWkl

4
¾Wij −

Wij

4
> 01

where the first inequality follows from the fact that 0 <W < 1,
and the second inequality follows from the definition of �. Thus,
all entries of 4W −W 2/�5 are positive. Rewriting 4W +�I5−1 as

4W +�I5−1
=

1
�

(

I−
1
�

(

W −
W 2

�

)

−
W 2

�3

(

W −
W 2

�

)

···

)

and noting that all entries of W and 4W − 4W 2/�55 are posi-
tive, the above equality implies that the off-diagonal entries of
4W +�I5−1 are negative. Thus, 4W +�I5−1 = 4å−G5 for some
diagonal matrix å and for some G¾ 0 with diag4G5= 0. More-
over, because W = W T , G is also a symmetric matrix. Note that
because the spectral radius of W/� is smaller than 1, it also
follows that

44å−G515k

= 44W +�I5−115k =

(

1
�

(

I −
W

�
+

W 2

�2
· · ·

)

1
)

k

0

Because W > 0, it can be seen that W l > 0 for all l ∈ �+. Using
this observation, we obtain

44å−G515k ¾
1
�

(

1 +

(

−
W1
�

−
W 21
�2

· · ·

)

k

)

0

By the definition of �, it follows that 4W15/� ¶ 44
∑

ij Wij5/�51¶
1
41. Therefore, the above inequality implies that

44å−G515k ¾
1
�

(

1 −
1
4

(

�
∑

l=0

(

1
4

)l))

=
1
�

(

2
3

)

> 00

Thus, Assumption 1 holds for the game defined with the matrices
å and G. Note that because the off-diagonal entries of å−G are
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nonpositive, Assumption 1 implies that the diagonal entries of å
are positive.

Therefore, problem P1 can be reduced to an instance of OPT2
by defining å and G according to 4W +�I5−1 = 4å−G5. Thus,
it follows that OPT2, and hence OPT, are NP-hard.

Proof of Theorem 7. First, we describe a semidefinite program-
ming (SDP) relaxation for the following optimization problem:

max 1
4

∑

i1 j

wij41 − xixj5

s0t0 xi ∈ 8−1119 for all i ∈ V 0 (28)

Note that (28) can be relaxed to

max 1
4

∑

i1 j

wij41 − �i · �j5

s0t0 �i ∈ Sn for all i ∈ V (29)

where �i · �j , denotes the regular inner product of vectors �i1 �j ∈

�n, and Sn denotes the n-dimensional unit sphere, i.e., Sn = 8x ∈

�n�x · x = 19. We next show that (29) leads to a semidefinite
program.

Consider a collection of vectors 8�11 0 0 0 1 �n9 such that �i ∈ Sn.
Define a symmetric matrix Y ∈ Rn×n, such that Yij = �i · �j and
Yii = 1. It can be seen that Y = F T F , where F ∈ �n×n is such
that F = 6�11 �21 0 0 0 1 �n7. This implies that Y � 0. Conversely,
consider a positive semidefinite matrix Y ∈�n×n, such that Yii = 1.
Because Y is positive semidefinite, there exists F ∈ �n×n (which
can be obtained through the Cholesky factorization of the original
matrix) such that Y = F T F . Denote the columns of F by �i, i.e.,
F = 6�11 �21 0 0 0 1 �n7. Because Yii = 1 and Y = F T F , it follows that
�i ·�i = 1. These arguments imply that the feasible set in (29) can
equivalently be defined in terms of positive semidefinite matrices.
Hence, it follows that the optimization problem in (29) can be
equivalently written as

max 1
4

∑

i1 j

wij41 − Yij5

s0t0 Yi1 i = 1 for all i ∈ V 1

Y � 00 (30)

Next, we show how to obtain a provable approximation guar-
antee for binary quadratic optimization problems of the form:

max xTQx+ 2dT x+ z

s0t0 xi ∈ 8−11191 i ∈ 811 0 0 0 1 n91 (31)

where Q, d, and z have rational entries, i.e., Q ∈ �n×n, d ∈ �n,
and z ∈ �. Observe that xTQx = Trace4Q5 + xT Q̃x, where Q̃ =

Q − diag4Q5 and xi ∈ 8−1119. Thus, the diagonal entries of the
Q matrix can be expressed as a part of the constant term, and
thus, we can assume that diag4Q5 = 0 without any loss of gen-
erality. Also, again without loss of generality, we can assume
that the matrix Q is symmetric, because xTQx = xTQT x = xT

4Q+QT 5/2x.
Consider the following optimization problem

max 6x3 y7T Q̂6x3 y7+ z

s0t0 xi ∈ 8−11191 i ∈ 811 0 0 0 1 n91

y ∈ 8−11191

(32)

where

Q̂ =

[

Q d

dT 0

]

0 (33)

Note that given a feasible solution 6x3 y7 of (32), another feasi-
ble solution with the same objective value is −6x3 y7. Therefore,
given an optimal solution of (32), another optimal solution where
y = 1 can be obtained. Because by construction 6x3 y7T Q̂6x3 y7=
xTQx + 2ydT x, it follows that the x corresponding to such an
optimal solution of (32) is also optimal for (31) and the opti-
mal objective values for the two problems are equal. Therefore,
instead of solving (31), we focus on (32).

Following (28), and (29), we can relax (32) to:

max
∑

ij

�i · �jQ̂ij + z

s0t0 �i ∈ Sn+11 i ∈ 811 0 0 0 1 n1n+ 191

(34)

and obtain an equivalent SDP (by defining Yij = �i ·�j ) as follows:

max
∑

ij

YijQ̂ij + z

s0t0 Yii = 1 i ∈ 811 0 0 0 1 n1n+ 191

Y � 00

(35)

Using this SDP relaxation, Algorithm 2 provides an approximate
solution to the original problem. We prove this, using a similar
approach to Goemans and Williamson (1995).

Algorithm 2 (Compute 8x11 0 0 0 1 xn9, which is an approximate
solution of (31))

Step 1. Solve the SDP relaxation in (35), find an optimal Y .
Step 2. Obtain the Cholesky factorization of Y , i.e., find F

such that Y = F T F . Denote the ith column of F by �i.
Denote by �n+1 the vector corresponding to the variable y
in (32).

Step 3. Let r be a vector uniformly distributed on the
unit sphere Sn+1.

Step 4. Let S = 8i � r · �i ¾ 09. If n+ 1 ∈ S, then set xi = 1
for all i ∈ S ∩ 811 0 0 0 1 n9 and set the remaining xi to −1.
Else, if n+ 1 y S, then set xi = −1 for all i ∈ S ∩ 811 0 0 0 1 n9
and set the remaining xi to −1.

Output: 8x11 0 0 0 1 xn9.

Proposition 1. Let z ¾ ∑

i1 j �Q̂ij �. Then, a solution given by
Algorithm 2, in expectation achieves at least 00878 times the opti-
mal objective value of the original problem in (31).

Proof. Let W denote the objective value of a solution the algo-
rithm provides, WM denote the optimal solution of the underlying
quadratic optimization problem (31), and WP denote the optimal
value of the SDP relaxation. Let 8�i9 denote the solution of SDP
relaxation, then the corresponding optimal value can be given as

WP =
∑

i1 j

Q̂ij�i · �j + z0

It can be seen that for solutions the algorithm provides,
the probability12 that agents i and j have opposite signs is
4arccos4�i·�j55/�, and similarly the probability that agents have
the same sign is 1 − 4arccos4�i · �j55/� (see Goemans and
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Williamson 1995). Thus, the expected contribution of this pair of
agents to the objective function is given by Q̂ij41 − 244arccos4�i ·
�j55/�55. Hence, it follows that the expected value of a solution
the algorithm provides is given by

E6W7=
∑

i1 j

(

1 − 2
arccos4�i · �j5

�

)

Q̂i1 j + z0

Because z ¾∑

i1 j �Q̂ij �, it follows that both WM and E6W7 are
nonnegative; also, because WP corresponds to the optimal solution
of the relaxation, it follows that WP ¾WM . Using these, it follows
that

WP =
∑

i1 j3 Q̂ij>0

Q̂ij41 + �i · �j5+
∑

i1 j3Q̂ij<0

�Q̂ij �41 − �i · �j5+ z2

and

E6W7=
∑

i1 j3Q̂ij>0

Q̂ij

(

2 − 2
arccos4�i · �j5

�

)

+
∑

i1 j3Q̂ij<0

�Q̂i1 j �2
arccos4�i · �j5

�
+ z21

where z2 = z−
∑

i1 j �Q̂ij �¾ 0. Because the arccos function satisfies
arccosx/� ¾ 4�/2541−x5 and 1−arccosx/� ¾ 4�/2541+x5 for
all x ∈ 6−1117, where � ≈ 00878 (see Goemans and Williamson
1995), it follows that E6W7 > 00878WP ¾ 00878WM . �

This result can be extended by relaxing the condition z ¾
∑

i1 j �Qij �. To see this, we first add a positive constant to the objec-
tive function of the original problem, ensuring that the modified
problem satisfies this condition, and then provide an approxima-
tion to this new problem. Note that the constant change in the
objective function does not affect the output of the algorithm. The
following corollary summarizes this result.

Corollary 2. Let W denote the objective value of a solution
output by Algorithm 2 and WM denote the optimal solution of
the underlying quadratic optimization problem. Then, E6W7 +
∑

ij �Q̂ij � − z > 008784WM +
∑

ij �Q̂ij � − z5.

Finally, when Assumption 3 holds, using (9), and A = 4å −

G5−1, the pricing problem of the firm can be expressed as

max �2yTAy+ �4âTAT − ĉ1TA5y+ ĉ1TAâ

s0t0 yi ∈ 8−1119 for all i ∈I0
(36)

Using Lemma 1, it can be seen that Assumption 1 and non-
negativity of entries of å and G imply that A = 4å−G5−1 =

å−1∑�

l=04Gå−15l is a matrix with nonnegative entries. There-
fore, Theorem 7 follows by using the formulation (36), rewriting
the pricing problem of the monopolist in the form of (31), and
applying Corollary 2.

Proof of Lemma 3. Note that ignoring the network effects is
equivalent to assuming that G = 0. Thus, the optimal prices for
the setting described in the statement of the lemma, denoted
by p0 and pN , respectively, are given by (as can be seen from
Theorem 2):

p0 =
a+ c1

2
(37)

and

pN = a− 4å−G5

(

å−
G+GT

2

)−1 a− c1
2

0 (38)

By Lemma 7, under the price vector pN all agents purchase a pos-
itive amount of the good. Assumption 2 implies that ai > c for all
i ∈I. Thus, under the price vector p0, ai is greater than the price
offered to agent i, and agents still purchase a positive amount of
the good. The corresponding consumption vectors (denoted by x0

and xN ) are given by (cf. Equation (5))

x0 = 4å−G5−14a−p05= 4å−G5−1 a− c1
2

(39)

and

xN = 4å−G5−14a−pN 5

=

(

å−
G+GT

2

)−1 a− c1
2

0 (40)

It follows that

ç0 = 4p0 − c15T x0 =
a− c1

2
4å−G5−1 a− c1

2
1 (41)

and if we let M =å−G, Equations (38) and (40) imply that

çN =4pN −c15T xN

=

(

a−c1−M

(

M+MT

2

)−1 a−c1
2

)T

·

((

M+MT

2

)−1 a−c1
2

)

=

(

a−c1
2

)T(

2I−M

(

M+MT

2

)−1)T

·

(

M+MT

2

)−1(a−c1
2

)

=2
(

a−c1
2

)T(
M+MT

2

)−1(a−c1
2

)

−

(

a−c1
2

)T(
M+MT

2

)−T

MT

(

M+MT

2

)−1(a−c1
2

)

0

(42)

Note that for a matrix A and vector x, xTAx = xT 44A+AT 5/25x;
thus, it follows that
(

a− c1
2

)T(
M +MT

2

)−T

MT

(

M +MT

2

)−1(a− c1
2

)

=

(

a− c1
2

)T(
M +MT

2

)−1(a− c1
2

)

0

Thus, from (42) we can rewrite çN as

çN =

(

a− c1
2

)T(
M +MT

2

)−1(a− c1
2

)

0 (43)

The claim follows noting that M =å−G.

Proof of Theorem 8. To simplify the notation we denote å−G
by M . Note that by the assumption of the theorem, M is positive
definite. We state some useful properties of this matrix in Lem-
mas 10 and 11, and then prove the claim using these properties.
The proofs of these lemmas can be found at the end of this proof.
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Lemma 10. If M is positive definite, then the following matrices
are also positive definite: M−1, 4M +MT 5/2, 44M +MT 5/25−1,
44M−1 +M−T 5/25, and 44M−1 +M−T 5/25−1.

Lemma 11. Let M be positive definite and � be an eigenvalue of
MM−T = 4å−G54å−G5−T ; then, (i) ��� = 1 and the real part of
� satisfies <4�5 > −1. (ii) The eigenvalues of MM−T +MTM−1

are real and they belong to 4−2127.

Let v = 44a− c15/25. Lemma 3 implies that

çN

ç0
=

vT 4å− 444G+GT 5/25−15v
vT 4å−G5−1v

¶ max
�x�=1

xT 444M +MT 5/25−15x
xTM−1x

= max
�x�=1

xT 444M +MT 5/25−15x
xT 44M−1 +M−T 5/25x

1 (44)

and similarly

ç0

çN

¶ max
�x�=1

xTM−1x
xT 444M +MT 5/25−15x

= max
�x�=1

xT 44M−1 +M−T 5/25x
xT 444M +MT 5/25−15x

0 (45)

Because 4M−T + M−15/2 and 4MT + M15/2 are symmetric
positive definite matrices, the matrices 44M−T +M−15/251/2 and
44MT +M15/251/2 are well defined. Consequently, we obtain

max
�x�=1

xT 444M+MT 5/25−15x
xT 44M−1 +M−T 5/25x

= max
�x�=1

xT 444M+MT 5/25−15x
xT 444M−1 +M−T 5/251/25444M−1 +M−T 5/251/25x

= max
�y�=1

yT
(

M−1 +M−T

2

)−1/2(
M+MT

2

)−1(
M−1 +M−T

2

)−1/2

y

=�max

((

M−1 +M−T

2

)−1/2(
M+MT

2

)−1

·

(

M−1 +M−T

2

)−1/2)

1 (46)

where the second line follows by defining

z 4
=

(

M−1 +M−T

2

)1/2

x1

rewriting the first line in terms of z and setting y = z/� z �, and
the third line follows from the Rayleigh-Ritz Theorem (Horn and
Johnson 2005). Similarly, we have,

max
�x�=1

xT 44M−1 +M−T 5/25x
xT 444M +MT 5/25−15x

= �max

((

M +MT

2

)1/2(
M−1 +M−T

2

)(

M +MT

2

)1/2)

0 (47)

Note that for a real matrix A and invertible real matrix B the
eigenvalues of A and B−1AB are identical (similarity transforma-
tion). Therefore, it follows from the above equations that

max
�x�=1

xT 444M +MT 5/25−15x
xT 44M−1 +M−T 5/25x

= �max

((

M−1 +M−T

2

)−1(
M +MT

2

)−1)

= �max

((

2I +MM−T +MTM−1

4

)−1)

0 (48)

Lemma 11 implies that the eigenvalues of MM−T +MTM−1 are
real and belong to 4−2127. Thus, it follows that the eigenvalues
of 442I +MM−T +MTM−15/45 are positive and

�max

((

2I +MM−T +MTM−1

4

)−1)

= 1/�min

((

2I +MM−T +MTM−1

4

))

0 (49)

Similarly, we obtain,

max
�x�=1

xT 44M−1 +M−T 5/25x
xT 444M +MT 5/25−15x

= �max

((

M +MT

2

)(

M−1 +M−T

2

))

= �max

(

2I +MM−T +MTM−1

4

)

0 (50)

Thus, it follows from (44) and (45) that

�min

(

2I +MM−T +MTM−1

4

)

¶ ç0

çN

¶ �max

(

2I +MM−T +MTM−1

4

)

1 (51)

or equivalently

1
2

+�min

(

MM−T +MTM−1

4

)

¶ ç0

çN

¶ 1
2

+�max

(

MM−T +MTM−1

4

)

0 (52)

The claim follows because the eigenvalues of MM−T +MTM−1

belong to 4−2127.

Proof of Lemma 10. Note that because

xTMx = xT
(

M +MT

2

)

x1

it immediately follows that 4M + MT 5/2 is positive definite.
For y = Mx, xTMx = xTMT x = yTM−1y. Thus, it follows that
yTM−1y = yT 44M−T + M−15/25y > 0 for all real vectors y 6= 0.
Hence, M−1 and 4M−T +M−15/2 are also positive definite.

Finally, note that if A is a symmetric positive definite matrix,
then so is A−1. Therefore, positive definiteness of

(

M +MT

2

)−1

and
(

M−1 +M−T

2

)−1

follows directly from the fact that

M+MT

2
and

M−1+M−T

2

are positive definite.

Proof of Lemma 11. Assume that x is a left eigenvector of
MM−T corresponding to the eigenvalue �, i.e., xTMM−T = �xT .
Then, 4�1x5 satisfies xTM = �xTMT , or equivalently,

MT x = �Mx0 (53)
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Because MM−T need not be a symmetric matrix, � and x are not
necessarily real. Let x = x1 + ix2, and x∗ denote the conjugate
transpose of x, i.e., x∗ = xT1 − ixT2 . Note that

x∗MT x = xT1 M
T x1 + xT2 M

T x2 + i4xT1 M
T x2 − xT2 M

T x151 (54)

and

x∗Mx = xT1 Mx1 + xT2 Mx2 + i4xT1 Mx2 − xT2 Mx150 (55)

Because M and MT are real and positive definite, <4x∗Mx5 =

<4x∗MT x5= xT1 Mx1 +xT2 Mx2 > 0. Additionally, taking the trans-
pose, it can be seen that xT1 M

T x2 = xT2 Mx1 and xT1 Mx2 =

xT2 M
T x1, and consequently =4x∗Mx5= −=4x∗MT x5. Thus, from

(53) it follows that

��� =

∣

∣

∣

∣

x∗MT x
x∗Mx

∣

∣

∣

∣

= 10 (56)

It follows from (54) and (55) that �= −1 only when xT1 M
T x1 and

xT2 M
T x2 equal to zero. However, because M is positive definite

this can never happen. Using ��� = 1, this implies that <4�5 >−1.
Let the Jordan normal form of MM−T be P−1JP , i.e.,

MM−T
= P−1JP1 (57)

where J is an upper-triangular block diagonal matrix, and P is
an invertible matrix. Eigenvalues of MM−T correspond to the
diagonal entries of J . Observing that 4MM−T 5−1 = MTM−1, it
follows that

MM−T
+MTM−1

= P−1JP +P−1J−1P = P−14J + J−15P 0 (58)

The inverse of an upper-triangular block diagonal matrix is upper-
triangular block diagonal. Thus, it follows that P−14J + J−15P
is a Jordan normal form for MM−T + MTM−1. Also note that
because J and J−1 are upper triangular, if Jii = �, then J−1

ii = 1/�.
Consequently, the diagonal entries of 4J + J−15 take the form
� + 41/�5, where � is a diagonal entry of J . Because P−1JP
and P−1JP + P−1J−1P = P−14J + J−15P are the Jordan normal
forms of MM−T and MM−T +MTM−1, we conclude that � is an
eigenvalue of MM−T if and only if �+ 1/� is an eigenvalue of
MM−T +MTM−1.

From part (i), it follows that the eigenvalues of MM−T take the
form ei� for some � ∈ 601�5∪ 4�12�5. Thus, the eigenvalues of
MM−T + MTM−1 are given by ei� + e−i� = 2 cos4�5 for some
� ∈ 601�5∪ 4�12�5. Thus, we conclude that the eigenvalues of
MM−T +MTM−1 are real and they belong to 4−2127.

Endnotes

1. We use the terms “agent” and “consumer” interchangeably.
2. The hardness result can be extended to the case of more than
two prices.
3. The utility function specified in (1) is compatible with stan-
dard consumer theory. Typically, in consumer theory there is
an additional constraint regarding the income levels of the eco-
nomic agents. In our approach, we choose not to include such a
constraint, implicitly assuming large income levels, because this
allows for a cleaner characterization of the equilibrium strategies
of agents. However, note that Assumption 1 is no longer neces-
sary to ensure bounded consumption in the presence of an income
constraint.

4. Previous results in the literature (in particular, in Ballester
et al. 2006, Theorem 1; Bramoullé et al. 2012, Proposition 2)
also establish uniqueness in a model related to ours. However,
these results are not immediately applicable in our setting because
they assume the symmetry of the adjacency matrix G. On the
other hand, a contraction argument similar to the one given in
(Bramoullé et al. 2012, p. 32) can be used to establish unique-
ness of equilibrium in our setting. Here, we do not impose any
symmetry condition on the adjacency matrix, and offer a novel
proof of uniqueness, which also illustrates how the strategic com-
plementarity condition can be used to establish the uniqueness of
equilibria.
5. Recall that the Bonacich centrality of a node is proportional to
the (discounted) number of times a random walk defined over the
nodes of the graph (with uniform initial distribution) visits this
node. Centrality gain captures the change in the expected number
of visits when the initial distribution is not uniform.
6. Informally, the (weighted) MAX-CUT problem is to find a
subset S of the vertex set such that the total weight of the edges
between the set S and its complement is maximized.
7. Instances of MAX-CUT with weight matrix W can be ex-
pressed as maxxi∈8−1119

∑

i1 j41 − xixj5Wij . Omitting the constant
term, the relation between (11) and MAX-CUT is now clear. See
the appendix for details.
8. This claim immediately follows from the Gershgorin circle
theorem (see Golub and Loan 1996).
9. We note that for this choice of parameters Assumptions 2 and
4 hold. However, Assumption 1 may be violated for the center
node for some values of �. Despite that, we numerically establish
that there is a unique equilibrium, and all agents consume positive
amounts of the good at this equilibrium. Thus, it follows that both
Lemma 3 and Theorem 8 hold for these parameters.
10. It can be verified numerically that for graphs of smaller size,
the upper bound can be significantly different than 1. However,
for the graphs considered in this section, the upper bound turned
out to be very close to 1.
11. Pricing policies for profit maximization, in the presence of
incomplete information about agents’ private valuations, have
been considered in the literature (see e.g., Hartline et al. 2008,
Akhlaghpour et al. 2010). However, the problem of learning qual-
ity, or the match between the product and the buyers, differs from
this line of work in that in the latter setting the monopolist uses
pricing also as a means to learn a common parameter (quality).
12. We assume that the range of the arccos function is 601�7.
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