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This paper studies the strategic interaction between a monopolistic seller of an information product and a

set of potential buyers that compete in a downstream market. Our analysis illustrates that the nature and

intensity of competition among the information provider’s customers play first-order roles in determining

her optimal strategy. We show that when the customers view their actions as strategic complements (such

as in Bertrand competition), the provider finds it optimal to offer the most accurate information at her

disposal to all potential customers. In contrast, when buyers view their actions as strategic substitutes (for

example, when they compete with one another à la Cournot), the provider maximizes her profits by either (i)

restricting the overall supply of the information product, or (ii) distorting its content by offering a product of

inferior quality. We also establish that the provider’s incentive to restrict the supply or quality of information

provided to the downstream market intensifies in the presence of information leakage.
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1. Introduction

Recent advances in information technology have streamlined the process of mining, aggregating,

and processing high volume data about economic activity. Arguably, it is widely believed that the

availability of more accurate information about the business environment and market conditions can

be hugely beneficial to firms across a wide variety of industries. Such a realization has in turn led to

a sizable demand for Business-to-Business information services. Several firms ranging from Nielsen

to Thomson Reuters and IRI have built their business models around collecting, customizing, and

selling information products to other market participants. For example, the market research firm

IRI offers its customers a variety of consumer, shopper, and retail market analyses focused on the

consumer packaged goods industry, whereas the Economist Intelligence Unit sells industry-wide

market analysis reports.

Motivated by the growing interest in the markets for information, this paper studies the problem

of the optimal sale of information (such as demand forecasts) to a set of competing firms. We show
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that the nature and intensity of competition among the information provider’s potential customers

have a first-order impact on her optimal selling strategy and profits. More specifically, our analysis

illustrates that the value the provider can extract from her customers is largely determined by

the trade-off between (i) the direct (positive) effect of more precise information on the customers’

profits by enabling them to make more informed decisions; and (ii) the strategic effects that arise

due to the fact that the provider’s customers may interact with one another in other markets.

We present our main findings in the context of an environment that involves a monopolistic

information provider who can sell potentially informative signals to a collection of firms that

compete with one another in a downstream market. More specifically, we assume that the customer

firms face demand uncertainty and that the provider is endowed with a private signal that

is (partially) informative about the actual demand realization, thus creating potential gains

from trade. Crucially for our argument—and in line with the observation that many real-world

information providers offer a variety of information products of varying qualities—we allow for a

setting in which the provider can offer information products that are potentially less precise than

her private information. In other words, the provider can potentially distort the informativeness

of the signal at her disposal by reducing its accuracy.

As our main result, we show that the optimal selling strategy of the provider is largely dependent

on the nature and intensity of competition among her potential customers in the downstream

market. More specifically, we first show that when firms engage in price competition (Bertrand),

the provider finds it optimal to sell her signal with no distortion to the entire set of firms. This

is due to the fact that in a Bertrand market, firms’ actions are strategic complements and hence,

each firm’s marginal benefit of procuring a more accurate signal is increasing in the fraction of

its competitors that purchase the provider’s information product. Therefore, the provider would

obtain maximal profits by flooding the market with highly precise signals.

The situation, however, can be dramatically different if the information provider’s customers

compete with one another in quantities (Cournot). For such a downstream market, we show that the

provider may no longer find it optimal to sell an undistorted version of her signal to all firms. Rather,

she may find it optimal to either (i) reduce the quality of her information product by selling a signal

of a lower precision than the one she possesses; (ii) strategically limit her market share by excluding

a subset of her customers from the sale; or (iii) employ both strategies simultaneously by reducing

the quality and quantity of the products offered. The optimality of these “information-distorting

strategies” is due to the fact that in a Cournot market, firms’ actions are strategic substitutes,

which leads to the emergence of two opposing effects. On the one hand, obtaining additional

information about demand directly benefits firms as they can better align their production decisions

with underlying market conditions. On the other hand, however, the provider’s signal can also
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serve as a correlating device among her customers’ equilibrium actions. In particular, providing

the information product to an extra firm can only increase the correlation in the firms’ production

decisions, an outcome that reduces each firm’s profits and hence, can adversely affect the provider’s

bottom line. Therefore, when downstream competition is intense enough (for example, when firms’

products are sufficiently substitutable), this latter, strategic channel would dominate the positive

effect of reducing demand uncertainty, implying that the information provider would be better

off by restricting the quantity and/or quality of her information products. Interestingly, unlike in

Bertrand competition, the provider’s profits in a Cournot market are decreasing in the intensity of

competition and may end up being significantly lower than in the absence of any competition.

To further clarify the forces that underpin our results, we also discuss a number of extensions

to our benchmark setup. First, we let the provider offer a menu of information products with

potentially different precisions and at different prices. We provide an explicit characterization of

the optimal selling strategy as a function of the nature and intensity of competition and show that

when firms compete in quantities and offer substitutable products, there is a continuum of strategies

that lead to the same equilibrium profits for the provider. This characterization thus formalizes

the trade-off in the provider’s incentives for reducing the quantity or quality of her information

product. Second, we extend our benchmark framework by allowing for the possibility of information

leakage among the provider’s customers. In particular, we assume that, by observing the decisions

of their competitors, firms can partially infer the information content of the signal purchased by

other firms, thus altering their own willingness-to-pay for the information provider’s signal. We

establish that the provider’s incentive for reducing the quality and/or quantity of her information

product increases as the extent of information leakage among her customers is intensified. Third,

we explore the implications of firm heterogeneity for the provider’s selling strategy by considering

a setting in which firms differ in their production costs. We show that it is optimal for the provider

to sell higher precision information products (at higher prices) to the more efficient firms, i.e., the

firms that have lower production costs. Lastly, we establish that our main qualitative insights carry

over to a market consisting of finitely many firms and show that our benchmark results can be

obtained as the limit of a finite market with the number of firms growing asymptotically large.

Taken together, these findings provide a step towards understanding the intricacies involved in

markets for information. Unlike traditional markets for physical goods, it is relatively inexpensive

to offer a diverse menu of information products that differ in their precision and pricing. Our results

highlight that the value that a given buyer can extract from procuring such products depends not

only on the product’s characteristics (such as its price and precision) but also on the environment

in which the information provider’s customers interact with one another.
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Our modeling framework provides several qualitative insights on how, in shaping her pricing

policy, an information provider may optimally take the strategic interactions among her customers

into account. We believe that these insights can be of particular relevance to real-world information

markets in which (i) information providers have the ability to sell signals of different precisions (at

potentially different prices) to their customers and (ii) information affects the customers’ actions

and profits through two channels: on the one hand, more precise information enables a firm to

take an action that more closely matches the realized uncertainty; on the other hand, the firm

also interacts strategically with the rest of the market participants. Potential examples include

the multitude of consumer, shopper, and retail market analyses of varying precision offered by

firms such as IRI and Nielsen to the consumer packaged goods industry1 as well as the expansive

menus of information products that financial data providers (such as Bloomberg and Thomson

Reuters) make available to their customers. Besides the obvious case of differentiating their data

based on its granularity (say, its coverage or level of aggregation), financial data providers also use

frequency as a dimension to differentiate their information products. For instance, in the context

of the U.S. macroeconomic data announcements by various government agencies at prescheduled

dates (such as monetary policy announcements by the Federal Reserve or non-farm employment

numbers released by the Bureau of Labor Statistics), Kurov et al. (2016) argue that some private

data providers release information to exclusive groups of subscribers before making it available to

others, with the documented early releases in the range of seconds.2 Thus, to the extent that slightly

out-dated information can be considered as information of lower quality (e.g., due to fast-moving

market conditions), such an environment also exhibits the key features of our model.

Related Literature. Our paper is related to the extensive literature that studies firms’ strategic

considerations in sharing information with one another in oligopolistic markets. For example, Vives

(1984), Gal-Or (1985), Li (1985), and Raith (1996) provide conditions under which firms find

it optimal to share their private information about market conditions with their competitors. A

more recent collection of papers, such as Shin and Tunca (2010), Shamir (2012), Shamir and

Shin (2016), Ha and Tong (2008), and Ha, Tong, and Zhang (2011) studies information sharing

incentives in vertical supply chains. For instance, Shamir and Shin (2016) determine conditions

under which firms can credibly share their demand forecasts with one another, whereas Cui, Allon,

Bassamboo, and Van Mieghem (2015) provide a theoretical and empirical assessment of the value

1 IRI offers an array of information products at different price points. For example, the Basic “Market Advantage
Solution” includes a summary of industry sales and a detailed analysis of pricing strategies employed by a firm’s
competitors. The Premium “Market Advantage Solution”, on the other hand, provides a more in-depth analysis of
sales and competitors’ pricing strategies along with more specialized analytics services. The Basic product is priced
around $10,000 whereas the price for the Premium offering can range between $100,000 and $500,000.

2 Also see The Wall Street Journal (2013) for another example.
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of information sharing in two-stage supply chains. In contrast to this literature, which for the most

part focuses on firms’ incentives to fully share the information at their disposal with one another,

we consider a setting in which a third-party decides not only the price but also the accuracy of

the information product(s) she makes available to a set of competing firms. This allows for richer

equilibrium outcomes that highlight the interplay between the nature of competition, the optimal

selling strategy, and the information provider’s profits.

Our paper is also related to the literature, such as Li and Zhang (2008), Anand and Goyal (2009),

and Kong, Rajagopalan, and Zhang (2013), that studies the implications of indirect leakage of

information in supply chains via firms’ actions. Similar considerations have also been studied in

the context of financial markets (Admati and Pfleiderer 1990). Building on the framework of Vives

(2011), we show how the intensity of information leakage in the market impacts firms’ valuation

of information and hence alters the provider’s incentives in designing her information products.

Our work is also related to the growing theoretical literature on the social and equilibrium value of

public information. Morris and Shin (2002) illustrate that public disclosure of information regarding

a payoff-relevant parameter may adversely affect social welfare as it may crowd out agents’ reliance

on their private information. Angeletos and Pavan (2007) extend this framework and provide a

complete taxonomy of conditions under which private and public signals are efficiently utilized in

equilibrium.3 Relatedly, Bergemann and Morris (2013) study games of incomplete information with

the goal of providing equilibrium predictions that are robust to all possible information structures.

Their analysis illustrates that information disclosure policies that involve a partial sharing of a

firm’s private information may lead to higher equilibrium payoffs.

Also related is the recent work of Myatt and Wallace (2015), who consider a setting in which

a set of firms compete in a Cournot market by selling differentiated products to a representative

consumer. They characterize the weights firms assign to the private and public signals at their

disposal as functions of the signals’ precisions, the intensity of the competition, and the extent of

product differentiation. They also establish that when signals are costly, firms acquire too much

information relative to the socially efficient benchmark. In contrast to their paper, our main focus

is on the provider’s incentives to reshape the quantity and quality of information sold to the firms.

Finally, our work is related to the more recent work of Bergemann and Bonatti (2015), who

explore selling information in the form of cookies in the context of online advertising, as well as

Xiang and Sarvary (2013) who consider a market for information with competition on both the

demand and supply sides of the market. In a similar context, Babaioff et al. (2012) study the design

of optimal mechanisms for a data provider to sell information to a single buyer.

3 Interestingly, Chen and Tang (2015) study the value of market information for farmers in developing economies.
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2. Model

Firms: Consider an economy consisting of a unit mass of firms indexed by i∈ [0,1] that compete

with one another in a downstream market. Each firm i takes an action ai ∈R in order to maximize

its profit which is given by the following expression

π(ai,A, θ) = γ0aiθ+ γ1aiA−
γ2

2
a2
i , (1)

where A=

∫ 1

0

aidi denotes the aggregate action taken by the firms, θ ∈ R is an unknown payoff-

relevant parameter, and {γ0, γ1, γ2} are some exogenously given constants. Depending on the

context, action ai may represent the quantity sold or the price set by firm i. As we will show in

Subsection 2.2, the above framework nests Cournot and Bertrand competition as special cases. For

the time being, however, we find it more convenient to work with the general setup above without

taking a specific position on the mode of competition.

The unknown parameter θ is randomly drawn by nature before firms choose their actions. As we

will discuss in the following subsections, this parameter can represent the intercept of the (inverse)

demand curve in the downstream market. All firms hold a common prior belief on θ, which for

simplicity we assume to be the (improper) uniform distribution over the real line.4 Even though

firms do not know the realization of θ, each firm i observes a noisy private signal

xi = θ+ εi , εi ∼N(0,1/κx),

with κx capturing the precision of the private signal observed by each firm. The noise terms εi are

independently distributed across firms. Given firm i’s profit function in (1), we let

β =− ∂2π

∂a∂A
/
∂2π

∂a2
=
γ1

γ2

, (2)

denote the degree of strategic complementarity in firms’ actions. Note that β > 0 corresponds to an

economy in which firms’ actions are strategic complements: the benefit of taking a higher action to

firm i increases the higher the actions of other firms are. In contrast, when β < 0, firms face a game

of strategic substitutes, where i’s incentives for taking a higher action decrease with the aggregate

action A. Finally, β = 0 corresponds to a market in which firms face no strategic interactions.

Throughout the paper, we assume that γ2 >max{2γ1,0}. This assumption, which implies that

β ∈ (−∞,1/2), is made to guarantee that firm i’s profits are strictly concave in ai and that i’s

marginal profit is more sensitive to its own action ai than to the aggregate action A.

4 More formally, suppose that θ is distributed according to a Gaussian distribution with mean 0 and variance σ2
θ .

By letting σθ →∞, we obtain a distribution with full support over (−∞,∞) that, in the limit, assigns the same
probability to all intervals that have the same Lebesgue measure.
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Information Provider: In addition to the competing firms, the economy contains a monopolist

who possesses some private information about the realization of the unknown parameter θ that it

can potentially sell to the firms before they take their actions. The provider has access to a private

signal z with precision κz given by

z = θ+ ζ , ζ ∼N(0,1/κz),

where the noise term ζ is independent of εi’s. Given that our main focus is on the market for

information, we assume that this signal has no intrinsic value to the provider and that she can

only benefit from the signal by selling it to the firms.

The key feature of our model is that the provider has control over both the “quantity” and

“quality” of information sold to the firms: the information provider not only chooses the set of

firms I ⊆ [0,1] that she decides to trade with, but can also choose the precision of the signal offered

to the firms. More specifically, she offers a signal

si = z+ ξi , ξi ∼N(0,1/κξ),

to firm i∈ I at price pi, where ξi is independent from z and 1/κξ captures the variance of the noise

introduced by the provider into si. This specification thus captures the idea that the provider can

control the quality of the information sold to the firms: by choosing a smaller κξ, the provider can

“damage” the signals offered to the firms.5 Throughout the paper, we refer to si as the market

signal sold to firm i.

In general, the noise added to different firms’ signals by the provider may be correlated with

one another. To capture this idea formally, we assume that in addition to their precision κξ,

the provider can also determine the correlation between different firms’ market signals by setting

ρξ = corr(ξi, ξj)∈ [0,1]. Our specification thus accommodates situations in which the provider offers

identical or conditionally independent signals to any subset of the firms as special cases.

Putting the above together, the market signal si offered to firm i∈ I can be rewritten as

si = θ+ ηi , ηi ∼N(0,1/κs) and corr(ηi, ηj) = ρ,

where κs = (1/κz +1/κξ)
−1 is the signal’s precision and ρ= (κξ +ρξκz)/(κξ +κz). By construction,

signals sold by the provider cannot be more precise than the information she possesses, i.e., κs ≤ κz.

We remark that given firms’ ex ante symmetry, we can assume, without loss of generality, that

I = [0, λ], where λ ∈ [0,1] captures the fraction of firms that the information provider decides to

5 Note that in our baseline setting, the provider offers a signal of the same precision to all firms i ∈ I; that is, κξ is
independent of i. We relax this assumption in Section 4 and show that all our insights are robust to this assumption.
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trade with. Also note that even though we assume that the seller chooses the fraction of firms

she wants to trade with before offering them her information products, as we show in Section 4,

our setting is isomorphic to an environment in which the provider announces the features of her

product(s)—i.e., price and precision—and firms subsequently decide whether to purchase them.

Finally, with some abuse of terminology, we refer to the firms who purchase the market signal

si as informed firms, whereas firms that were denied the signal or decided not to purchase it from

the information provider are simply referred to as being uninformed.

2.1. Contracts and Equilibrium

Once the seller’s and the firms’ private signals are realized, the former has the option to sell

potentially informative signals about θ to the latter. To capture this idea formally, we assume that

the information provider makes a take-it-or-leave it offer (κξ, ρξ, pi) to a fraction λ of the firms,

where κξ captures the quality of the market signal offered to firm i and pi is the corresponding

firm-specific price.

Following the seller’s offer, each firm i ∈ [0, λ] then decides whether to accept (bi = 1) or reject

(bi = 0) its corresponding offer. This stage is then followed by the competition subgame between

the firms in which they choose their actions ai. Note that whereas the strategy of an uninformed

firm i is a mapping from its private signal xi to an action, the strategy of an informed firm maps

the pair (xi, si) to an action. We have the following standard solution concept:

Definition 1. A perfect Bayesian equilibrium consists of a strategy (λ,κξ, ρξ,{pi}i∈[0,λ]) for the

information provider, acceptance/rejection decisions bi ∈ {0,1} for each firm i, a posterior belief µi

for each firm i, firm-specific strategies ai, and an aggregate action A such that

(i) the information provider chooses (λ,κξ, ρξ,{pi}i∈[0,λ]) to maximize her expected profit;

(ii) firm i∈ [0, λ] accepts the information provider’s offer only if doing so maximizes its profit;

(iii) each firm’s posterior belief on θ is obtained via Bayes rule, conditional on its information set;

(iv) given its posterior belief, each firm i maximizes its expected payoffs in the competition

subgame, taking the strategies of all other firms as given;

(v) the aggregate action A is consistent with individual firm-level actions.

2.2. Examples

As already mentioned, Cournot and Bertrand competition can be derived as special cases of

our general framework above. This feature of the model enables us to provide a comparison

of the optimal information selling strategies in markets with different modes and intensities of

competition. The following simple examples illustrate how in the presence of linear demand

functions, various forms of competition can induce quadratic profit functions in the form of

Equation (1). We will use these examples in the subsequent sections to discuss the implications of

our results for the optimal trading strategies of the information provider.
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Example 1 (Cournot competition). Consider a market in which firms sell a possibly

differentiated product to a downstream market and compete by setting quantities. Firm i faces an

inverse demand function given by

ri = γ0θ− (1− δ)Q− δqi, (3)

where qi is the quantity sold by firm i, Q=
∫ 1

0
qidi is the aggregate quantity sold to the downstream

market, and θ is a “demand shifter” that captures the intercept of the (inverse) demand curve.

In this setting, δ ∈ [0,1] represents the degree of product differentiation among firms, as a smaller

δ corresponds to a more homogenous set of products.6 Assuming that firms’ marginal cost of

production is zero, it is then immediate that their profit function πi = riqi is simply a special case

of our framework in (1), with action ai representing the quantity sold by firm i.

Note that in this environment, the degree of strategic complementarity defined in (2) is equal to

β = (δ− 1)/2δ < 0, thus implying that firms face a game of strategic substitutes. Parameter β also

captures the intensity of competition between the firms. In particular, given that β is increasing in

δ, a larger β corresponds to a market in which products are more differentiated. In the extreme case

that β→ 0, the products are no longer substitutes and each firm essentially becomes a monopolist

in its own market. At the other extreme, as β→−∞, the products become perfect substitutes and

the oligopoly converges to a perfectly competitive market.

Example 2 (Bertrand competition). Next, consider a market in which firms compete in

prices and face a linear demand function given by qi = γ0θ+ (φ− 1)R− φri, where ri is the price

set by firm i and R =
∫ 1

0
ridi is the average price in the market. Note that this demand system

can be obtained by inverting (3) and setting φ= 1/δ > 1. Once again, it is immediate that firm i’s

profit function πi = riqi would coincide with (1), where action ai now represents the price set by

firm i. Furthermore, it is straightforward to verify that, in this environment, β = (φ− 1)/2φ > 0,

thus implying that the competition game between the firms exhibits strategic complementarities,

the degree of which is increasing in φ.

Example 3. Once again consider the Cournot competition setting described in Example 1,

but instead suppose that firms produce homogeneous products, i.e., δ = 0, and have quadratic

production costs given by c(qi) = q2
i /2. The profit of firm i is then given by π(qi,Q, θ) = γ0qiθ −

qiQ− q2
i /2, which again fits within our general framework.

We conclude this section by remarking that even though, for the sake of tractability and expositional

simplicity, we focus on an environment consisting of a continuum of firms, as we show in Section

7, all our results and insights carry over to a setting consisting of finitely many firms. We also

6 See Myatt and Wallace (2015) for micro-foundations for this demand system.
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note that, when dealing with a continuum of firms, we assume that a variant of the “exact law of

large numbers” guarantees that the cross-sectional average of firm-level variables (such as firms’

quantity or price decisions) coincide with the corresponding variables’ expectations almost surely.7

3. Optimal Sale of Information

In this section, we present our main results and characterize the information provider’s optimal

information selling strategy. Our results show that the seller’s strategy is highly sensitive to the

mode and intensity of competition in the downstream market as expressed by β.

3.1. Competition Subgame

We start our analysis by studying the equilibrium in the competition subgame between the firms

once the contracts offered by the information provider are accepted or rejected. Without loss of

generality, let [0, `] denote the set of firms who accept the seller’s offer, where, clearly, `≤ λ.

Proposition 1. The competition subgame between the firms has a unique Bayes-Nash

equilibrium in linear strategies. Furthermore, the equilibrium strategies of the firms are given by

ai =

{
α[(1−ω)xi +ωsi] if i∈ [0, `]

αxi if i∈ [`,1]
,

where

ω=
κs

(1−β`ρ)κx +κs
and α= γ0/(γ2− γ1).

Proposition 1, which is in line with Angeletos and Pavan (2007) and Myatt and Wallace (2015),

provides a characterization of the firms’ equilibrium strategies in the competition subgame and

serves as a preliminary result for the rest of the results in the paper. It states that the equilibrium

action of an informed firm is a weighted sum of its original private signal and the signal it

obtains from the information provider. More importantly, however, it shows that the weights firm

i assigns to its two signals not only depend on their relative precisions, but also on the fraction

of informed firms, `, as well as correlation ρ in the market signals. Furthermore, the equilibrium

weight that each informed firm assigns to the market signal si is increasing in the degree of

strategic complementarities β, regardless of the values of ρ and `. This is due to the fact that in

the presence of stronger strategic complementarities, firms have stronger incentives to coordinate

with one another, and as a result, rely more heavily on their market signals, which can function

as (imperfect) coordination devices. On the other hand, in the absence of strategic considerations

7 We provide the formalism and the required conditions for such a variant of the law of large numbers in the electronic
companion of the paper. For a thorough treatment of the subject, see Sun (2006) and Sun and Zhang (2009).
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(i.e., when β = 0), the optimal strategy of all firms would be independent of ` and ρ, making the

weight assigned to each signal proportional to its relative precision.

Relatedly, Proposition 1 also establishes that for a given positive (negative) β, the equilibrium

weight that informed firms assign to their market signals is increasing (decreasing) in ` and ρ. To

see the intuition underlying this, suppose that β > 0 (the argument for β < 0 is identical). In such

an environment, firms face a game of strategic complements, as for example would be the case if

they compete à la Bertrand. Given that firms value coordinating their actions, an informed firm i

assigns a higher weight to its market signal—above and beyond what its relative precision would

justify—the more other firms base their own decisions on the signal sold by the provider (i.e.,

higher `) and the more informative si is about the signals of other firms (i.e., higher ρ).

With Proposition 1 in hand, in the remainder of this section, we turn to the the seller’s problem

and characterize her optimal information selling strategy as a function of the mode and intensity

of competition in the downstream market. In order to present our results in the most transparent

manner, we study Bertrand and Cournot competition separately.

3.2. Bertrand Competition

First, consider the case in which firms compete with one another à la Bertrand. As already

mentioned in Example 2, such a market corresponds to a special case of our general framework with

β > 0. Also, recall that the information provider needs to choose the fraction of firms with whom

she trades (λ), the precision of the signal offered to the firms (κs), and the correlation induced in

the noise terms (ρξ). We have the following result:

Proposition 2. If β > 0, the information provider sells her signal without any distortions to

all firms; that is, κ∗s = κz and λ∗ = 1. Furthermore, the provider’s expected profit is given by

Π∗ = α2
(γ2

2

)(κz
κx

)
κz +κx

[(1−β)κx +κz]2
. (4)

The above result thus establishes that under Bertrand competition, it is always optimal for the

provider to sell her signal z to the entire set of firms without any additional noise. To understand

the intuition underlying this result, recall that in a Bertrand market, the firms’ actions are strategic

complements: setting a lower price becomes more attractive the lower the prices of other competing

firms are. Such strategic complementarities induce a strong coordination motive among the firms.

Therefore, providing the market signal to an additional marginal firm, not only increases the profits

of the seller directly (via sales to that new marginal firm), but also increases the surplus of all

other firms who have already acquired the signal. This extra surplus can thus be appropriated by

the seller via higher prices, leading to even higher profits. Consequently, the information provider

always finds it optimal to sell to the entire market of firms. An identical argument then shows
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that the provider would not distort the signal either: sharing a more precise signal with a new firm

increases the value of the market signal to the rest of the informed firms.

Proposition 2 also characterizes the expected profit of the seller. From (4), it is easy to verify that

Π∗ is increasing in the quality of information available to the monopolist (κz), but is decreasing

in the precision of the firms’ private signals (κx). The intuition underlying these observations is

simple. Given that the information provider always has the option to reduce the precision of the

signals it offers to the firms, her profits can never decrease by having access to a more precise

signal. On the other hand, however, the extra benefit of the market signal to the firms is lower the

more informed they are to begin with, thus reducing the provider’s expected profits.

More importantly, however, (4) also shows that the monopolist’s expected profit increases in the

degree of strategic complementarities β. Recall from Example 2 that β = (φ−1)/2φ, where 1/φ= δ

is the degree of product differentiation among the firms. Therefore, increasing β is essentially

equivalent to a lower degree of product differentiation, and hence, more intense competition. Thus,

as β increases, coordination becomes more important to the firms, increasing the value of the

seller’s signal which in turn leads to higher expected profits.

As a final remark, note that since it is never optimal for the information provider to add noise

to the signals, the correlation ρξ = corr(ξi, ξj) is immaterial for her profits.

3.3. Cournot Competition

We next focus on the case in which firms compete with one another à la Cournot. Recall from

Example 1 that such a market is a special case of our general setup with β < 0. In this case, firms

choose quantities and their actions are strategic substitutes. Note that, unlike the case of Bertrand

competition, firms no longer value coordination per se. The following two propositions provide a

characterization of the optimal information selling strategy of the monopolist as a function of the

degree of strategic substitutability among the actions of downstream firms.

Proposition 3. If −(1 +κz/κx)≤ β < 0, the information provider sells her signal without any

distortions to all firms; that is, κ∗s = κz and λ∗ = 1. Furthermore, the provider’s expected profit is

Π∗ = α2
(γ2

2

)(κz
κx

)
κz +κx

[(1−β)κx +κz]2
. (5)

Thus, in a Cournot market with a weak enough intensity of competition, the seller finds it

optimal to follow the same strategy as in a Bertrand market: sell an undistorted version of her

signal to the entire set of firms. The intuition underlying this result is straightforward: acquiring

information about the demand intercept (θ) allows each firm i to better match its supply decision

to the underlying demand and as a consequence, to increase its profit. The monopolist can then
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appropriate the increase in i’s sales by demanding a higher price for her signal. Therefore, the

provider is always better off by making the most precise version of her signal available to all firms.

Even though the seller follows the same strategy as in the Bertrand market, comparing

expressions (4) and (5) implies that her expected profit is lower under Cournot competition (β <

0). This is due to the fact that unlike Bertrand competition, firms do not have an incentive to

coordinate their actions, undermining the role of the market signal as a coordination device.

Interestingly, the predictions of Propositions 2 and 3 no longer hold if the intensity at which

downstream firms compete in a Cournot market is high. We have the following result:

Proposition 4. If β <−(1+κz/κx), the information provider maximizes her expected profit by

following any information selling strategy that is a solution to the following equation:

(κz +βλ∗κ∗s)κx +κzκ
∗
s = 0. (6)

Furthermore, her expected profit is given by

Π∗ =−α2
(γ2

2

) κz
4βκ2

x

. (7)

The key observation here is that the pair κ∗s = κz and λ∗ = 1 does not satisfy (6), leading to the

following corollary:

Corollary 1. Suppose that β <−(1 +κz/κx). Then, either κ∗s <κz or λ∗ < 1.

Therefore, when firms compete with one another à la Cournot and offer goods that are strong

substitutes—corresponding to a large enough negative β—it is optimal for the seller to distort the

information (κ∗s <κz) and/or exclude a fraction of the firms from the sale (λ∗ < 1).

To see the intuition underlying the above result, recall that in a Cournot market, firms’ actions

are strategic substitutes, i.e., increasing a firm’s supply leads to higher marginal profit the lower

the supply decisions of its competitors are. Therefore, providing the market signal to an additional

firm i affects its profit through two distinct channels. On the one hand, a more precise market

signal enables i to better match its supply to the realized demand. On the other hand, however,

making such a signal available to i increases the correlation in the firms’ actions, as now i’s action

would be more correlated with the market parameter θ. The presence of this second effect implies

that the strategic value of the seller’s signal to firm i, and consequently, i’s willingness-to-pay for it

are decreasing in the fraction of firms that accept the provider’s offer. In the presence of sufficiently

intense competition (i.e., when the firms offer sufficiently substitutable products), this strategic

effect dominates the first effect, thus making it profitable for the information provider to restrict

her offer to a strict subset of the firms (λ∗ < 1).
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Figure 1 Optimal selling strategy for different levels of β (left); Equilibrium profit as a function of β (right). We

use the following set of parameters for this example: α= γ2 = 1 and κx = 1, κz = 2.

By Proposition 4, an alternative optimal strategy for the monopolist would be to distort the

information she sells to the market. In fact, as equation (6) suggests, the fraction λ of the firms that

the monopolist trades with and the precision κs of the signal offered to the firms are substitutes: as

the monopolist increases her market share, she finds it optimal to increasingly distort the signals.

Note that equation (7) in Proposition 4 indicates that the information provider’s expected profit

decreases in the degree of strategic substitutability (|β|) of the firms’ actions. This is a consequence

of the fact that the strategic value of the seller’s signal, and hence, a firm’s willingness-to-pay

decrease as the market becomes more competitive. This is in contrast with the case of Bertrand

competition where the seller’s expected profit increases with the intensity of competition, as her

customers have a stronger incentive to purchase the market signal and coordinate their actions.

We also remark that regardless of the value of β and the strategy adopted by the information

provider, she never has an incentive to introduce correlation into market signals, i.e., it is always

optimal to set ρ∗ξ = 0. Increasing the correlation in the signals provided to downstream firms would

invariably increase the correlation among their actions and lead to lower profits for the seller.

Finally, note that the threshold − (1 +κz/κx) at which the seller finds it optimal to limit her

market share and/or strategically distort the market signal is decreasing in the ratio κz/κx, implying

that the more informed the information provider is relative to her customers, the more likely it is

that she will be able to fully exploit her informational advantage by selling it to the entire market

of firms without distortion.

Figure 1 illustrates the optimal selling strategy and the equilibrium profit of the information

provider for the following set of parameters: α= γ2 = 1, κx = 1, and κz = 2. For these parameters, it

is immediate to verify that the threshold at which the seller finds it optimal to strategically distort

the market signal is equal to −(1 + κz/κx) =−3. Indeed, as the left panel of Figure 1 illustrates,

for values of β greater than this threshold, the provider sets the precision of the market signal to
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β = 0 β =−3 β =−5 β =−10 β =−20

Π∗β
/

Π∗0 1 .250 .150 .075 .038

Πno-dist
β

/
Π∗0 1 .250 .141 .053 .017

Increase in Profits (%) 0% 0% 6.67% 40.83% 120.42%

Table 1 Profits under the optimal information selling strategy over selling the signal undistorted to the market.

κ∗s = κz = 2, i.e., she does not distort the information she has at her disposal, and does not exclude

any firms from the sale (λ∗ = 1). On the other hand, for β < −3, the seller finds it optimal to

distort the information she sells and limit her market share. The right panel of Figure 1 illustrates

how the provider’s profit varies with the intensity of competition. Note that the seller is better off

when firms view their actions as strategic complements (β > 0) as opposed to strategic substitutes.

We conclude this section by exploring the extent to which an information provider can increase

her profits by strategically distorting the information she provides to her downstream customers

and/or limiting her market share. Table 1 provides a comparison of the provider’s profit under the

optimal selling strategy (Π∗β) to the profits of a provider who sells her signal to the entire market

with no distortion (Πno-dist
β ). We benchmark Π∗β and Πno-dist

β against the profits for a provider that

follows her optimal strategy in the absence of competition, i.e., when β = 0. The first two rows of

the table highlight the effect of competition intensity on the providers’s profits. More importantly,

however, as the bottom row of the table indicates, the provider earns significantly higher profits

under competition when she distorts her market signal and/or limits her market share: the increase

in her profits by following the strategy characterized in Proposition 4 ranges from 6.67% to 120.42%

as the extent to which firms view their actions as strategic substitutes increases.

4. Information Quality Discrimination

In our baseline model presented in Section 2 and analyzed in Section 3, we assumed that the

information provider can only offer a single product to the entire market, in the sense that she

offers a market signal of the same precision to all firms. In this section, we relax this assumption

by allowing the seller to offer signals that potentially differ in both price and precision.

Formally, we assume that the information provider offers (κsi, pi) to each firm i∈ [0,1], specifying

the signal precision κsi and price pi. The seller cannot offer a signal of a higher precision than her

own private signal, that is, κsi ≤ κz for all i. The following result, which generalizes Propositions

2–4, shows that all our earlier insights remain valid under this more general specification.

Proposition 5. The information provider’s optimal strategy is as follows:

(a) If β ≥−(1 +κz/κx), the provider offers her signal undistorted to all firms at price

p∗ = α2
(γ2

2

)(κz
κx

)
κz +κx

[(1−β)κx +κz]2
.
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(b) If β <−(1 +κz/κx), she offers a signal of precision κ∗si to firm i, where {κ∗si}i∈[0,1] solve∫ 1

0

κ∗si
κx +κ∗si

di=− κz
βκx

, (8)

at price p∗i = α2
(γ2

2

) κ∗si
4κx(κx +κ∗si)

.

Statement (a) of the above result shows that the information provider offers an undistorted

version of her signal to all firms in the downstream market if either they compete à la Bertrand, or

alternatively, if the intensity of the Cournot competition is not strong enough. In this sense, this

result generalizes Propositions 2 and 3, establishing that the seller has no incentive to discriminate

among the firms in either price or information quality.

Statement (b) of Proposition 5 considers the setting in which firms’ actions are strong strategic

substitutes, for example, when they compete à la Cournot and produce goods that are highly

substitutable. Consistent with the discussion in Subsection 3.3, this result shows that the

information provider finds it optimal to either distort the signals sold to the downstream firms or

strategically restrict her market share. In particular, it is easy to verify that κ∗si = κz for all i does

not satisfy the optimality condition (8). The intuition underlying this result parallels those behind

Proposition 4 and Corollary 1: providing high quality signals to all firms increases the induced

correlation in their actions, which in turn reduces their profit when their actions are strong strategic

substitutes. Thus, the monopolist would be better off by limiting her market share or reducing the

quality of the signals sold to the firms. Note, however, that the optimal strategy of the information

provider is not unique. Rather, any signal precision profile {κ∗si} that satisfies (8) would lead to

the same expected profit. Nevertheless, irrespective of the strategy chosen by the monopolist, her

incentive to lower the precision of the market signals increases as firms’ actions become stronger

strategic substitutes. In particular, as β→−∞, the downside of coordination among firms that

trade with the monopolist is so strong that essentially no trade takes place in equilibrium: the

information provider offers a completely uninformative signal κ∗si→ 0 to all firms at price p∗i → 0.

Example 4 (Selling two products). Consider a Cournot market in which β <−(1+κz/κx)

and suppose that the information provider can offer two information products: a premium product

of precision κ̄s at price p̄ and an inferior one of precision κs < κ̄s at price p. Let λ̄ and λ denote the

fraction of firms offered the premium and inferior products, respectively, where by construction λ̄+

λ≤ 1. Condition (8) implies that it is optimal for the seller to design her information products such

that λ̄
(

κ̄s
κx+κ̄s

)
+ λ

(
κs

κx+κs

)
= − κz

βκx
. This equation highlights the trade-off between information

quality and quantity faced by the information provider in designing her menu of products. In

particular, increasing the precision κ̄s of the premium product requires either a reduction in its

supply λ̄, or alternatively, a reduction in the precision or the supply of the inferior product.
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We end by remarking that the ability to discriminate on quality does not offer the seller any

advantage compared to our benchmark model of Sections 2 and 3. In particular, equation (8) always

has a solution such that κsi = κs for a fraction λ of the firms and κsi = 0 for the rest. In other

words, offering two products, one with non-zero precision at a strictly positive price and another

with zero precision at zero price, is sufficient for the seller to maximize her expected profit.

5. Information Leakage

Thus far, we assumed that purchasing a signal from the information provider is the only channel

available to the firms for acquiring information about the unknown parameter θ. Firms, however,

can also infer potentially valuable information by observing their competitors’ actions. For instance,

a firm’s price or quantity decisions can (partially or fully) reveal the information it has at its

disposal to other firms. In this section, we extend our baseline model to allow for the possibility of

such indirect “information leakage” and study the information provider’s optimal selling strategy

when her customers can potentially free-ride on the information purchased by other firms.

We capture the possibility of information leakage by allowing firms to condition their actions on

an extra piece of information that is informative about their competitors’ actions. More specifically,

we assume that, in addition to its signal xi and the market signal si (if purchased from the

information provider), firm i can also condition its action on a leakage signal,

Si =A+ νi , νi ∼N(0,1/κν), (9)

where A=
∫ 1

0
aidi denotes the aggregate action and the noise terms νi are independently distributed

across the firms. The key observation is that as long as firms’ actions are based (even in part) on

the information at their disposal, signal Si would be informative about such information. As such,

the precision κν can serve as a proxy for the extent of information leakage in the market: Si is

perfectly informative about the aggregate action A when κν =∞, whereas as κν decreases, the

information content of the leakage signal is reduced. In the extreme case that κν = 0, signal Si does

not convey any payoff-relevant information. It is immediate to see that this latter case reduces to

the no-leakage setting in our benchmark model.8

To formally model firms’ ability to incorporate any information leaked through the market into

their decisions, we follow Vives (2011) and extend the firms’ strategy space by assuming that firm

i’s strategy is a contingent schedule ai(·, Si) that maps its private and market signals, (xi, si), to an

8 Recall from the payoff function (1) that each firm i cares about the actions of other firms only insofar as these
actions impact the aggregate action A. This observation thus implies that any (symmetric) setting in which firm i
observes noisy signals about other firms’ individual actions can be mapped into an isomorphic setting in which firm
i only observes a signal about the aggregate action, as in (9).
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action depending on the realization of the leakage signal Si.
9 Thus, the equilibrium of the subgame

between firms requires (i) each firm i to choose ai(xi, si, Si) in order to maximize its expected profit

conditional on its information set (that is, E[πi|xi, si, Si]), taking the strategies of all other firms

as given; and (ii) the aggregate action to be consistent with the realization of the firms’ individual

actions, that is, A=
∫ 1

0
ai(xi, si, Si) di.

We remark that despite the slightly more complex nature of the firms’ strategies, this modeling

approach enables us to directly incorporate information leakage into our benchmark model without

resorting to a multi-period, dynamic model of interaction between firms. Crucially, it also enables

us to study how the provider’s optimal strategy and profits vary as a function of the intensity of

information leakage in the market. We have the following result:

Proposition 6. For sufficiently small κν > 0,

(a) The provider’s profit decreases in the extent of information leakage; that is, ∂Π∗/∂κν < 0;

(b) There exists −(1 +κz/κx)< β̄ < 0 such that κ∗s <κz for all β ∈ (−(1 +κz/κx), β̄).

Therefore, Proposition 6 establishes that regardless of whether actions are strategic substitutes

or complements (and hence, regardless of the mode of competition), the information provider’s

profits decrease as the extent of information leakage is intensified. This is due to the fact that

firms’ willingness-to-pay for an extra piece of information reduces whenever they can free-ride on

the information purchased by their competitors. Given that more information leakage would only

intensify this free-riding incentive, the information provider is forced to charge lower prices for her

signal, thus making less profits.

More importantly, however, the above result establishes that the range of β’s for which the

information provider finds it optimal to distort the market signal offered to her customers widens

in the presence of information leakage. Recall from Corollary 1 and Proposition 5 that, with no

information leakage, the information provider would reduce the quality of the market signal if and

only if β <−(1+κz/κx). In contrast, part (b) of Proposition 6 shows that, no matter how small the

extent of leakage, the provider would offer distorted signals for some β >−(1 +κz/κx). This is due

to the fact that the provider’s ability to extract surplus from the firms by increasing the precision

of si is hindered in the presence of leakage. That said, the fact that β̄ < 0 means that, regardless

of the presence or absence of information leakage, distorting the signal sold to the firms is never

optimal when firms’ actions are strategic complements (for example, as in Bertrand competition).

Figure 2 illustrates the provider’s equilibrium profits (left panel) and her optimal distortion

strategy (right panel) for different levels of information leakage. As the left panel indicates, the

9 It is immediate to see that the setting in which firms’ actions cannot be contingent on the realization of Si reduces
to our benchmark model.
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Figure 2 The provider’s equilibrium profits (left) and her optimal selling strategy (right) as functions of β for

different levels of information leakage. We use the following set of parameters for this example: α= γ2 = 1 for the

firms’ payoff functions and κx = 1, κz = 2 for the signal precisions of the firms’ private signals and the provider’s

information respectively. We plot the provider’s profits and the precision of the signal she sells to the downstream

market (κ∗s) as a function of β for three levels of information leakage κν = 0 (no leakage), κν = 1, and κν = 10.

provider’s profits are decreasing in the leakage intensity irrespective of the value of β. As for the

precision of the signal offered to the firms, the right panel clearly illustrates the two key observations

mentioned above: (i) as leakage is intensified (higher κν), the provider finds it optimal to sell signals

of lower quality for a wider range of β’s; and (ii) distortion is never optimal in the presence of

strategic complementarities (β > 0) irrespective of the value of κν .

Table 2 presents the results of a numerical simulation for the effect of information leakage on the

provider’s optimal strategy and equilibrium profits for different values of β, with κν = 0, κν = 1,

and κν = 10 corresponding, respectively, to a scenario with no, low, and high levels of leakage

intensity. The last column of the table indicates that, at β = 1/3, the equilibrium profit in the high

leakage regime is only 5% of the corresponding profit in the benchmark case with no information

leakage. Finally, the lower panel of Table 2 indicates that for certain values of β (say, β =−2), the

optimal strategy may entail selling a signal with maximal precision when leakage is absent or low,

whereas the seller finds it optimal to dramatically decreases the signal precision to only 8% of her

best signal precision in the high leakage regime.

6. Heterogeneous Firms

In this section, we discuss how our results are affected by introducing heterogeneity among the

firms (in terms of their production costs).

We generalize the setting described in Section 2 along two dimensions. First, we allow for

heterogeneity in firms’ production costs and, second, we introduce a transaction cost borne by

the information provider whenever she trades with a downstream firm. We mostly focus on the

case that firms view their actions as strategic substitutes and, thus, interpret our results in the
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Leakage Level β =−4 β =−3 β =−2 β =−1 β = 0 β = 1/3

κν = 0 .0625 .0833 .1200 .1875 .3333 .4218

Equilibrium Profits κν = 1 .0082 .0014 .0189 .0420 .1134 .1606

κν = 10 .0002 .0003 .0005 .0008 .0050 .0209

κν = 0 1 2 2 2 2 2

Optimal Precision κν = 1 .40 .65 2 2 2 2

κν = 10 .08 .12 .16 .36 2 2

Table 2 The provider’s equilibrium profits and optimal precision for different levels of leakage at different levels

of β. The other parameter values are the same as in the example of Figure 2.

context of Cournot competition with quadratic production costs (Example 3 from Subsection 2.2).

Specifically, we assume that downstream firms are heterogeneous with respect to their costs of

production: firm i faces a quadratic production cost of Ci(qi) = ciq
2
i /2, where qi is the quantity

produced by i and ci > 0. The firm’s profit is thus given by

πi(qi,Q, θ) = γ0qiθ+ γ1qiQ−
1

2
ciq

2
i , (10)

where Q denotes the aggregate quantity in the market and γ1 < 0 is some constant. Note that

even though the above expression is similar to (1), the extent of strategic complementarities can

no longer be captured by a single parameter β, as now firms face different production costs.

As for transaction costs, we assume that the seller incurs a cost equal to vκsi whenever she sells

a signal of precision κsi to firm i, where v > 0. This cost can, for example, capture the idea that the

firm cannot provide verifiable and/or credible information to her customers at no cost. Rather, it

needs to spend resources to ensure her customer that the market signal is indeed as informative as

claimed. Alternatively, it can be thought of as the cost associated with customizing the provider’s

information to meet the customer’s informational needs. As in Section 4, we allow the seller to

discriminate along both signal precision and price. We have the following result:

Proposition 7. There exist v > v such that

(a) if v > v, the information provider does not transact with any of the firms; i.e., κ∗si = 0 for all i.

(b) if v < v, the information provider sells her signal with no distortion to all firms.

(c) for any v ∈ (v, v), then there exist c∗ such that

κ∗si =


0 if ci > c

∗

κz if ci <
κ2
x

(κx +κz)2
c∗

κx

(√
c∗/ci− 1

)
otherwise.

.
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The above result thus establishes that the information provider finds it optimal to follow an

information selling strategy that involves offering a signal to firm i with a precision that is

decreasing in the firm’s cost ci, i.e., the provider sells higher quality signals to more efficient

firms. Formally, κ∗si is always non-increasing in ci. However, note that this does not mean that the

monopolist sells her best available information to all firms, even when transactions are costless.

Rather, due to the presence of strategic interactions between downstream firms (and in line with

our earlier results), the provider may either sell distorted signals to some firms or simply even

exclude them by offering non-informative signals κ∗si = 0 altogether. Thus, Proposition 7 generalizes

Propositions 4 and 5 to the case in which firms face heterogeneous production costs.

Finally, note that depending on the parameter values, the threshold v in the above result may

be negative, thus ruling out the case in which the information provider sells an undistorted signal

to all firms. In fact, as the proof of the proposition highlights, v < 0 whenever:∫ 1

0

1

ci
di <− 1

γ1

(1 +κz/κx),

which reduces to the condition of Proposition 4 when firms face identical production costs.

Cost dispersion and optimal information selling strategy: To further clarify the impact of firm

heterogeneity on the provider’s equilibrium strategy and profits, consider a special case consisting

of two types of firms i∈ {1,2}, with production costs Ci(qi) = ciq
2
i /2, where

1

c1

=
1

c
+ δ, and

1

c2

=
1

c
− δ,

for some δ > 0. Also, assume that both types have mass equal to 1/2. It is immediate to see that

in such a setting δ measures the cost dispersion in the market. We have the following corollary:

Corollary 2. Let κ∗s1 and κ∗s2 be the optimal signal precisions offered to firms of type 1 and

type 2 respectively. Then, for any δ < 1
/(
c
√

2
)
,

∂κ∗s1
∂δ
≥ 0, and

∂κ∗s2
∂δ
≤ 0.

Corollary 2 thus establishes that as the cost dispersion among the downstream firms increases,

the provider finds it optimal to sell increasingly more accurate signals to the efficient type while

she decreases the accuracy of the signals she sells to the type that has high production costs. This

change in selling strategy occurs despite the fact that the average cost in the downstream market

remains constant. Table 3 reports the results of a numerical simulation that quantifies the effect of

cost dispersion on the provider’s optimal information selling strategy and equilibrium profits. As

the table indicates, when the dispersion between firms’ production costs is sufficiently high (δ = 4

in this case), the optimal strategy of the information provider requires excluding the less efficient

firms from trade altogether. It is also immediate to see that the provider’s profits are increasing in

the cost dispersion parameter δ, with her profits roughly 20% higher when δ = 4 compared to the

benchmark case with no dispersion.
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δ= .5 δ= 1 δ= 2 δ= 4

κ∗s1 1.334 1.505 1.819 2

κ∗s2 .976 .789 .409 0

Profits 1.067 1.076 1.114 1.251

Table 3 Optimal information selling strategy and equilibrium profits as a function of the cost dispersion

between the two types of firms. For this example, we use κx = 1, κz = 2, c= 1/6, γ1 = 3/5, and γ0 = 10.

7. Finite Markets

To simplify the exposition and allow for a tractable analysis, most of the paper focused on an

environment with a continuum of firms. In this section, we show that our qualitative insights

regarding the monopolist’s optimal information selling strategy carry over to a market consisting

of finitely many firms. In particular, we focus on a Cournot market, in which n firms compete

with one another in quantities, with the inverse demand function given by r = γ0θ+ γ1Q, where

Q= 1
n

∑n

i=1 qi is the average quantity in the market, qi is the quantity produced by firm i, r denotes

the market price, and γ1 < 0 is some constant. Assuming that firm i faces quadratic production

costs c(qi) = γ2q
2
i /2, its profits can be expressed as

πi = γ0qiθ+
n− 1

n
γ1qiQ−i−

(γ2

2
− γ1

n

)
q2
i ,

where Q−i = 1
n−1

∑
j 6=i qj is the average quantity of i’s competitors. It is immediate to see that the

above expression is similar to the firms’ profit function (1) for a market consisting of a continuum

of firms. The degree of strategic complementarity among firms’ actions can also be defined as

βn =− ∂2πi
∂qi∂Q−i

/
∂2πi
∂q2

i

=

(
n− 1

n

)
γ1

γ2− 2γ1/n
.

As in the environment with a continuum of firms, we assume that each firm i observes a noisy

private signal xi about the realization of θ and that the information provider can offer a market

signal si to firm i. Let K denote the set of firms that the information provider trades with, where

|K|= k≤ n. Lemma EC.1 in the Appendix provides a complete characterization of the equilibrium

of the competition subgame for any k, which can be viewed as the discrete analog of Proposition

1 in Section 3. However, as we argued in Section 3, there always exist an equilibrium in which the

provider offers the market signal to all firms. Thus, without loss of generality we can restrict our

attention to the case of k= n. We have the following result:

Proposition 8. The optimal information selling strategy is given as follows:

(a) If βn ≥− (1 +κz/κx), the provider offers an undistorted version of her signal to all firms.

(b) If βn <− (1 +κz/κx), she offers a signal of precision κ∗s =−κz/(βn +κz/κx)<κz.
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Furthermore, the seller’s expected profit is given by

Π∗ =


n α2

n

(γ2

2
− γ1

n

)(κz
κx

)
κz +κx

[(1−βn)κx +κz]2
if βn ≥− (1 +κz/κx)

n α2
n

(γ2

2
− γ1

n

) κz
−4βnκ2

x

otherwise

,

where αn = γ0

/(
γ2− n+1

n
γ1

)
.

Proposition 8 thus illustrates that the insights underlying our main results remain unchanged

when the downstream market is composed of a finite number of firms. Additionally, it is

straightforward to verify that as n grows to infinity, the expressions characterizing the provider’s

optimal strategy and her expected profits (normalized by the total number of firms n) reduce to

those we obtained in Section 3.3 for a market consisting of a continuum of firms. Finally, the fact

that βn is decreasing in n implies that the range of parameters over which the monopolist finds it

optimal to distort the information she sells to the market grows with the number of firms n.

Proposition 8 also illustrates that, when βn < − (1 +κz/κx), the gain to the provider from

optimally distorting the information can be obtained by comparing

Πno−dist
n = α2

n

(γ2

2
− γ1

n

) κz
κx

κz +κx
[(1−βn)κx +κz]2

Π∗n = α2
n

(γ2

2
− γ1

n

) κz
−4βnκ2

x

,

where Πno−dist
n is the provider’s expected profit per customer under no information distortion and

Π∗n is the normalized expected profit under optimal distortion. Thus, the gain from distorting the

information, normalized by the number of firms n, is given by

∆n =
(n− 1)|γ1|α2

n

8nβ2
n

κz[(1 +βn)κx +κz]
2

κ2
x[(1−βn)κx +κz]2

, (11)

where αn = γ0

/(
γ2− n+1

n
γ1

)
and βn =

(
n−1
n

)
γ1

γ2−2γ1/n
and recall that γ1, γ2, κx, and κz are model

primitives that do not depend on n. Expression (11) thus leads to two key observations. First,

it illustrates that, consistent with the findings of Proposition 8, the gain from distorting the

information is positive for all values of βn <− (1 +κz/κx). Second, taking the market size n and

intensity of competition βn (which only depends on parameters γ1 and γ2) as given, the gain ∆n

can be made arbitrarily large by increasing the value of γ0 (and hence αn). This observation thus

illustrates that, even though the percentage change in profit gain (Π∗n−Πno−dist
n )/Π∗n = [(1+βn)κx+

κz]
2/[(1− βn)κx + κz]

2 is maximized when the intensity of competition is maximized (βn→−∞),

the level of gain ∆n can be large even away from the competitive limit.
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8. Conclusions

This paper considers the problem of selling information to a set of firms that compete in a

downstream market. We establish that both the information provider’s optimal selling strategy

as well as her profits depend critically on the environment in which her customers operate. In

particular, our results highlight that the extent of strategic substitutability and complementarity

in the latter’s actions has a first-order impact on the former’s optimal strategy: when the firms’

actions are strategic complements, the provider finds it optimal to sell an undistorted version of

her information to the entire market, whereas if their actions are strategic substitutes, the optimal

strategy involves offering an inferior information product and/or limiting the supply of information.

Our results are largely driven by the following trade-off: on the one hand, information about

market conditions, e.g., demand realization, always has a direct positive effect on firms’ profits as

they can better align their actions with the underlying environment. On the other hand, however,

in the presence of strategic substitutability among the firms, the provider’s signal may have an

additional (adverse) effect by increasing the correlation between the firms’ actions. It turns out

that this latter effect may dominate the former when firms’ view their actions as strong strategic

substitutes, in which case the provider finds it optimal to degrade the quality of her information

products and/or exclude a subset of the firms from the sale.

We showcase the implications of our results in the context of Bertrand and Cournot competition

thus complementing the extensive prior literature in operations management that explores vertical

and horizontal information sharing in a supply chain. In addition, we discuss how the extent of

information leakage in the market can affect the provider’s selling strategy and profits. Finally, we

extend our findings to the case when firms differ in their production costs and establish that the

optimal selling strategy involves offering several information products with varying precisions and

at different prices. We also show that in equilibrium, the information provider offers more precise

signals to the more efficient firms at higher prices in order to maximize her profit.

Taken together, our findings illustrate that the optimal provision and pricing of information

products cannot be decoupled from the market structure in which the firm’s potential customers

operate. They also uncover a potential rationale for why information markets typically feature

several versions of essentially the same information product, but of varying qualities and price tags.

Identifying the prevalence of the said mechanism and its relative importance compared to other

potential explanations (such as price discrimination driven, for example, by the heterogeneity in

the willingness-to-pay among potential buyers) in various contexts is an important question, with

both positive and normative insights for the pricing of information products.

To facilitate our analysis, we focused on an environment with a monopolistic provider

of information interacting with a market of competing firms. Extending our framework to
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incorporate competition among information providers is an interesting direction for future

research. Even though the basic mechanism we identify—i.e., that the extent of strategic

complementarities/substitutabilities in the downstream market matters for products firms should

offer—will be present regardless of market conditions, departures from our baseline framework can

potentially impact the optimal degree of distortion in the quality or quantity of information.
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Appendix : Proofs

With the exception of our results in Section 6, firms in our model are assumed to be ex ante symmetric.

Therefore, unless otherwise noted, we assume without loss of generality that the price offered by the provider

to the firms is non-decreasing in the firms’ index; that is, pi ≥ pj for i > j. Given that excluding a firm i from

trade is equivalent to offering a price pi =∞, the above assumption also implies that the set of firms that are

offered a contract by the provider is of the form [0, λ] for some λ∈ [0,1]. Let ` denote the fraction of firms who

accept the provider’s offer. In view of the above assumption, it is immediate that `= sup{i ∈ [0, λ] : bi = 1},

and that bi = 1 for all i≤ `.

Proof of Proposition 1

The first-order optimality condition for firm i’s problem with respect to action ai is given by

E

[
∂

∂ai
π(ai,A, θ)

∣∣∣∣∣Ii
]

= 0,

where Ii = {xi} if i∈ [`,1], i.e., the firm is uninformed, and Ii = {xi, si} if i∈ [0, `], i.e., the firm is informed.

Consequently, ai = E [βA+ (1−β)αθ|Ii] , where β = γ1/γ2 is the degree of strategic complementarity in the

downstream market as defined in (2) and α= γ0/(γ2−γ1). Thus, the firms’ equilibrium actions are given by

ai =

{
E [βA+ (1−β)αθ|xi] ∀i∈ [`,1],

E [βA+ (1−β)αθ|xi, si] ∀i∈ [0, `].

Noticing that E [θ|xi] is linear in xi and E [θ|xi, si] is linear in xi and si, we conjecture that equilibrium

strategies are linear functions of xi and si and then verify our hypothesis. In particular, we conjecture that

ai =

{
c0xi ∀i∈ [`,1]

c1xi + c2si ∀i∈ [0, `]
,

for some constants c0, c1, c2 ∈R. Replacing the candidate equilibrium strategy of an uninformed firm i∈ (`,1]

in its first-order optimality condition yields

c0xi =E
[
β

(∫ `

0

c1xj + c2sjdj+

∫ 1

`

c0xjdj

)
+ (1−β)αθ

∣∣∣xi]
= [β`(c1 + c2) +β(1− `)c0 + (1−β)α]xi, (12)

where we are using the fact that E[θ|xi] = E[xj |xi] = E[sj |xi] = xi. Similarly, the first-order optimality

condition for the optimization problem of an informed firm i∈ [0, `] yields

c1xi + c2si =E
[
β

(∫ `

0

(c1xj + c2sj)dj+

∫ 1

`

c0xjdj

)
+ (1−β)αθ

∣∣∣xi, si] . (13)

Note that

E[θ|xi, si] = E[xj |xi, si] = δ1xi + (1− δ1)si and E[sj |xi, si] = δ1(1− ρ)xi + [1− δ1(1− ρ)]si,

where δ1 = κx/(κx +κs). Consequently, we can rewrite (13) as

c1xi + c2si =[β`c1δ1 +β`c2δ1(1− ρ) +β(1− `)c0δ1 + (1−β)αδ1]xi

+ [β`c1(1− δ1) +β`c2(1− δ1(1− ρ)) +β(1− `)c0(1− δ1) + (1−β)α(1− δ1)]si. (14)
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From Equation (12) we have for the equilibrium strategy coefficients: [c0 = β`(c1 +c2)+β(1−`)c0 +(1−β)α,

for any admissible `∈ [0,1]. In turn, this implies that c0 = α and c1 +c2 = α. Replacing c0 = α and c2 = α−c1
in Equation (14) implies that equilibrium coefficient c1 must satisfy c1 = β`c1δ1ρ+αδ1(1−β`ρ). Solving for

c1 yields c1 = α (1−β`ρ)κx
(1−β`ρ)κx+κs

, and hence, c2 = α− c1 = α κs
(1−β`ρ)κx+κs

. Combining the above, we conclude that

firms’ actions at equilibrium are given by

ai =


αxi ∀i∈ [`,1]

α
(1−β`ρ)κx

(1−β`ρ)κx +κs
xi +α

κs
(1−β`ρ)κx +κs

si ∀i∈ [0, `]
,

completing the proof. Q.E.D.

Two Auxiliary Lemmas

We state and prove two lemmas that we use in the remainder of the appendix. The first lemma characterizes

the expected surplus of an informed firm, whereas the second lemma shows that, for any given λ, the provider

always finds it optimal to charge a constant price to all firms i∈ [0, λ].

Lemma 1. The expected surplus of each firm from buying the market signal is given by

∆(`, κs, ρ, κx) = α2
(γ2

2

)(κs
κx

)
κs +κx

[(1−β`ρ)κx +κs]2
, (15)

where ` denotes the fraction of informed firms.

Proof: Let a1
i := α

κssi + (1−β`ρ)κxxi
κs + (1−β`ρ)κx

denote the equilibrium action of an informed firm and let a0
i := αxi

denote the equilibrium action of an uninformed firm. Recall that ` denotes the fraction of informed firms,

and thus the aggregate equilibrium action is A=
∫ `

0
a1
i di+

∫ 1

`
a0
i di. By replacing the equilibrium actions in

the expressions for the firms’ payoffs and then taking the expectations conditional on θ, we get

E
[
π(a1

i ,A, θ)|θ
]

= α2
(γ2

2

)[
θ2 +

2β`ρκs
[(1−β`ρ)κx +κs]2

− (1−β`ρ)2κx +κs
[(1−β`ρ)κx +κs]2

]
, (16)

and

E
[
π(a0

i ,A, θ)|θ
]

= α2
(γ2

2

)[
θ2− 1

κx

]
. (17)

Next note that we can use the two conditional expectations (16) and (17) to compute the (unconditional)

expectation for a firm’s surplus given by

∆ := E
[
π(a1

i ,A, θ)
]
−E

[
π(a0

i ,A, θ)
]
.

Applying the law of total expectation yields

∆ = α2
(γ2

2

)(κs
κx

)
κs +κx

[(1−β`ρ)κx +κs]2
,

which completes the proof of the lemma. Q.E.D.

Lemma 2. The provider sets pi = p∗(λ) for all i ∈ [0, λ], where p∗(λ) is equal to the expected equilibrium

surplus of an informed firm when the fraction of informed firms is λ. Furthermore, p∗(λ) is such that all

firms that receive the provider’s offer accept in equilibrium, thus `= λ.
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Proof: Consider the simultaneous game of accepting/rejecting the provider’s offer. Recall that in such game

each firm i∈ [0, λ] accepts the offer if her expected surplus is bigger than her individual price pi while taking

the decisions of the rest of the firms as given.

We suppose that a fraction ` ∈ [0, λ] of firms has accepted the provider’s offer, and we write the optimal

decision of each firm i∈ [0, λ] as a function of firm’s i individual price. We have

bi(pi) =


1 if ∆(`)> pi
0 if ∆(`)< pi
∈ {0,1} if ∆(`) = pi

,

where ∆(`) is given by equation (15) and denotes the expected surplus of an informed firm when a fraction

` is informed. We can write the provider’s optimization problem as follows

max
{pi}i∈[0,λ]

∫ λ

0

pibi(pi)di

s.t. bi(pi) =


1 if ∆(`)> pi
0 if ∆(`)< pi
∈ {0,1} if ∆(`) = pi

, ∀i∈ [0, λ]. (18)

Before solving for the provider’s optimal selling strategy, we rewrite the set of constraints (18) as
sup
i∈[0,λ]

pi ≤∆(λ) if `= λ

inf
i∈[0,λ]

pi ≥∆(0) if `= 0∫ λ

0

I{pi<∆(`)}di≤ `≤
∫ λ

0

I{pi≤∆(`)}di if `∈ (0, λ)

,

Recall that without loss of generality the pricing schedule p : [0, λ]→ R+ is non-decreasing, thus we can

further simplify the set of constraints as
pλ ≤∆(λ) if `= λ (19a)

p0 ≥∆(0) if `= 0 (19b)

p` ≤∆(`) and p`+ ≥∆(`) if `∈ (0, λ). (19c)

The proof proceeds by showing that for any equilibrium of the subgame that results from a fraction ` of

the firms accepting the provider’s offer, there exists an optimal pricing schedule such that pi = ∆(`) for all

i≤ ` and pi =∞ for all i > `. There are the following three cases to consider:

(i) For case (19a), the problem simplifies to

max
{pi}i∈[0,λ]

∫ λ

0

pidi

s.t. pλ ≤∆(λ).

In this case a fraction ` = λ of firms accepts and as we show below it is optimal for the provider to set

pi = ∆(λ) for all i ∈ [0, λ]. Suppose, for the sake of contradiction, that p is optimal but u := sup{i ∈ [0, λ] :

pi <∆(λ)} ≥ 0. If u= 0, then we have pi = ∆(λ) except for a set of measure 0, so this case is immaterial. If

u> 0, the maintained assumption that p is non-decreasing implies that

pi <∆(λ), ∀i < u and pi = ∆(λ), ∀i≥ u.
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This implies that we can construct pricing schedule p′ such that

pi < p
′
i ≤∆(λ), ∀i < u and p′i = pi, ∀i≥ u,

that is feasible and achieves a higher objective value. Thus, it must be that pi = ∆(λ) for all i≤ λ.
(ii) For case (19b), `= 0 and the objective function is always equal to 0. Thus, p can be chosen such that

pi =∞ for all i∈ [0, λ].

(iii) Finally, for case (19c), the problem simplifies to

max
{pi}i∈[0,λ]

∫ `

0

pidi

s.t. p` ≤∆(`) and p`+ ≥∆(`).

First, we show that the provider can always set pi =∞,∀i > `. Note that the individual price of each firm

i > ` does not affect the objective function of the provider. This implies that all feasible solutions p that differ

only on (`,λ] attain the same objective value, so it is without loss of generality to focus on solutions that are

such that pi =∞ for all i > `. Next, we show that pi = ∆(`),∀i≤ `. Suppose, for the sake of contradiction,

that p is optimal but u := sup{i∈ [0, `] : pi <∆(`)} ≥ 0. If u= 0 we have pi = ∆(`), except for a set of measure

0. If u> 0, the assumption that p is non-decreasing implies that

pi <∆(`), ∀i < u and pi = ∆(`), ∀i≥ u,

which in turn implies that we can construct a pricing schedule p′′ such that

pi < p
′′
i ≤∆(`), ∀i < u and p′′i = pi, ∀i≥ u,

that is feasible and achieves a higher objective value. Thus, it must be that pi = ∆(`) for all i≤ `.
Thus, there exists an optimal pricing schedule such that pi = ∆(`) for all i≤ ` and pi =∞ for all i > `, which

implies that only a fraction ` of firms accepts the provider’s offer and the latter’s optimal profit is ` ·∆(`).

Without loss of generality the provider sets λ= ` and pi = ∆(λ) for all i ∈ [0, λ]. Thus, all firms accept her

offer and the provider’s profit is given by λ ·∆(λ). Setting p∗(λ) = ∆(λ) completes the proof. Q.E.D.

Proof of Proposition 2

By Lemma 2, the provider’s problem simplifies to choosing λ,κy and ρ in order to maximize the expected

profit Π := λ · p∗(λ,κs, ρ, κx) = λ · ∆(λ,κs, ρ, κx), subject to the constraints imposed by the information

structure. Replacing the expected surplus (15) into the objective function yields

Π(λ,κs, ρ, κx) = λ α2
(γ2

2

)(κs
κx

)
κs +κx

[(1−βλρ)κx +κs]2
, (20)

and thus the provider’s problem can be rewritten as

max
ρ,κs,λ

Π(λ,κs, ρ, κx) (21)

s.t.
κs
κz
≤ ρ≤ 1, and 0≤ λ≤ 1.

Note that the partial derivative of Π with respect to ρ, i.e.,

∂Π

∂ρ
= λ α2γ2

βλκs(κx +κs)

[(1−βλρ)κx +κs]3
, (22)



Information Sale and Competition
30

is positive for β ∈ (0,1/2); thus, ρ∗ = 1. Replacing this into (20) and differentiating with respect to λ yields

∂Π

∂λ
= α2

(γ2

2

)(κs
κx

)
(κx +κx)[(1 +βλ)κx +κs]

[(1−βλ)κx +κs]3
. (23)

Similarly, the partial derivative with respect to κs is given by

∂Π

∂κs
= λ α2

(γ2

2

) (1−βλ)κx + (1− 2βλ)κs
[(1−βλ)κx +κs]3

. (24)

In addition, note that (23) and (24) are positive for β ∈ (0,1/2), so the provider finds it optimal to set λ∗ = 1

and κ∗s = κz. Replacing ρ∗, λ∗ and κ∗s into (20) yields Π∗ = α2
(γ2

2

)(κz
κx

)
κz +κx

[(1−β)κx +κz]2
. Q.E.D.

Proof of Proposition 3

Consider the provider’s expected profit (20) and her profit-maximization problem (21), and let−(1+κz/κx)≤

β < 0. In this case, the partial derivative of Π with respect to ρ given in (22) is negative, which implies

that the provider finds it optimal to set the level of correlation to its minimum, i.e., ρ∗ξ = 0 or ρ∗ = κs/κz.

Replacing this into (20) and differentiating with respect to κs yields

∂Π

∂κs
= λ α2

(γ2

2

) (1 +βλκs/κz)κx +κs
[(1−βλκs/κz)κx +κs]3

, (25)

while differentiating with respect to λ yields

∂Π

∂λ
= α2

(γ2

2

)(κs
κx

)
(κx +κs)[(1 +βλκs/κz)κx +κs]

[(1−βλκs/κz)κx +κs]3
. (26)

The assumption on β implies that (25) and (26) are positive, which results in λ∗ = 1 and κ∗s = κz. The proof

follows by replacing the optimal values for ρ∗, λ∗, and κ∗s into expression (20). Q.E.D.

Proof of Proposition 4

Consider the provider’s expected profit (20) and her profit-maximization problem (21), and let β <−(1 +

κz/κx). First, note that in this case (22) is negative, so the provider finds it optimal to set ρ∗ = κs/κz.

Replacing this into (20) and differentiating with respect to κs and λ we again obtain (25) and (26) respectively.

Both (25) and (26) are equal to 0 if and only if (κz +βλκs)κx+κzκs = 0. Moreover, Π is unimodal in both κs

and λ, which implies that the set of optimal allocations (κ∗s, λ
∗) is given by the solutions to above equation.

Finally, replacing κ∗s, ρ
∗ = κ∗s/κz and λ∗ =

(κx +κ∗s)κz
−βκxκ∗s

into (20) yields Π∗ =−α2
(γ2

2

) κz
4βκ2

x

. Q.E.D.

Proof of Proposition 5

We solve the game by backward induction, i.e., first, we characterize the firms’ equilibrium actions in the

competition subgame that results from a (subset) of them obtaining the provider’s information signal; then,

we solve for their acceptance/rejection decisions; and, finally, we turn to the provider’s problem and complete

the proofs of parts (a) and (b) of the proposition. Recall that the provider possesses a signal z = θ + ζ,

with ζ ∼ N(0,1/κz), and offers to firm i ∈ [0,1] a signal si = z + ξi with ξi ∼ N(0, κξi). Without loss of

generality we assume that the provider does not add any correlation to the signal she sells, i.e., corr(ξi, ξj) = 0.

The market signal si offered to firm i ∈ [0,1] can be rewritten as si = θ + ηi, with ηi ∼N(0,1/κsi), where

κs = (1/κz + 1/κξi)
−1 and Cov(si, sj) = 1/κz. We have the following auxiliary lemma.
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Lemma 3. The competition subgame has a unique Bayes-Nash equilibrium in linear strategies, given by

a(κsi, κs−i) = α[(1−ωi)xi +ωisi] for all i∈ [0,1], where

ωi =

(
κsi

κx +κsi

)/(
1−β κx

κz

∫ 1

0

κsi
κx +κsi

di

)
and α= γ0/(γ2− γ1).

Proof: The first-order optimality condition of firm i with respect to action ai implies that in equilibrium

ai =E[βA+ (1−β)αθ|xi, si]. (27)

Assume that each firm i∈ [0,1] uses a linear strategy cixi+hisi, for constants ci, hi ∈R. Then, we can rewrite

the equilibrium condition (27) as cixi +hisi =E
[
β
∫ 1

0
(cjxj +hjsj)dj+ (1−β)αθ

∣∣∣xi, si] . Using equations

E[sj |xi, si] =
κx(1−κsi/κz)

κx +κsi
xi +

κsi(1 +κx/κz)

κx +κsi
si, and E[θ|xi, si] = E[xj |xi, si] =

κx
κx +κsi

xi +
κsi

κx +κsi
si,

which are obtained by the conditional expectation of Gaussian random vectors, we have

cixi +hisi =β

[(
κx

κx +κsi
xi +

κsi
κx +κsi

si

)∫ 1

0

cjdj+

(
κx(1−κsi/κz)

κx +κsi
xi +

κsi(1 +κx/κz)

κx +κsi
si

)∫ 1

0

hjdj

]
+ (1−β)α

(
κx

κx +κsi
xi +

κsi
κx +κsi

si

)
.

Note that the equilibrium coefficients (ci, , hi) for i∈ [0,1], must solve the following sets of equations

ci = β
κx

κx +κsi

∫ 1

0

cjdj+β
κx(1−κsi/κz)

κx +κsi

∫ 1

0

hjdj+ (1−β)α
κx

κx +κsi
∀i∈ [0,1], (28)

and

hi = β
κsi

κx +κsi

∫ 1

0

cjdj+β
κsi(1 +κx/κz)

κx +κsi

∫ 1

0

hjdj+ (1−β)α
κsi

κx +κsi
∀i∈ [0,1]. (29)

Integrating over [0,1] in (28) and (29) yields a linear-system of two equations, which implies that∫ 1

0

cidi= α

(
1−

(
1 +β

κx
κz

)∫ 1

0

κsi
κx +κsi

di

)/(
1−β κx

κz

∫ 1

0

κsi
κx +κsi

di

)
and ∫ 1

0

hidi= α

(∫ 1

0

κsi
κx +κsi

di

)/(
1−β κx

κz

∫ 1

0

κsi
κx +κsi

di

)
.

Thus, we can rewrite (28) and (29) as ci = α
κx

κx +κsi

(
1−β κx +κsi

κz

∫ 1

0
κsi

κx+κsi
di

)/(
1−β κx

κz

∫ 1

0

κsi
κx +κsi

di

)
and hi = α

κsi
κx +κsi

/(
1−β κx

κz

∫ 1

0

κsi
κx +κsi

di

)
. Finally, noting that ci + hi = α and setting hi = αωi

completes the proof. Q.E.D.

The next step in our analysis involves studying the firms’ acceptance/rejection decisions that precede the

competition subgame. We restrict attention to subgame perfect equilibria in which all firms accept the

provider’s offers. This is without loss of generality, since the case in which there is a firm i that rejects

the provider’s offer is surplus-equivalent to the case in which the provider offers a signal of precision κsi =

0 at price pi = 0 to firm i, and firm i accepts the offer. The equilibrium acceptance/rejection decisions

can be characterized as follows. Each firm i ∈ [0,1] accepts the provider’s offer if ∆i = E[π(a(κsi, κs−i))]−
E[π(a(0, κs−i))]≥ pi, i.e., if price pi is lower than the expected surplus of firm i. Thus, it is optimal for the

provider to offer pi = ∆i for all i∈ [0,1].
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Using the equilibrium characterization from Lemma 3, we can compute the expected surplus ∆i of firm i,

which, in turn, is equal to price pi, i.e.,

pi = α2
(γ2

2

)( κsi
κx +κsi

)(
1

κx

)/[
1−β κx

κz

∫ 1

0

κsi
κx +κsi

di

]2

. (30)

The provider’s expected equilibrium profit is given by

Π(κs, β) =

∫ 1

0

pidi= α2
(γ2

2

)( 1

κx

∫ 1

0

κsi
κx +κsi

di

)/[
1−β κx

κz

∫ 1

0

κsi
κx +κsi

di

]2

, (31)

and her problem can now be simply written as

max
{κsi}i∈[0,1]

Π(κs, β) (32)

s.t. 0≤ κsi ≤ κz ∀i∈ [0,1].

The following lemma allows us to further simplify the optimization problem above.

Lemma 4. The objective function of problem (32) depends on {κsi}i∈[0,1] only through a constant

D=

∫ 1

0

κsi
κx +κsi

di. (33)

Furthermore, for any optimal solution {κ∗si}i∈[0,1] of problem (32), there exist a constant solution κ̄s that is

feasible and achieves the same objective value of {κ∗si}i∈[0,1].

Proof: The first statement follows directly from expression (31). For the second statement, let {κ∗si}i∈[0,1]

be an optimal solution of problem (32), with corresponding D∗ =

∫ 1

0

κ∗si
κx +κ∗si

di. Define constant κ̄s as

κ̄s :=
D∗κx

1−D∗
. Note that

κ̄s
κx + κ̄s

=D∗, which implies that κ̄s achieves the same objective value as {κ∗si}i∈[0,1].

Finally, we need to verify that κ̄s is feasible. By the feasibility of {κ∗si}i∈[0,1], i.e., 0≤ κ∗si ≤ κz for all i∈ [0,1],

it follows that 0≤D∗ ≤ κz
κx +κz

and thus 0≤ κ̄s ≤ κz. This implies that the constant κ̄s is feasible and it

achieves the maximum objective value, which completes the proof. Q.E.D.

Lemma 4 allows us to solve a simplified problem, in which the provider offers a signal of precision κs

to all firms i ∈ [0,1]. Furthermore, using the optimal value for κs together with equation (33) allows us to

characterize the set of optimal solutions for the original problem (32). In particular, replacing κs for κsi in

problem (32), the provider’s problem simplifies to

max
κs

Π = α2
(γ2

2

)(κs
κx

)
κs +κx

[(1−βκs/κz)κx +κs]2
(34)

s.t. 0≤ κs ≤ κz.

Proof of part (a): Let β ≥ −(1 + κz/κx) and consider the simplified problem (34). Differentiating the

objective with respect to κs yields

∂Π

∂κs
= α2

(γ2

2

) (1 +βκs/κz)κx +κs
[(1−βκs/κz)κx +κs]3

. (35)

The assumption on β implies that (35) is positive, which means that it is optimal to set κ∗s = κz. By Lemma

4, this implies that any solution {κ∗si}i∈[0,1] to problem (32) that is feasible and such that∫ 1

0

κ∗si
κx +κ∗si

di=
κz

κx +κz
,
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is an optimal solution. Thus, problem (32) has a unique optimal solution in this case, i.e.,κ∗si = κz,∀i∈ [0,1].

Replacing this solution into (30) we obtain

p∗i = α2
(γ2

2

)(κz
κx

)
κz +κx

[(1−β)κx +κz]2
= p∗.

Proof of part (b): Let β < −(1 + κz/κx) and consider problem (34). In this case, the partial derivative

given in (35) evaluated at κ∗s = κz is negative, so the provider is better off by offering noisy signals to the

firms. Solving for the optimal κs using a firm’s first-order optimality condition yields

κ∗s =
κx

−(1 +βκx/κz)
<κz.

By Lemma 4, this implies that any solution {κ∗si}i∈[0,1] to problem (32) that is feasible and such that∫ 1

0

κ∗si
κx +κ∗si

di=− κz
βκx

, (36)

is an optimal solution. Finally, replacing (36) into (30) yields p∗i = α2
(
γ2
2

) κ∗si
4(κx+κ∗

si
)κx

. Q.E.D.
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Electronic Companion

EC.1. Additional Proofs
Proof of Proposition 6

Recall from our results in Section 3 that, without any loss of generality, we can restrict attention

to equilibria in which the provider offers the market signal to all firms, i.e., λ= 1. Also recall that

it is always optimal for the provider to offer market signals that are independent conditional on

the realization of her signal, i.e., ρξ = 0.

Throughout the proof we rescale firms’ profit so that α= γ0/(γ2− γ1) = 1 Note that this

is without loss of generality and it considerably simplifies the exposition. We conjecture that

equilibrium strategies are linear in xi, si, and Si, and then verify our hypothesis. In particular, we

conjecture that

a(xi, si, Si) = b1xi + b2Si + b3si.

By definition A=

∫ 1

0

a(xi, si, Si) di, thus, we have A= b1θ+ b2A+ b3z. This further implies that

A=
b1θ+ b3z

1− b2

.

Using the above equation for A, firm i’s expected profit simplifies to

E[πi|xi, si, Si] = γ0aiE[θ|xi, si, Si] + γ1ai
b1E[θ|xi, si, Si] + b3E[z|xi, si, Si]

1− b2

− γ2

2
a2
i

= aiE[θ|xi, si, Si]
(
γ0 +

γ1b1

1− b2

)
+ aiE[z|xi, si, Si]

(
γ1b3

1− b2

)
− γ2

2
a2
i .

Taking the first-order optimality condition with respect to ai,
∂

∂ai
E[πi|xi, si, Si] = 0, and recalling

that z = ζ + θ, we can express the equilibrium action of firm i as

ai =

[
(1−β) +β

b1 + b3

1− b2

]
E[θ|xi, si, Si] +β

(
b3

1− b2

)
E[ζ|xi, si, Si]. (EC.1)

Before proceeding, we make a change of variable, setting κs = tκz with t ∈ [0,1]. The conditional

expectations in (EC.1) are given respectively by

E[θ|xi, si, Si] = κx
(1− b2) 2κz + (1− t)b2

3κν
D

xi +κν
(1− b2) [b1 + (1− t)b3]κz

D
Si + (EC.2)

+tκz
(1− b2) 2κz − b1b3κν

D
zi,

and

E[ζ|xi, si, Si] = −κx
(1− b2) 2tκz + b3 (b1 + b3) (1− t)κν

D
xi +κν

(1− b2) [b3(1− t)κx− b1tκz]

D
Si +(EC.3)

+tκz
b1 (b1 + b3)κν + (1− b2) 2κx

D
zi,
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where

D= κν
[
b2

1κz + b3(1− t) (b3 (κx +κz) + 2b1κz)
]

+κz (1− b2) 2 (tκz +κx) .

These expressions are obtained using the formula for the conditional expectation of Gaussian

random vectors. Substituting (EC.2) and (EC.3) into (EC.1), and solving for b1, b2, b3, yields the

following system of equations, which the equilibrium coefficients must satisfy:

b1 = κx
(1−β)b2

3(1− t)κν + (1− b2) [βb1 + (1−β) (1− b2) +βb3(1− t)]κz
D

, (EC.4)

b2 = κν
b1 {[βb1 + (1−β) (1− b2)] +βb2

3(1− t) + b3(1− t) [2βb1 + (1−β) (1− b2)]}κz +βb2
3(1− t)κx

D
,(EC.5)

b3 = tκz
(1− b2) [βb1 + (1−β) (1− b2)]κz + b3 [β (1− b2) (κx +κz)− (1−β)b1κν ]

D
. (EC.6)

Let a1
i := b1xi+b2Si+b3si denote the equilibrium action of firm i and let a0

i := b̃1xi+ b̃2Si denote the

action that firm i would have taken if it deviated from the equilibrium path and did not purchase

the market signal si. In that case, firm i’s information set is (xi, Si) and the coefficients b̃1, b̃2 can

be then characterized as above. We have

b̃1 = κx
(1−β)b2

3κν + (1− b2) [βb1 + (1−β) (1− b2) +βb3]κz
κx [b2

3κν + (1− b2) 2κz] + (b1 + b3) 2κνκz
, (EC.7)

b̃2 = κν
βb2

3κx + (b1 + b3) [βb1 + (1−β) (1− b2) +βb3]κz
κx [b2

3κν + (1− b2) 2κz] + (b1 + b3) 2κνκz
. (EC.8)

Note that these coefficients depend on b1, b2, b3, since they are derived under the assumption that

firm i deviates, while all other firms are playing according to their equilibrium strategies. Using a1
i

and a0
i we can characterize the expected profits of a firm that observes (xi, si, Si) as

E[πi(a
1
i ,A)] = γ2

[
1

2κθ
+ (β− 1/2)

(
1

κz

)
b2

3

(b1 + b3)2
− b2

1

2κx
− b2

2

2κν
−
(

1− t
tκz

)
b2

3

2

]
,

and the expected profit of a firm that does not observe si as

E[πi(a
0
i ,A)] = γ2

[
1

2κθ
+ (β− b̃2/2) b̃2

(
1

κz

)
b2

3

(b1 + b3)2
− b̃2

1

2κx
− b̃2

2

2κν

]
.

The equilibrium surplus of a firm from purchasing the market signal is thus given by

∆ :=E[πi(a
1
i ,A)]−E[πi(a

0
i ,A)].

As we establish in Lemma 2, at equilibrium the monopolist offers to each firm i price pi = ∆, and all

firms accept her offer. Thus, the expected equilibrium profit of the monopolist is Π =

∫ 1

0

pi di= ∆,

i.e.,

Π(t, κν , β) = γ2

{[
(1− b̃2)β− (1− b̃2

2)/2
]( 1

κz

)
b2

3

(b1 + b3)2
− b

2
1− b̃2

1

2κx
− b

2
2− b̃2

2

2κν
−
(

1− t
tκz

)
b2

3

2

}
.

(EC.9)
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Proof of part (a): Given the change of variable κs = tκz, the provider’s decision variable is

t∈ [0,1]. Clearly it is never optimal to set t≤ 0 and, thus, the provider’s problem simplifies to:

max Π(t, κν , β), s.t. t≤ 1.

Let

Π∗(κν) := max
t

Π(t, κν , β) s.t. t≤ 1.

Our goal is to characterize how the maximum profit changes in the presence of some information

leakage, i.e., we are interested in determining the sign of ∂Π∗/∂κν evaluated at κν = 0. To this end,

we use the envelope theorem for constrained optimization problems. The Lagrangian associated

with the provider’s problem is given as

L(t,µ,κν , β) = Π(t, κν , β) +µ(1− t).

By the envelope theorem we have that

∂Π∗

∂κν
(κν) =

∂L

∂κν
(t∗, µ∗, κν , β)

∣∣∣∣
t∗=t∗(κν),µ∗=µ∗(κν)

=
∂Π

∂κν
(t∗, κν , β)

∣∣∣∣
t∗=t∗(κν)

, (EC.10)

where the second equality holds since the constraint itself does not depend on κν . Differentiating

(EC.9) with respect to κν yields

∂Π

∂κν
(t, κν , β) =γ2

(
K0 +K1 +K2 +K3 +K4 +K5 +K6

)
, (EC.11)

where

K0 =
b̃2b̃

κν
2 − b̃κν2 β

(b1 + b3)2κz
b2

3

K1 =
2(1− b̃2)β− (1− b̃2

2)

(b1 + b3)2κz
b3b

κν
3

K2 =
2(1− b̃2)β− (1− b̃2

2)

(b1 + b3)3κz
b2

3(bκν1 + bκν3 )

K3 =− b1b
κν
1 − b̃1b̃

κν
1

κx

K4 =− b2b
κν
2 − b̃2b̃

κν
2

κν

K5 =− 1− t
tκz

b3b
κν
3

K6 =
b2

2− b̃2
2

2κ2
ν

,

and

bκνj :=
∂

∂κν
bj(t, κν), j = 1,2,3 and b̃κνk :=

∂

∂κν
b̃k(t, κν), k= 1,2. (EC.12)
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Next, we evaluate (EC.11) at κν = 0. To do so, we compute and evaluate all the coefficients at

κν = 0 and then replace them in (EC.11). In particular, evaluating equations (EC.4)-(EC.8) at

κν = 0 yields

b1(t,0) =
(1−βt)κx

tκz + (1−βt)κx
, b2(t,0) = 0, b3(t,0) =

tκz
tκz + (1−βt)κx

,

b̃1(t,0) = 1, b̃2(t,0) = 0.

Differentiating (EC.4)-(EC.8) with respect to κν , and then evaluating at κν = 0 yields

bκν1 (t,0) =−κx [(1−βt)2κx + (1− t)tκz] 2

[(1−βt)κx + tκz] 4
,

bκν2 (t,0) =
(1−βt)2κx + (1− t)tκz

[(1−βt)κx + tκz] 2
,

bκν3 (t,0) =− tκz [κx + (1− 2β)tκx + tκz] [(1− t)tκz + (1−βt)2κx]

[(1−βt)κx + tκz] 4
,

b̃κν1 (t,0) =− t
2κ2

z + (1−βt)2κ2
x + t(2−βt)κxκz

κx [(1−βt)κx + tκz] 2
,

b̃κν2 (t,0) =
t2κ2

z + (1−βt)2κ2
x + t(2−βt)κxκz

κx [(1−βt)κx + tκz] 2
.

Replacing the above sets of coefficients into Equation (EC.11) and simplifying, yields the following

∂Π

∂κν
(t, κν , β)

∣∣∣∣
κν=0

= γ2

c5t
5κ5

z + c4t
4κ4

zκx + c3t
3κ3

zκ
2
x + c2t

2κ2
zκ

3
x + c1tκzκ

4
x

2κ2
x [tκz + (1−βt)κx] 5

, (EC.13)

where

c5 =−1, c4 = 3βt− 5, c3 =−[(5β2− 1)t− 14β+ 2]t− 9,

c2 =−7 + t{−4 + 19β+ t[1 + (4 + t)β− (15 + 4t)β2 + 5tβ3]},

c1 = 2(βt− 1)2((2β− 1)t− 1).

Finally, to determine the sign of
∂Π∗

∂κν
(κν)

∣∣∣∣
κν=0

, we consider the following two cases:

(i) Case 1: β ∈ (−∞,0). Recall that t∈ [0,1], and consider Equation (EC.13). It is straightforward

to see that the denominator is always positive. Next, we show that the numerator is always negative.

Note that coefficients c5, c4 and c1 are always negative. Moreover, we have that (5β2−1)t−14β+2>

−14β + 1 > 0, which implies that c3 is negative for all β < 0 and t ∈ [0,1]. Finally, noting that

1 + (4 + t)β − (15 + 4t)β2 + 5tβ3 < 1 it is immediate to verify that c2 is negative. This establishes

that
∂Π

∂κν
(t, κν , β)

∣∣∣∣
κν=0

< 0 for all β < 0 and t∈ [0,1]. In particular,

∂Π

∂κν
(t∗, κν , β)

∣∣∣∣
t∗=t∗(κν),κν=0

< 0 ∀β < 0.
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(ii) Case 2: β ∈ [0,1/2). Recall that when κν = 0 we have t∗ = 1 for all β in this interval. We

next substitute t∗ = 1 in Equation (EC.13) and show that it is negative. Note that the denominator

simplifies to 2κ2
x [κz + (1−β)κx]

5 < 0, and the numerator simplifies to

−κz
[
κ4
z + (5− 3β)κxκ

3
z + (10− 14β+ 5β2)κ2

xκ
2
z + (1−β)(10− 14β+ 5β2)κ3

xκz + 4(1−β)3κ4
x

]
.

Noting that 10− 14β + 5β2 is positive (as a quadratic expression with negative determinant), we

conclude that the numerator is always negative. This establishes that

∂Π

∂κν
(t∗, κν , β)

∣∣∣∣
t∗=t∗(κν),κν=0

< 0 ∀β ∈ [0,1/2).

Combining Cases 1 and 2 discussed above, applying the envelope theorem, and using Equation

(EC.10), we conclude that

∂Π∗

∂κν
(κν)

∣∣∣∣
κν=0

< 0 ∀β ∈ (−∞,1/2),

which completes the proof of part (a).

Proof of part (b): Let β̂ =−(1+κz/κx). When κν = 0, Proposition 3 implies that β̂ is such that

κ∗s = κz is the unconstrained optimum at β = β̂. In other words,

arg max
t

Π(t,0, β̂) = 1,

and
∂

∂t
Π(t,0, β̂)

∣∣∣∣
t=1

= 0. (EC.14)

The proof follows by showing that there exists constant K̄ such that for all κν ≤ K̄, there exists T̄

such that ∀ t∈ [1− T̄ ,1) the following holds

Π(t, κν , β̂)>Π(1, κν , β̂).

In particular, this would imply that in the presence of leakage it is optimal for the provider to

distort her signal at β = β̂ (continuity of Π with respect to β would then imply the statement of

the proposition).

In order to prove the above, let us define

g(κν , β) =
∂

∂t
Π(t, κν , β)

∣∣∣∣
t=1

,

and show that
∂g

∂κν
(0, β̂)< 0. For any β, we have

∂g

∂κν
(0, β) = γ2

(
G0 +G1 +G2 +G3 +G4 +G5 +G6 +G7 +G8 +G9

)
, (EC.15)
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where

G0 =
b̃2b̃

κν
2 −βb̃κν2

κz (b1 + b3)
2 2bt3b3

∣∣∣∣∣
t=1,κν=0

G1 =
b̃2b̃

t
2−βb̃t2

κz (b1 + b3)
2 2bκν3 b3

∣∣∣∣∣
t=1,κν=0

G2 =
b̃κν2 + b̃t2−βb̃

t,κν
2 + b̃2b̃

t,κν
2

κz (b1 + b3)
2 b2

3

∣∣∣∣∣
t=1,κν=0

G3 =− (bκν1 + bκν3 ) (b̃2b̃
t
2−βb̃t2)

κz (b1 + b3)
3 2b2

3

∣∣∣∣∣
t=1,κν=0

G4 =
2β(1− b̃2) + (b̃2

2− 1)

κz (b1 + b3)
2

(
bκν3 bt3 + bt,κν3 b3

) ∣∣∣∣∣
t=1,κν=0

G5 =− 2β(1− b̃2) + (b̃2
2− 1)

κz (b1 + b3)
3

[(
bt,κν1 + bt,κν3

)
b2

3 + 2(bκν1 + bκν3 ) bt3b3

] ∣∣∣∣∣
t=1,κν=0

G6 =− b
κν
1 bt1− b̃

κν
1 b̃t1 + b1b

t,κν
1 − b̃1b̃

t,κν
1

κx

∣∣∣∣∣
t=1,κν=0

G7 =− b
κν
2 bt2− b̃

κν
2 b̃t2 + b2b

t,κν
2 − b̃2b̃

t,κν
2

κν

∣∣∣∣
t=1,κν=0

G8 =
b2b

t
2− b̃2b̃

t
2

κ2
ν

∣∣∣∣
t=1,κν=0

G9 =
bκν3 b3

κz

∣∣∣∣∣
t=1,κν=0

,

and

btj :=
∂

∂t
bj(t, κν), bt,κνj :=

∂2

∂κν∂t
bj(t, κν), for j = 1,2,3 ,

b̃tk :=
∂

∂t
b̃k(t, κν), b̃t,κνk :=

∂2

∂κν∂t
b̃k(t, κν), for k= 1,2.

To compute the second derivative above, we evaluate the coefficients at t = 1 and κν = 0. In

particular, evaluating (EC.4)-(EC.8) at t= 1, κν = 0, and solving the resulting system yields

b1(1,0) =
(1−β)κx

κz + (1−β)κx
, b2(1,0) = 0, b3(1,0) =

κz
κz + (1−β)κx

, b̃1(1,0) = 0, b̃2(1,0) = 0.

Furthermore, differentiating (EC.4)-(EC.8) with respect to κν , evaluating at t= 1, κν = 0, and

solving the resulting system yields

bκν1 (1,0) =− (1−β)4κ3
x

[(1−β)κx +κz] 4
,

bκν2 (1,0) =
(1−β)2κx

[(1−β)κx +κz] 2
,
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bκν3 (1,0) =−(1−β)2 [2(1−β)κx +κz]κxκz
[(1−β)κx +κz] 4

,

b̃κν1 (1,0) =−(1−β)2κ2
x + (2−β)κxκz +κ2

z

κx [(1−β)κx +κz] 2
,

b̃κν2 (1,0) =
(1−β)2κ2

x + (2−β)κxκz +κ2
z

κx [(1−β)κx +κz] 2
.

Next, differentiating (EC.4)-(EC.8) with respect to t, evaluating at t= 1, κν = 0, and solving the

resulting system yields

bt1(1,0) =− κxκz
[(1−β)κx +κz] 2

, bt2(1,0) = 0, bt3(1,0) =
κxκz

[(1−β)κx +κz] 2
,

b̃t1(1,0) = 0, b̃t2(1,0) = 0.

Finally, differentiating (EC.4)-(EC.8) with respect to both t and κν , evaluating at t= 1, κν = 0,

and solving the resulting system yields

bt,κν1 (1,0) =
2(1−β)2 [3(1−β)κx +κz]

[(1−β)κx +κz] 5
κ2
xκz,

bt,κν2 (1,0) =− 3(1−β)κx +κz
[(1−β)κx +κz] 3

κz,

bt,κν3 (1,0) =
−3(1−β)3κ3

x + 5(1−β)2κ2
xκz + 5(1−β)κxκ

2
z +κ3

z

[(1−β)κx +κz] 5
κz,

b̃t,κν1 (1,0) =− 2βκxκz
[(1−β)κx +κz] 3

,

b̃t,κν2 (1,0) =
2βκxκz

[(1−β)κx +κz] 3
.

Finally, we substitute the coefficients in Equation (EC.15) and obtain that

∂g

∂κν
(0, β) =−γ2

κz [(1−β)2 (β2 +β+ 2)κ3
x + 5(1−β)2κ2

xκz + (4β2− 9β+ 4)κxκ
2
z + (1− 2β)κ3

z]

[(1−β)κx +κz] 6
.

It is immediate to verify that the above equation is strictly negative for all β ∈ (−∞,1/2), and in

particular it is strictly negative at β̂ =−(1+κz/κx). Moreover, noting that g(0, β̂) = 0, we conclude

that there exists K̄ such that for all κν < K̄ we have g(κν , β̂)< 0. This in turn implies that there

exists T̄ such that ∀ t∈ [1− T̄ ,1) we have

Π(t, κν , β̂)>Π(1, κν , β̂).

Thus, at β = β̂ it is optimal for the seller to set t∗ < 1, i.e., distort her information and set κ∗s <κz.

To complete the proof, note that by continuity of Π(t, κν , β) with respect to β, there exists

β̄ ∈ (0, β̂) such that Π(t, κν , β̂)−Π(1, κν , β̂)> 0 for all β ∈ [β̂, β̄), and thus κ∗s <κz for all β ∈ [β̂, β̄).

Q.E.D.
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Proof of Proposition 7

Following the same steps as in the proof of Proposition 5 we can derive the equilibrium quantity

decisions of each firm i in the competition subgame. These, in turn, allow us to compute the

equilibrium surplus of a firm i that observes a signal of precision κsi as

∆i =E[π(q(κsi, κs−i))]−E[π(q(0, κs−i))] =K

(
κsi/ci
κx +κsi

)/
κx(1− γ1Dκx/κz)

2,

where K =
γ2

0/2(
1− γ1

∫ 1

0
1
ci
di
)2 and D=

∫ 1

0

κsi/ci
κx +κsi

di.

Moreover, firm i ∈ [0,1] accepts the provider’s offer {pi, κsi} if and only if ∆i ≥ pi. Thus, it is

optimal for the provider to offer pi = ∆i for all i∈ [0,1] and leave no surplus to the firms.

The provider’s equilibrium profit is then given by

Π(κs,D) =

∫ 1

0

(pi− vκsi)di=K
D

κx(1− γ1Dκx/κz)2
− v

∫ 1

0

κsidi,

and her problem can be written as

max
{κsi}i∈[0,1]

Π(κs,D)

s.t. D=

∫ 1

0

κsi/ci
κx +κsi

di

0≤ κsi ≤ κz ∀i∈ [0,1].

Differentiating the objective with respect to κsi yields

dΠ

dκsi
=
∂Π

∂D
· ∂D
∂κsi

+
∂Π

∂κsi
=K · 1 + γ1Dκx/κz

ci(κx +κsi)2(1− γ1Dκx/κz)3
− v, (EC.16)

for all i∈ [0,1].

Proof of Part (a): Let v=K/(cminκ
2
x). Suppose that v > v and consider the profile of precisions

{κsi = 0}i∈[0,1], with corresponding D= 0. Evaluating (EC.16) at the profile above yields

dΠ

dκsi
=

K

ciκ2
x

− v,

for all i ∈ [0,1]. Our assumption on v then implies that, at {κsi = 0}i∈[0,1], we have
dΠ

dκsi
< 0 for

all i ∈ [0,1], thus the provider can only increase her profit by decreasing κsi for some i. Then,

the non-negativity constraints on the κsi’s imply that the optimal solution is to set κ∗si = 0 for all

i∈ [0,1].
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Proof of Part (b): Let v=K
κz +

(
1 + γ1

∫ 1

0
1
ci
di
)
κx

cmax

[
κz +

(
1− γ1

∫ 1

0
1
ci
di
)
κx

]3 . Suppose that v < v and consider the

profile of precisions {κsi = κz}i∈[0,1], with corresponding D=
κz

κx +κz

∫ 1

0

1

ci
di. Evaluating (EC.16)

at the profile above yields

dΠ

dκsi
=K

κz +
(

1 + γ1

∫ 1

0
1
ci
di
)
κx

ci

[
κz +

(
1− γ1

∫ 1

0
1
ci
di
)
κx

]3 − v,

for all i ∈ [0,1]. Our assumption on v then implies that, at {κsi = κz}i∈[0,1], we have
dΠ

dκsi
> 0 for

all i ∈ [0,1], thus the provider can only increase her profit by increasing κsi for some i. This, in

turn, implies that the optimal solution is to set κ∗si = κz for all i∈ [0,1].

Proof of Part (c): Consider now the remaining case in which v takes an intermediate value.

Let κ∗si be the optimal solution, with corresponding D∗ =

∫ 1

0

κ∗si/ci
κx +κ∗si

di. Substituting the optimal

solution into equation (EC.16) yields

dΠ

dκsi
=K

1 + γ1D
∗κx/κz

ci(κx +κ∗si)
2(1− γ1D∗κx/κz)3

− v, (EC.17)

for all i∈ [0,1]. Let c∗ =
K(1 + γ1D

∗κx/κz)

v κ2
x(1− γ1D∗κx/κz)3

. Then, if ci > c
∗ we have

dΠ

dκsi
<

(
κ2
x

(κx +κ∗si)
2
− 1

)
v.

This implies that dΠ/dκsi < 0 for all κ∗si ≥ 0, thus it is optimal to set κ∗si = 0.

On the other hand, if ci <
κ2
x

(κx +κz)2
c∗ we have

dΠ

dκsi
>

[(
κx +κz
κx +κ∗si

)2

− 1

]
v,

which implies that dΠ/dκsi > 0 for all κ∗si ∈ [0, κz], thus it is optimal to set κ∗si = κz in this case.

Finally, for intermediate values of ci, i.e., ci ∈
[
c∗,

κ2
x

(κx +κz)2
c∗
]
, the optimal κ∗si is a solution to

dΠ/dκsi = 0, i.e.,

κ∗si =

√
K(1 + γ1D∗κx/κz)

civ(1− γ1D∗κx/κz)3
−κx = κx

(√
c∗/ci− 1

)
.

Q.E.D.
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Proof of Corollary 2

Consider the optimal thresholds v and v characterized in the proof of Proposition 7. For the case

of two types we have

v=

(
1

c
+ δ

)
K

κ2
x

and v=

(
1

c
− δ
)
K

κz + (1 + γ1/c)κx

[κz + (1− γ1/c)κx]
3 ,

where K =
γ2

0/2

(1− γ1/c)
2 . It is easy to see that when v > v or v < v the optimal precisions are not

affected by a marginal increase in dispersion. For intermediate values of v there are four cases

to consider. Before considering them in turn, recall from Proposition 7 that the optimal selling

strategy has the following structure

κ∗sk =


0 if 1

ck
< 1

c∗

κz if (κx+κz)2

κ2
xc
∗ < 1

ck

κx

(√
c∗/ck− 1

)
otherwise

, k= 1,2 , (EC.18)

where

c∗ =
K(1 + γ1D

∗κx/κz)

v κ2
x(1− γ1D∗κx/κz)3

,

which is always positive when v ∈ (v, v), and

D∗ =
1

2

(
1

c
+ δ

)
κ∗s1

κx +κ∗s1
+

1

2

(
1

c
− δ
)

κ∗s2
κx +κ∗s2

. (EC.19)

Moreover, differentiating c∗ with respect to δ yields
∂c∗

∂δ
=
∂c∗

∂D∗

(
∂D∗

∂δ
+
∂D∗

∂c∗
∂c∗

∂δ

)
, which implies

that

∂c∗

∂δ
=
∂c∗

∂D∗
∂D∗

∂δ

/(
1− ∂c∗

∂D∗
∂D∗

∂c∗

)
. (EC.20)

Note that

∂c∗

∂D∗
=

2γ1K(2 + γ1D
∗κx/κz)

v κxκz(1− γ1D∗κx/κz)4
,

is always negative since γ1 < 0 and 2 +γ1D
∗κx/κz > 0. We proceed with considering the four cases

in turn:

Case 1: (1/c+ δ)∈
[

1

c∗
,
(κx +κz)

2

κ2
xc
∗

]
and (1/c− δ)∈

[
1

c∗
,
(κx +κz)

2

κ2
xc
∗

]
. The optimal precision

takes intermediate values for both firm types. Thus, replacing the optimal precisions from (EC.18)

into (EC.19) yields

D∗ =
1

c
− 1√

c∗

(
1

2

√
1

c
+ δ+

1

2

√
1

c
− δ

)
.
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Note that
∂D∗

∂δ
> 0 (since the square root is a concave function), therefore we can verify from

(EC.20) that
∂c∗

∂δ
< 0. Differentiating the optimal precision of type 2 firms with respect to δ yields

∂κ∗s2
∂δ

=
∂

∂δ

[
κx

√
c∗
(

1

c
− δ
)
−κx

]
=

κx

2
√
c∗
(

1
c
− δ
) [−c∗+

∂c∗

∂δ

(
1

c
− δ
)]

,

which is always negative since
∂c∗

∂δ
< 0. For type 1 firms we have

∂κ∗s1
∂δ

=
κx

2
√
c∗
(

1
c

+ δ
) [c∗+

∂c∗

∂δ

(
1

c
+ δ

)]
=

κxc
∗

2
√
c∗
(

1
c

+ δ
)
1 +

∂c∗

∂D∗

√
1
c

+ δ
(√

1
c

+ δ−
√

1
c
− δ
)

√
1
c
− δ
[
4c∗3/2− ∂c∗

∂D∗

(√
1
c

+ δ+
√

1
c
− δ
)]
 ,

which is positive if and only if(
δ−

√
1

c
+ δ

√
1

c
− δ

)
∂c∗

∂D∗
+ 2

√
1

c
+ δ c∗3/2 > 0.

The latter always holds if δ < 1
/

(c
√

2).

Case 2: (1/c+ δ)∈
[

1

c∗
,
(κx +κz)

2

κ2
xc
∗

]
and (1/c− δ)< 1

c∗
. In this case, κ∗s1 takes intermediate

values and κ∗s2 = 0. Replacing the optimal precisions into (EC.19) yields

D∗ =
1

c
−

√
1
c

+ δ
√
c∗

.

Note that
∂D∗

∂δ
< 0, which implies that

∂c∗

∂δ
> 0 and therefore

∂κ∗s1
∂δ

=
κx

2
√
c∗
(

1
c

+ δ
) [c∗+

∂c∗

∂δ

(
1

c
+ δ

)]
> 0.

For type 2 firms we have
∂κ∗s2
∂δ

= 0, which follows from κ∗s2 = 0 and continuity of the optimal

threshold with respect to δ.

Case 3: (1/c− δ)∈
[

1

c∗
,
(κx +κz)

2

κ2
xc
∗

]
and (1/c+ δ)>

(κx +κz)
2

κ2
xc
∗ . In this case, κ∗s2 takes

intermediate values and κ∗s1 = κz. Replacing the optimal precisions into (EC.19) yields

D∗ =
1

2

1

c
−

√
1
c
− δ

√
c∗

+
1

2

(
κz

κx +κz

)(
1

c
+ δ

)
.

Note that
∂D∗

∂δ
< 0, which implies that

∂c∗

∂δ
> 0 and therefore

∂κ∗s2
∂δ

=
κx

2
√
c∗
(

1
c
− δ
) [−c∗+

∂c∗

∂δ

(
1

c
− δ
)]

< 0.

For type 1 firms we have
∂κ∗s1
∂δ

= 0.
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Case (iv): (1/c− δ)< 1

c∗
and (1/c+ δ)>

(κx +κz)
2

κ2
xc
∗ . In this case, κ∗s2 = 0, κ∗s1 = κz, and

∂κ∗s1
∂δ

=
∂κ∗s2
∂δ

= 0.

Combining the cases above, we have that δ < 1
/

(c
√

2) implies
∂κ∗s1
∂δ
≥ 0 and

∂κ∗s2
∂δ
≤ 0, thus

completing the proof of the corollary. Q.E.D.

Proof of Proposition 8

We begin by stating a lemma which is the discrete analogue of Proposition 1 presented in Section

3. The proof of the lemma follows similar arguments and is therefore omitted.

Lemma EC.1. The competition subgame between the firms has a unique Bayes-Nash equilibrium

in linear strategies. Furthermore, the equilibrium quantities of the firms are given by

qi =

{
αn[(1−ωk,n)xi +ωk,nsi] if i∈K
αnxi if i∈N \K

,

where

ωk,n =
κs(

1−βn k−1
n−1

ρ
)
κx +κs

,

and αn = γ0/
(
γ2− n+1

n
γ1

)
.

Using the above lemma we can characterize the expected equilibrium profits of an uninformed

and of an informed firm, respectively as

E
[
π1|θ

]
= α2

n

(γ2

2
− γ1

n

)[
θ2 +

2βnρκs
[(1−βnρ)κx +κs]2

− (1−βnρ)2κx +κs
[(1−βnρ)κx +κs]2

]
,

and

E
[
π0|θ

]
= α2

n

(γ2

2
− γ1

n

)[
θ2− 1

κx

]
,

where we used the assumption that k = n. The provider extracts all surplus generated by the

information she sells. Thus, we can use the law of total expectation to characterize the provider’s

expected profit as

Π(κs, ρ, κx) = n
(
E
[
π1
]
−E

[
π0
])

= n α2
n

(γ2

2
− γ1

n

)(κs
κx

)
κs +κx

[(1−βnρ)κx +κs]2
.

Thus, the provider’s optimization problem is

max
ρ,κs

Π(κs, ρ, κx)

s.t.
κs
κz
≤ ρ≤ 1

κs ≤ κz.
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Differentiating the objective with respect to ρ yields

∂Π

∂ρ
= 2n α2

n

(γ2

2
− γ1

n

) βnκs(κx +κs)

[(1−βnρ)κx +κs]3
, (EC.21)

which is always negative since βn < 0. Thus, it is optimal for the provider to set ρ∗ = κs/κz.

Replacing ρ∗ into the objective and then differentiating with respect to κs yields

∂Π

∂κs
= n α2

n

(γ2

2
− γ1

n

) (1 +βnκs/κz)κx +κs
[(1−βnλκs/κz)κx +κs]3

.

When βn ≥−(1 +κz/κx), the above expression is always positive and it is optimal to set κ∗s = κz.

Otherwise, the optimal precision is given by the solution to

(1 +βnκs/κz)κx +κs = 0,

which implies that κ∗s = −κz/(βn + κz/κx). Substituting the optimal strategy into the objective,

we obtain the following characterization of the optimal profits:

Π∗ =


n α2

n

(γ2

2
− γ1

n

)(κz
κx

)
κz +κx

[(1−βn)κx +κz]2
if βn ≥− (1 +κz/κx)

n α2
n

(γ2

2
− γ1

n

) κz
−4βnκ2

x

otherwise

,

thus completing the proof. Q.E.D.

EC.2. Measure Theoretic Framework

Throughout the paper, we relied on a variant of an “exact law of large numbers,” according to which

the cross-sectional averages of firm-level variables coincide, almost surely, with the corresponding

variables’ expectations. In this appendix, we provide the appropriate formalism and conditions

for such a result to hold. This framework, which builds on the construction by Sun (2006), also

provides us with a Fubini-type property that allows us to exchange the order of integration (over

the set of firms and the set of signal realizations) throughout the derivations.

Consider the probability space ([0,1],I,M), where the unit interval [0,1] denotes the set of

firms in the economy, I is the σ-algebra of Lebesgue measurable sets, and M is the Lebesgue

measure. Also consider the probability space (Ω,F ,P) capturing the uncertainty in the model,

where Ω is the sample space, F is the σ-algebra of events, and P is a probability measure. Let

([0,1]×Ω,I⊗F , λ⊗P ) denote the product probability space, where I⊗F is the product σ-algebra

generated by the class of measurable rectangles {I×F | I ∈ I and F ∈F} and the product measure

M ⊗P has the property that

M ⊗P(I ×F ) =M(I) ·P (F ),
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for all I ∈ I and F ∈F . Note that since M and P are probability measures and thus σ-finite, the

desired property is straightforward from the product measure theorem (e.g., see Billingsley (2008)).

Throughout, for a process f : [0,1]×Ω→ R, we let fi denote the random variable f(i, ·) : Ω→ R

and fω denote the random variable f(·, ω) : [0,1]→R.

Following Sun (2006), we define ([0,1]×Ω,I �F ,M �P) to be a Fubini extension of the product

space ([0,1]×Ω,I ⊗F ,M ⊗P ) if

(i) for any M � P -integrable process f on ([0,1]×Ω,I �F), fi is integrable on (Ω,F , P ) for

M -almost all i∈ I and fω is integrable on ([0,1],I,M) for P -almost all ω ∈Ω;

(ii)
∫

Ω
fi dP and

∫
[0,1]

fω dM are, respectively, M -integrable and P -integrable, and satisfy∫
[0,1]×Ω

f(i,ω) d(M �P)(i,ω) =

∫
[0,1]

(∫
Ω

fi(ω) dP (ω)

)
dM(i) =

∫
Ω

(∫
[0,1]

fω(i) dM(i)

)
dP (ω).

Throughout the paper, we assume that all relevant quantities lie in the Fubini extension of the

product probability space constructed above. For additional details we refer the interested reader

to Sun (2006), who provides a detailed treatment of the construction and establishes that there

exist Fubini extensions in which one can construct measurable processes with essentially pairwise

independent random variables taking any given distribution.10 Moreover, we require any process f

on ([0,1]×Ω,I�F) to be measurable, which is consistent with the information structure specified

throughout the paper. This assumption, coupled with the fact that M �P is a probability measure,

implies that f is M � P -integrable. Thus, the Fubini-type property above holds for any random

variable in the paper.

We now present the so called exact law of large numbers in the framework of the Fubini extension

above:

Proposition EC.1 (Sun (2006)). Consider a process f : [0,1] × Ω → R that is square

integrable with respect to M �P. If random variables {fi}i∈[0,1] are uncorrelated, then for any set

I ∈ I satisfying M(I)> 0,∫
I

f(i,ω) dM(i) =

∫
I×Ω

f(i,ω) d(M �P)(i,ω) for P -almost all ω ∈Ω.

This result states that, under fairly general conditions, the sample average of a random variable

over any set of firms I with positive measure is equal to that random variable’s expectation. We use

this result in our analysis and, specifically, to claim that

∫
[0,1]

ε(i,ω) dM(i) =

∫
[0,1]

ξ(i,ω) dM(i) = 0.

Note that we rely on a slight abuse of notation throughout the paper to simplify the exposition of

our analysis and results. In particular, we write

∫ 1

0

fi di instead of

∫
[0,1]

fi dM(i).

10 Also see Sun and Zhang (2009), who show that this result holds for the case in which the index space is an extension
of the Lebesgue unit interval.
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