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Abstract

We develop a model of information exchange through communication and investigate its impli-

cations for information aggregation in large societies. An underlying state determines payoffs from

different actions. Agents decide which others to form a costly communication link with, incurring

the associated cost. After receiving a private signal correlated with the underlying state, they ex-

change information over the induced communication network until taking an (irreversible) action. We

define asymptotic learning as the fraction of agents taking the correct action converging to one as a

society grows large. Under truthful communication, we show that asymptotic learning occurs if (and

under some additional conditions, also only if) in the induced communication network most agents

are a short distance away from “information hubs”, which receive and distribute a large amount of

information. Asymptotic learning therefore requires information to be aggregated in the hands of a

few agents. We also show that while truthful communication may not always be a best response,

it is an equilibrium when the communication network induces asymptotic learning. Moreover, we

contrast equilibrium behavior with a socially optimal strategy profile, i.e., a profile that maximizes

aggregate welfare. We show that when the network induces asymptotic learning, equilibrium behavior

leads to maximum aggregate welfare, but this may not be the case when asymptotic learning does

not occur. We then provide a systematic investigation of what types of cost structures and associated

social cliques (consisting of groups of individuals linked to each other at zero cost, such as friendship

networks) ensure the emergence of communication networks that lead to asymptotic learning. Our

result shows that societies with too many and sufficiently large social cliques do not induce asymptotic

learning, because each social clique would have sufficient information by itself, making communication

with others relatively unattractive. Asymptotic learning results either if social cliques are not too

large, in which case communication across cliques is encouraged, or if there exist very large cliques

that act as information hubs.
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1 Introduction

Most social decisions, ranging from product and occupational choices to voting and political behavior,

rely on information agents gather through communication with friends, neighbors, and co-workers as

well as information obtained from news sources and prominent webpages. A central question in social

science concerns the dynamics of communication and information exchange and whether such dynam-

ics lead to the effective aggregation of dispersed information. Our objective in this paper is to develop

a tractable benchmark model to study the dynamics of belief formation and information aggregation

through communication and the choices that individuals make concerning whom to communicate with.

A framework for the study of these questions requires communication to be strategic, time-consuming

and/or costly, since otherwise all information could be aggregated immediately by simultaneous com-

munication among the agents. Our approach focuses on dynamic and costly communication (and we

also allow strategic communication, though this turns out to be less important in the present context).

As a motivating example, consider a group of consumers contemplating the purchase of one among

a number of competing new products. Each consumer has a prior about the benefits of each available

option (for example, through advertising or prior experience with similar products) and in addition

can communicate with her friends and neighbors about their views and experiences. Communication

is costly both because of the direct costs this may entail (including costs in processing information),

and because obtaining information from friends, neighbors, and co-workers involves delays. Once a

particular choice has been made, reversing it is costly. Moreover, new information obtained soon after

an action is taken (e.g., purchase of a product) is limited, as customers find it hard to precisely identify

their valuations. Markets for several products and services naturally fit our framework. Duflo and Saez

in a series of papers (Duflo and Saez (2002), Duflo and Saez (2003)) provide evidence that retirement

decisions by employees in a university are largely influenced by the information they receive from their

social connections. Sorensen (2006) uses data from the University of California to empirically examine

the role of social learning in employees’ choices of health plans. His analysis reveals a significant social

effect, which is present even when the model allows for department-specific employee heterogeneity.

In a different context, Nair, Manchanda, and Bhatia (2010) and Iyengar, Van den Bulte, and Valente

(2011) study the role of “opinion leaders” and word-of-mouth communication in the diffusion of new

prescription drugs among physicians. They show that physicians’ behavior is significantly influenced by

prominent colleagues in their peer groups. Finally, there is strong empirical evidence that individuals

are more likely to invest in the stock market if their peers are also investing (Hong, Kubik, and Stein

(2004)), and that word-of-mouth effects play a crucial role in the portfolio choices of mutual fund

managers (Hong, Kubik, and Stein (2005)).1

1Another natural application is the adoption of new technologies. Conley and Udry (2010) and Bandiera and Rasul
(2006) provide evidence that technology adoption by farmers in Ghana and Mozambique respectively is influenced by
the information they obtain from their social networks. In this case, individuals are learning both about the opinions
and experiences of others.
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Our model provides a stylized but general environment to study this type of problems. An un-

derlying state of the world determines the action with the highest payoff, which is assumed to be the

same for all agents.2 Each agent receives a private signal correlated with the underlying state, and can

communicate with her direct neighbors. We assume that the social network is also endogenous and

results from costly formation of links in the first stage of the game. Thereafter, agents communicate

with their neighbors until they irreversibly choose an action. Earlier actions are preferred to later ones

because of discounting, and communication is time-consuming because at later stages of the game,

the neighbors of an agent will be able to acquire and communicate more information. This setup

thus enables us to understand the trade-offs in the new product diffusion example mentioned in the

previous paragraph and also study the endogenous formation of a social network simultaneously with

the process of communication over that network.

We characterize the equilibria of this network formation and communication game and then inves-

tigate the structure of these equilibria as the society becomes large (i.e., for a sequence of games). Our

main focus is on how well information is aggregated, which we capture with the notion of asymptotic

learning. We say that there is asymptotic learning if the fraction of agents taking the correct action

converges to one (in probability) as the society becomes large.

Our analysis proceeds in several stages. First, we take the communication graph as given and

assume that agents are non-strategic in their communication, i.e., they disclose truthfully all the

information they possess when communicating. Under these assumptions, we provide a condition that

is sufficient and (under an additional mild assumption) necessary for asymptotic learning. Intuitively,

this condition requires that most agents are a short distance away from information hubs, which are

agents that have a very large (in the limit, infinite) number of connections.3 Two different types

of information hubs can be conduits of asymptotic learning in our benchmark model. The first are

information mavens who receive communication and aggregate information from many other agents.

If most agents are close to an information maven, asymptotic learning is guaranteed. The second

type of hubs are social connectors who communicate to many agents, enabling them to spread their

information widely.4 Social connectors are only useful for asymptotic learning, if they are close to

mavens so that they can distribute their information. Thus asymptotic learning is also obtained if

most agents are close to a social connector, who is in turn a short distance away from a maven. The

intuition for why such information hubs and almost all agents being close to information hubs are

necessary for asymptotic learning is instructive: were it not so, a large fraction of agents would prefer

to act before waiting for sufficient information to arrive. But then a nontrivial fraction of those would

2This is not a crucial assumption as long as agents know each others’ preferences, since our model does not feature
payoff externalities.

3We also derive conditions under which ε, δ-asymptotic learning occurs at an equilibrium strategy profile. We say that
ε, δ-asymptotic learning occurs when at least 1− ε fraction of the population takes an ε-optimal action with probability
at least 1− δ.

4Both of these terms are inspired by Gladwell (2000).
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take the incorrect action, and moreover, they would also disrupt the information flow for the agents to

whom they are connected. The advantage of the first part of our analysis is that it enables a relatively

simple characterization of equilibria and the derivation of intuitive conditions for asymptotic learning.

Second, we show that even if individuals misreport their information (which they may want to do

in order to delay the action of their neighbors and obtain more information from them in future com-

munication), it is an equilibrium of the strategic communication game to report truthfully whenever

truthful communication leads to asymptotic learning. Interestingly, the converse is not necessarily

true: strategic communication may lead to asymptotic learning in some special cases in which truthful

communication precludes learning. From a welfare perspective, we show a direct connection between

asymptotic learning and the maximum aggregate welfare that can be achieved by any strategy profile:

when asymptotic learning occurs, all equilibria are (asymptotically) socially efficient, i.e., they achieve

the maximum welfare. However, when asymptotic learning does not occur, equilibrium behavior can

lead to inefficiencies that arise from the fact that agents do not internalize the positive effect of delay-

ing their action and continuing information exchange. Thus our analysis identifies a novel information

externality that is a direct product of the agents being embedded in a network: the value of an agent

to her peers does not only originate from her initial information but also from the paths she creates

between different parts of the network through her social connections. It is precisely the destruction

of these paths when the agent takes an action that may lead to a welfare loss in equilibrium.

Our characterization results on asymptotic learning can be seen both as “positive” and “negative”.

On the one hand, to the extent that most individuals obtain key information from either individuals or

news sources (websites) approximating such hubs, efficient aggregation of information may be possible

in some settings. We show in particular that hierarchical graph structures where agents in the higher

layers of the hierarchy can communicate information to many agents at lower layers lead to asymptotic

learning.5 On the other hand, communication structures that do not feature such hubs appear more

realistic in most contexts, including communication between friends, neighbors, and co-workers.6 Our

model thus emphasizes how each agent’s incentive to act sooner rather than later makes information

aggregation significantly more difficult.

Third, armed with the analysis of information exchange over a given communication network, we

turn to the study of the endogenous formation of this network. We assume that the formation of

communication links is costly, though there also exist social cliques, groups of individuals that are

linked to each other at zero cost. These can be thought of as “friendship networks” that are linked

for reasons unrelated to information exchange and thus act as conduits of such exchange at low cost.

Agents have to pay a cost at the beginning in order to communicate (receive information) from those

5An additional challenge when significant information is concentrated in the hands of a few hubs may arise because
of misalignment of interests, which our approach ignores.

6In particular, the popular (though not always empirically plausible) random graph models such as preferential
attachment and Poisson (Erdős-Renyi) graphs do not lead to asymptotic learning.
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who are not in their social clique. Even though network formation games have several equilibria, the

structure of our network formation and information exchange game enables us to obtain relatively

sharp results on what types of societies lead to endogenous communication networks that ensure

asymptotic learning. In particular, we show that societies with too many (disjoint) and sufficiently

large social cliques induce behavior inconsistent with asymptotic learning. The reason why relatively

large social cliques may discourage efficient aggregation of information is that because they have

enough information, communication with others (from other social cliques) becomes unattractive, and

as a consequence, the society gets segregated into a large number of disjoint social cliques that do not

share information. In contrast, asymptotic learning occurs in equilibrium if social cliques are not too

large so that it is worthwhile for at least some members of these cliques to communicate with members

of other cliques, forming a structure in which information is shared across (almost) all members of

the society. Asymptotic learning also occurs when there exist very large social cliques that act as

information hubs.

These results also illustrate an interesting feature of the information exchange process: an agent’s

willingness to perform costly search (which here corresponds to forming a link with another social

clique) is decreasing with the precision of the information that is readily accessible to her. This gives a

natural explanation for informational segregation: agents do not internalize the benefits for the group

of forming an additional link, leading to a socially inefficient information exchange structure. It further

suggests a form of informational Braess’ paradox,7 whereby the introduction of additional information

may have adverse effects for the welfare of a society by discouraging the formation of additional links

for information sharing (see also Morris and Shin (2002) and Duffie, Malamud, and Manso (2009) for

a related result). Consider, for example, the website of a film critic that can be viewed as a good

but still imprecise information source (similar to a reasonable-sized social clique in our model). Other

agents can access the critic’s information and form an opinion about a movie quickly. However, this

precludes information sharing among the agents and may lead to a decrease in aggregate welfare.

Our paper is related to several strands of the literature on social and economic networks. First,

it is related to the large and growing literature on social learning. Much of this literature focuses

on Bayesian models of observational learning, where each individual learns from the actions of others

taken in the past. A key impediment to information aggregation in these models is the fact that actions

do not reflect all of the information that an individual has and this can induce a pattern reminiscent

to a “herd”, where individuals ignore their own information and copy the behavior of others (see,

for example, Bikhchandani, Hirshleifer, and Welch (1992), Banerjee (1992), Moscarini, Ottaviani, and

Smith (1998), and Smith and Sørensen (2000), as well as Bala and Goyal (1998), for early contributions,

and Gale and Kariv (2003), Banerjee and Fudenberg (2004), Smith and Sørensen (2010), Acemoglu,

7In the original Braess’ paradox, the addition of a new road may increase the delays faced by all motorists in a Nash
equilibrium.
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Dahleh, Lobel, and Ozdaglar (2011), and Mueller-Frank (2012) for models of Bayesian learning with

richer observational structures). While observational learning is important in many situations, a large

part of information exchange in practice is through communication.

Several papers in the literature study communication, though typically using non-Bayesian or

“myopic” rules (for example, Ellison and Fudenberg (1995), DeMarzo, Vayanos, and Zwiebel. (2003),

Acemoglu, Ozdaglar, and ParandehGheibi (2010), and Golub and Jackson (2010)). A major difficulty

faced by these approaches, often precluding Bayesian and dynamic game theoretic analysis of learning

in communication networks, is the complexity of updating when individuals share their ex-post beliefs

(because of the difficulty of filtering out common sources of information). We overcome this difficulty

by adopting a different approach, whereby individuals can directly communicate their signals and

information is “tagged”, i.e., signals are communicated along with their sources. This leads to a

tractable structure for the updating of beliefs and enables us to study perfect Bayesian equilibria of a

dynamic game of network formation, communication, and decision-making. It also reverses one of the

main insights of these papers, also shared by the pioneering social learning work by Bala and Goyal

(1998), that the presence of “highly connected” or “influential” agents, or what Bala and Goyal (1998)

call a “royal family,” acts as a significant impediment to the efficient aggregation of information. On

the contrary, in our model the existence of such highly connected agents (information hubs, mavens

or connectors) is crucial for the efficient aggregation of information. Moreover, the existence of such

“highly connected” agents also reduces incentives for non-truthful communication, and is the key

input into our result that truthful communication can be an equilibrium. The recent paper by Duffie,

Malamud, and Manso (2009) is also noteworthy: in their model agents are randomly matched according

to endogenously determined search intensities, and because they focus on an environment with a

continuum of agents, communication of beliefs in their setup is equivalent to exchanging signals,

and thus enables them to avoid the issues arising in the previous literature. Their main focus is on

characterizing equilibrium search intensities as a function of the information that an agent already

has access to. In contrast to our work, there is no explicit network structure. Mobius, Phan, and

Szeidl (2010) empirically compare a non-Baysian model of communication (similar to the one adopted

by Golub and Jackson (2010)) with a model in which, similar to ours, signals are communicated

and agents are Bayesian. Although their study is not entirely conclusive on whether agents behave

according to one or the other model, their evidence broadly supports the Bayesian alternative. Finally,

Tong and Zeng (2012) build on our model and investigate other notions of learning.

Our work is also related to the growing literature on network formation, since communication takes

place over endogenously formed networks. Bala and Goyal (2000) model strategic network formation as

a non-cooperative game and study its equilibria under various assumptions on the benefits of forming

a link. In particular, they distinguish between one-way and two-way flow of benefits, depending on

whether a link benefits only the agent that decides to form it or both participating agents. They
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identify a number of simple structures that arise in equilibrium: the empty network, the wheel,

the star, and the complete network. More recently, Galeotti, Goyal, and Kamphorst (2006) and

Galeotti (2006) study the role of heterogeneity among agents in the network structures that arise in

equilibrium. Closer to our work is Hojman and Szeidl (2008) who study a network formation model

where the benefits from connecting to other agents have decreasing returns to scale (which is also the

case in our model of information exchange because of endogenous reasons). The main focus of the

network formation literature has been on characterizing equilibrium structures and comparing them

with patterns observed in real world networks (e.g., small distances between agents, high centrality

etc.). In most of the literature the benefits and costs associated with forming a link are exogenous. A

novel aspect of our work is that the benefits of forming links are endogenously determined through the

subsequent information exchange. Our focus is also different: although we also obtain characterization

results on the shape of the network structures that arise in equilibrium (e.g., ring structures emerge

as equilibrium configurations under some conditions as in Bala and Goyal (2000)), our focus is on

whether these structures lead to asymptotic learning. Interestingly, while network formation games

have a large number of equilibria, the simple structure of our model enables us to derive relatively

sharp results about environments in which the equilibrium networks lead to asymptotic learning.

Finally, our paper is related to the literature on strategic communication, pioneered by the cheap

talk framework of Crawford and Sobel (1982). While cheap talk models have been used for the study

of information aggregation with one receiver and multiple senders (e.g., Morgan and Stocken (2008))

and multiple receivers and single sender (e.g., Farrell and Gibbons (1989)), most relevant to our paper

are two recent papers that consider strategic communication over general networks, Galeotti, Ghiglino,

and Squintani (2011) and Hagenbach and Koessler (2010). A major difference between these works

and ours is that we consider a model where communication is allowed for more than one time period,

thus enabling agents to receive information outside their immediate neighborhood (at the cost of a

delayed decision) and we also endogenize the network over which communication takes place. On the

other hand, our framework assumes that an agent’s action does not directly influence others’ payoffs,

while such payoff interactions are the central focus of Galeotti, Ghiglino, and Squintani (2011) and

Hagenbach and Koessler (2010); in our model, the incentives for strategic communication arise solely

for informational purposes. Our paper is also related to the existing work by Ambrus, Azevedo,

and Kamada (2012), where the sender and the receiver communicate strategically through a chain of

intermediaries. Their primary focus is information intermediation, thus communication takes place

over multiple rounds but it is restricted to be on a ordered line from the sender to the receiver, where

each agent only sends information once.

The rest of the paper is organized as follows. Section 2 develops a general model of information

exchange among rational agents, that are embedded in a communication network. Also, it introduces

the two main environments we study. Section 3 contains our main results on asymptotic learning
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given a communication graph. It also includes a welfare discussion that draws the connection between

learning and efficient communication. Finally, it illustrates how our results can be applied to a number

of random graph models. Section 4 incorporates endogenous network formation to the information

exchange model. Our main result in this section shows the connection between incentives to form com-

munication links and asymptotic learning. Section 5 concludes. All proofs are presented in Appendix

B.

2 A Model of Information Exchange in Social Networks

In the first part of the paper, we focus on modeling information exchange among agents over a given

communication network. In the second part (Section 4), we investigate the question of endogenous

formation of this network. We start by presenting the information exchange model for a finite set

N n = {1, 2, · · · , n} of agents. We also describe the limit economy as n→∞.

2.1 Actions, Payoffs, and Information

Each agent i ∈ N n chooses an irreversible action xi ∈ R. Her payoff depends on her action and an

underlying state of the world θ ∈ R, which is an exogenous random variable. In particular, agent i’s

payoff when she takes action xi and the state of the world is θ is given by ψ − (xi − θ)2, where ψ is a

constant.

The state of the world θ is unknown and agents observe noisy signals about it. In particular, we

assume that θ is drawn from a Normal distribution with known mean µ and precision ρ. Each agent

receives a private signal si = θ + zi, where the zi’s are idiosyncratic, independent from one another

and θ, and normally distributed with common mean µ̄ (normalized to 0) and precision ρ̄ (variance

1/ρ̄).8 Finally, we assume that ψ > ψ̄ ≥ 1/(ρ+ ρ̄).9

2.2 Communication

Our focus is on information aggregation, when agents are embedded in a network that imposes commu-

nication constraints. In particular, agent i forms beliefs about the state of the world from her private

signal si, as well as information she obtains from other agents through a given communication network

Gn, which, as will be described shortly, represents the set of communication constraints imposed on

them. We assume that time t ∈ [0,∞) is continuous and there is a common discount rate r > 0. Com-

munication times are stochastic. In particular, communication times are exponentially distributed

with parameter λ > 0. Equivalently, agents “wake” up and communicate simultaneously with their

neighbors, when a Poisson clock with rate λ ticks.10 Thus the probability that communication occurs

8The assumption that all agents receive signals with equal precision is for simplicity and can be relaxed, as our analysis
in Section 4 shows (see, in particular, Footnote 20).

9As shown in Subsection 3.1, the expected utility of an agent when she takes an action at t = 0 based only on her
private signal is given by ψ − 1/(ρ + ρ̄). Waiting is costly when ψ > ψ̄ = 1/(ρ + ρ̄) and, in particular, it is costlier the
larger the constant ψ is.

10We assume that communication between pairs of agents occurs simultaneously as opposed to at iid times for each
pair for simplicity. When communication occurs simultaneously, the amount of information (number of private signals)

7



in time interval [t, t + dt) is equal to λdt. At a given time instant t, agent i decides whether to take

action xi (and receive payoff ψ − (xi − θ)2 discounted by e−rt) or “wait” to obtain more information

in subsequent communication rounds from her peers. Throughout the rest of the paper, we say that

the agent “exits” at time t, if she chooses to take the irreversible action at time t.

As mentioned above, each agent obtains information from other agents through a communication

network represented by a directed graph Gn = (N n, En), where En is the set of directed edges with

which agents are linked. We say that agent j can obtain information from i or that agent i can send

information to j if there is an edge from i to j in graph Gn, i.e., (i, j) ∈ En. Let Ini,t denote the

information set of agent i at time t and Ini,t denote the set of all possible information sets. Then, for

every pair of agents i, j, such that (i, j) ∈ En, we say that agent j communicates with agent i or that

agent i sends a message to agent j, and define the following map

mn
ij,t : Ini,t →Mn

ij,t for (i, j) ∈ En,

where Mn
ij,t ⊆ Rn denotes the set of messages that agent i can send to agent j at time t. For the

remainder of the paper, mn
ij,t denotes the map from information sets to messages, whereas mn

ij,t denotes

an actual message, i.e., mn
ij,t ∈Mn

ij,t. Note that without loss of generality the k-th component of mn
ij,t

represents the information that agent i sends to agent j at time t regarding the signal of agent k.11

Moreover, the definition of mn
ij,t captures the fact that communication is directed and is only allowed

between agents that are linked in the communication network, i.e., j communicates with i if and only

if (i, j) ∈ En. The direction of communication should be clear: when agent j communicates with agent

i, then agent i sends a message to agent j, that could in principle depend on the information set of

agent i as well as the identity of agent j.

Importantly, we assume that the cardinality (“dimensionality”) ofMn
ij,t is such that communication

can take the form of agent i sharing all her information with agent j. This has two key implications.

First, an agent can communicate (indirectly) with a much larger set of agents than just her immediate

neighbors, albeit with a time delay. For example, the second time agent j communicates with agent

i, then j can send information not just about her direct neighbors, but also their neighbors (since

presumably she obtained such information during the first communication step). Second, mechanical

duplication of information can be avoided. In particular, the second time agent j communicates with

agent i, she can repeat her original signal, but this is not recorded as an additional piece of information

by agent j, since given the size of the message space Mn
ij,t, each piece of information is “tagged”.

that the agent receives at each communication step is deterministic. If communication did not occur simultaneously (for
example, if at each tick of the Poisson clock a single link was activated and communication occurred only on that link),
agents would have to form beliefs about the amount of information they are likely to receive when they next exchange
information.

11As will become evident in subsequent discussion, we assume that communication involves exchange of signals and not
posterior beliefs. Moreover, information is tagged, i.e., the receiver of the message understands that its k-th component
is associated with agent k.
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This ensures that there need be no confounding of new information and previously communicated

information.

Let Tt denote the set of times that agents communicated with their neighbors before time t. That

defines the information set of agent i at time t > 0 as:

Ini,t = {si,mn
ji,τ ,m

n
ik,τ for all τ ∈ Tt and j, k such that (j, i) ∈ Enand(i, k) ∈ En}

and Ini,0 = {si}. In particular, the information set of agent i at time t > 0 consists of her private

signal, all the messages her neighbors sent to i as well as all the messages agent i sent to her neighbors

in previous communication times.12 Agent i’s action at time t is a mapping from her information set

to the set of actions, i.e.,

σni,t : Ini,t → {“wait”} ∪ R.

The tradeoff between taking an irreversible action and waiting, should be clear at this point. An

agent would wait, in order to communicate indirectly with a larger set of agents and choose a better

action. On the other hand, the future is discounted, therefore, delaying is costly. In particular, agent

i’s value function at time t when her information set is Ini,t is given by the following expression:

Uni,t(I
n
i,t) = max{max

xi
E[ψ − (xi − θ)2|Ini,t], lim

dt→0
e−rdtE(Uni,t+dt(I

n
i,t+dt)|Ini,t)}.

Note that this expression involves a double maximization: first, the agent decides whether to wait or

take an irreversible action, and, in the case that she decides to take an action, she chooses the one

that maximizes her expected instantaneous payoff. It is worthwhile to highlight at this point that the

optimal stopping problem for agent i depends crucially on the actions of the rest of the agents, since

the latter affect agent i’s information set. For the rest of the paper, Uni denotes the expected value

function of agent i at time t = 0.

We close the section with a number of definitions. We define a path between agents i and j in

network Gn as a sequence i1, · · · , iK of distinct nodes such that i1 = i, iK = j and (ik, ik+1) ∈ En for

k ∈ {1, · · · ,K − 1}. The length of the path is defined as K − 1. Moreover, we define the distance of

agent i to agent j as the length of the shortest path from i to j in network Gn, if such a path exists,

i.e.,

distn(i, j) = min{length of P
∣∣ P is a path from i to j in Gn}.

If no path exists, we let distn(i, j) =∞. Finally, the k-step neighborhood of agent i is defined as

Bn
i,k = {j

∣∣ distn(j, i) ≤ k},
12It will become clear why the information set of an agent should include the messages she has sent to her neigh-

bors, when we introduce strategic communication, i.e., when we allow agents to misrepresent or not fully disclose their
information.
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where Bn
i,0 = {i}, i.e., Bn

i,k consists of all agents that are at most k links away from agent i in graph

Gn. Intuitively, if agent i waits for k communication steps and all of the intermediate agents receive

and communicate information truthfully, i will have access to all of the signals of the agents in Bn
i,k.

2.3 Equilibria of the Information Exchange Game

We refer to the game defined above as the Information Exchange Game. We next define the equilibria

of the information exchange game Γinfo(G
n) for a given communication network Gn. We use the

standard notation σ−i to denote the strategies of agents other than i and we let σi,−t denote the vector

of actions of agent i at all times except t. Also, let Pσ and Eσ denote the conditional probability and

the conditional expectation respectively when agents behave according to profile σ.

Definition 1. An action strategy profile σn,∗ is a pure-strategy perfect Bayesian Equilibrium of the

information exchange game Γinfo(G
n) if for every i ∈ N n and time t, and given the strategies of other

agents σn,∗−i , agent i’s action σn,∗i,t obtain expected payoff equal to the value function of agent i at time

t, Uni,t(I
n
i,t). We denote the set of equilibria of this game by INFO(Gn).

Recall that agent i’s strategy profile depends on other agents’ strategies through the evolution of

the information set Ini,t. For the remainder, we refer to a pure-strategy perfect Bayesian Equilibrium

simply as an equilibrium (we do not study mixed strategy equilibria). It is important to note here that

although equilibria depend on the discount rate r, we do not explicitly condition on r for convenience.

If agent i decides to exit and take an action at time t, then the optimal action would be:

xn,∗i,t = argmax
x

E[ψ − (x− θ)2
∣∣Ini,t] = E[θ

∣∣Ini,t].
Since actions are irreversible, the agent’s decision problem reduces to determining the timing of her

action. It is straightforward to see that in equilibrium an agent takes the irreversible action imme-

diately after some communication step concludes. Thus an equilibrium strategy profile σ induces an

equilibrium timing profile τn,σ, where τn,σi designates the communication step after which agent i exits

by taking an irreversible action. The τ notation is convenient to use for the statement of some of our

results below. Finally, similar to the set Bn
i,k, we define the k-step neighborhood of agent i under

equilibrium σ as follows: a path Pσ between agents i and j in Gn under σ is a sequence i1, · · · , iK
of distinct nodes such that i1 = i, iK = j, (ik, ik+1 ∈ En) and τn,σik ≥ k − 1, which ensures that it is

possible for the information from agent j to reach i in equilibrium. In other words, the information is

received by every agent in the path before she takes an irreversible action. Then, we can define

distn,σ(i, j) = min{length of Pσ
∣∣ Pσ is a path from i to j in Gn under equilibrium σ}

and

Bn,σ
i,k = {j

∣∣ distn,σ(j, i) ≤ k}.

10
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Figure 1: The information set of agent 1 under truthful communication.

2.4 Assumptions on the Information Exchange Process

The communication model described in Section 2.2 is fairly general. In particular, the model does not

restrict the set of messages that an agent can send. Throughout, we maintain the assumption that the

communication network Gn is common knowledge. Also, we focus on the following two environments

defined by Assumptions 1 and 3 respectively.

Assumption 1 (Truthful Communication). Communication between agents is truthful, i.e.,

mn
ij,t =

{
m̂n

ij,t if |Tt| ≤ τn,σi
m̂n

ij,τn,σi
otherwise.

and

(m̂n
ij,t)` =

{
s` if distn,σi,` ≤ |Tt|
∈ R otherwise

Intuitively, this assumption compactly imposes three crucial features: (1) Communication takes

place by sharing signals, so that when agent j communicates with agent i at time t, then agent i sends

to j all the information agent i has obtained thus far;13 (2) Agents cannot strategically manipulate

the messages they sent, i.e., an agent’s private signal is hard information. Moreover, they cannot

refuse to disclose the information they possess; (3) When an agent takes an irreversible action, then

she no longer obtains new information and, thus, can only communicate the information she has

obtained until the time of her decision. The latter feature captures the fact that an agent, who

engages in information exchange to make a decision, would have weaker incentives to collect new

information after reaching that decision. Nevertheless, she can still communicate the information she

had previously obtained to other agents. An interesting consequence of this feature is that it imposes

dynamic constraints on communication: agent i can communicate with agent j only if there is a

13Figure 1 illustrates the evolution of the information set of an agent: in the first communication step, agent 2 sends
to agent 1 only her own private signal, while in the second communication step she sends the signal of agent 3.
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directed path between them in the communication network Gn and the agents in the path do not exit

early. Our motivating application, new product diffusion, fits the environment defined by Assumption

1, especially in environments for which it is time-consuming to assess the quality of a new technology

even after adopting it.14

We call this type of communication truthful to stress the fact that the agents cannot strategically

manipulate the information they communicate.15 We discuss the implications of relaxing Assumption

1 by allowing strategic communication in Subsection 3.4.

2.5 Learning in Large Societies

We are interested in whether equilibrium behavior leads to information aggregation. This is captured

by the notion of “asymptotic learning”, which characterizes the behavior of agents over communication

networks with growing size.

We consider a sequence of communication networks {Gn}∞n=1, where Gn = {N n, En}, and refer

to this sequence of communication networks as a society. A sequence of communication networks

induces a sequence of information exchange games, and with a slight abuse of notation we use the

term equilibrium to denote a sequence of equilibria of the information exchange games. We denote

such an equilibrium by σ = {σn}∞n=1, which designates that σn ∈ INFO(Gn) for all n. For any fixed

n ≥ 1 and any equilibrium of the information exchange game σn ∈ INFO(Gn), we introduce the

indicator variable:

Mn,ε
i =

{
1 if agent i takes an action that is ε-close to the optimal,
0 otherwise.

(1)

In other words, Mn,ε
i = 1 (for some ε) if and only if agent i chooses irreversible action xi, such that

|xi − θ| ≤ ε.

The next definition introduces the notion of ε, δ-asymptotic learning for a given society.16

Definition 2. We say that ε, δ-asymptotic learning occurs in society {Gn}∞n=1 along equilibrium σ if

we have:

lim sup
n→∞

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
< δ.

This definition states that ε, δ-asymptotic learning occurs when the probability that at least (1 − ε)-
fraction of the agents takes an action that is ε-close to the optimal action (as the society grows infinitely

14An obvious extension (and a very interesting avenue for future research) would be to incorporate information gen-
eration after an irreversible action is taken into the current framework. This feature would capture the fact that in
some cases agents may obtain additional information after taking an action, e.g., buying a product or adopting a new
technology. For example, an agent may obtain a second private signal of higher precision after taking an action.

15Yet another variant of this assumption would be that agents exit the social network after taking an action and
stop communicating entirely. In this case, the results are essentially identical when their action is observed by their
neighbors. However, if their action is not observable, then the analysis needs to be modified. In particular, there exist
other equilibria where several agents might exit together expecting others to exit.

16Note that we could generalize Definition 2 by introducing yet another parameter and study ε, δ, ζ-asymptotic learning,
in which case we would require that limn→∞ Pσ

([
1/n

∑n
i=1 (1−Mn,ε

i )
]
> ζ
)
< δ.

12



large) is at least 1− δ.

Definition 3. We say that perfect asymptotic learning occurs in society {Gn}∞n=1 along equilibrium

σ if we have:

lim
n→∞

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
= 0.

for any ε > 0. Equivalently, perfect asymptotic learning occurs in society {Gn}∞n=1 along equilibrium

σ if ε, δ-asymptotic learning occurs in {Gn}∞n=1 along σ for any ε, δ > 0.

Perfect asymptotic learning is naturally a stronger definition (corresponding to ε and δ being

arbitrarily small in the definition of ε, δ-asymptotic learning) and requires all but a negligible fraction

of the agents taking the optimal action in the limit as n→∞.

3 Learning and Efficient Communication

In this section, we present our main results on learning and discuss their implications for the aggregate

welfare. Before doing so, we discuss the decision problem of a single agent, which characterizes her

optimal stopping time, i.e., the time to take an irreversible action given the strategy profile σ of

the rest of the agents. Then, we contrast the single agent problem with that of a social planner,

whose objective is to maximize expected aggregate welfare. The analysis in the next three subsections

assumes that communication is truthful (cf. Assumption 1).

3.1 Agent i’s problem

The (non-discounted) expected payoff of agent i taking an action after observing k truthful private

signals (including her own) is given by:

E[ψ − (θ̂ − θ)2
∣∣Ini,t] = ψ − var(θ̂ − θ

∣∣Ini,t) = ψ − 1

ρ+ ρ̄k
,

where recall that ρ and ρ̄ are the precisions of the state θ and the idiosyncratic noise respectively. To

obtain the second equality, note that if agent i exits, then the optimal action would be θ̂ = E[θ
∣∣Ini,t]

and the posterior distribution of θ given the information set Ini,t has precision equal to ρ+ ρ̄k.

By the principle of optimality, the value function for agent i at information set Ini,t and assuming

that the rest of the agents behave according to profile σ is given by:

Uni,t(I
n
i,t) = max

{
ψ − 1

ρ+ρ̄kn,σi,t
(when she takes the optimal irreversible action),

e−rdtE[Eσ(Uni,t+dt
∣∣Ini,t+dt)∣∣Ini,t] (when she decides to wait, i.e., x = “wait”),

where kn,σi,t = |Bn,σ
i,t | denotes the number of distinct private signals agent i has observed up to time t.

The first line is equal to the expected payoff for the agent when she chooses the optimal irreversible

action under information set Ini,t, i.e., E[θ|Ini,t], and she has observed kn,σi,t private signals, while the

second line is equal to the discounted expected continuation payoff. Specifically, if the agent decides

to “wait” at time t, then she incurs the discounting cost (term e−rdt) in exchange for potentially more
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information, as designated by the information set Ini,t+dt, where Ini,t ⊆ Ini,t+dt and Ini,t ⊂ Ini,t+dt if new

information is communicated within the time interval [t, t+ dt).

The following lemma states that an agent’s optimal action takes the form of a threshold rule: there

exists a threshold (kn,σi,|Tt|)
∗, such that an agent decides to take an irreversible action at time t as long

as she has observed more than (kn,σi,|Tt|)
∗ private signals. Like all other results in the paper, the proof

of this lemma is provided in Appendix B.

Lemma 1. Suppose that Assumption 1 holds, so that communication is truthful. Then, given com-

munication network Gn and equilibrium σ ∈ INFO(Gn), there exists a sequence of signal thresholds

for each agent i, {(kn,σi,τ )∗}∞τ=0, that depend on the current communication round, the identity of the

agent i, the communication network Gn and σ such that agent i maximizes her expected utility at

information set Ini,t by taking action xni,t(I
n
i,t) defined as

xni,t(I
n
i,t) =

{
E[θ
∣∣Ini,t], if kni,t ≥ (kn,σi,|Tt|)

∗,

“wait”, otherwise,

where kni,t the number of private signals that agent i has observed up to time t.

A consequence of Lemma 1 is that an equilibrium strategy profile σ defines both a time at which

agent i acts (immediately after communication step τn,σi ), but also the number of signals that agent i

has access to when she acts.

3.2 Asymptotic Learning

We begin the discussion by introducing the concepts that are instrumental for asymptotic learning:

the observation radius and k-radius sets. Recall that an equilibrium of the information exchange game

on communication network Gn, σn ∈ INFO(Gn), induces a timing profile τn,σ, such that agent i

takes an irreversible action after τn,σi communication steps. We call τn,σi the observation radius of

agent i under equilibrium profile σn. We also define agent i’s perfect observation radius, τni , as the

communication round that agent i would exit assuming that all other agents never exit. Note that an

agent’s perfect observation radius is independent of the strategies of other agents and depends only

on the network structure. On the other hand, τn,σi is an endogenous object and depends on both the

network as well as the specific equilibrium profile σ. Given the notion of an observation radius, we

define k-radius sets (and similarly perfect k-radius sets) as follows.

Definition 4. Let V n,σ
k be defined as

V n,σ
k = {i ∈ N

∣∣ ∣∣Bn,σ
i,τn,σi

∣∣ ≤ k}.
We refer to V n,σ

k as the k-radius set (along equilibrium σ). Similarly, we refer to

V n
k = {i ∈ N

∣∣ ∣∣Bn
i,τni

∣∣ ≤ k}
14



as the perfect k-radius set.

Intuitively, V n,σ
k includes all agents that take an action before they receive signals from more than

k other individuals in equilibrium σ. Equivalently, the size of their (indirect) neighborhood by the

time they take an irreversible action is no greater than k. From Definition 4 it follows immediately

that

i ∈ V n,σ
k ⇒ i ∈ V n,σ

k′ for all k′ > k. (2)

Proposition 1 below provides conditions for perfect asymptotic learning to occur in any equilibrium

profile as a function of only exogenous objects, i.e., the perfect k-radius sets, that depend exclusively

on the structure of the communication network (for conditions which guarantee that ε, δ-asymptotic

learning occurs/does not occur in an equilibrium profile σ refer to Proposition 8 in Appendix A).

Before stating the proposition, we define the notion of leading agents. Intuitively, a society contains

a set of leading agents if there is a negligible fraction of the agents (the leading agents) whose actions

affect the equilibrium behavior of a much larger set of agents (the followers). Let indegni = |Bn
i,1|,

outdegni =
∣∣{j∣∣i ∈ Bn

j,1}
∣∣ denote the in-degree, out-degree of agent i in communication network Gn

respectively.

Definition 5. A collection {Sn}∞n=1 of sets of agents is called a set of leading agents if

(i) There exists k > 0, such that Snj ⊆ V nj
k for all j ∈ J , where J is an infinite index set.

(ii) limn→∞
1
n ·
∣∣Sn∣∣ = 0, i.e., the collection {Sn}∞n=1 contains a negligible fraction of the agents as

the society grows.

(iii) limn→∞
1
n ·
∣∣Snfollow∣∣ > ε, for some ε > 0, where Snfollow denotes the set of followers of Sn. In

particular,

Snfollow = {i
∣∣ there exists j ∈ Sn such that j ∈ Bn

i,1}.

Proposition 1. Suppose that Assumption 1 holds, so that communication is truthful. Then,

(i) Perfect asymptotic learning occurs in society {Gn}∞n=1 in any equilibrium σ if

lim
k→∞

lim
n→∞

1

n
·
∣∣V n
k

∣∣ = 0. (3)

(ii) Conversely, if condition (3) does not hold for society {Gn}∞n=1and the society does not contain

a set of leading agents, then perfect asymptotic learning does not occur in any equilibrium σ.

Proposition 1 is not stated as an if and only if result because the fact that condition (3) does not hold

in a society does not necessarily preclude perfect asymptotic learning in the presence of leading agents.

In particular, depending on their actions, a large set of agents may exit early before obtaining enough
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Figure 2: Leading agents and asymptotic learning.

information to learn the underlying state, or delay their actions and learn it. Figure 2 clarifies this

point: if the leading agents (agents A and B) delay their irreversible decision for one communication

round, then a large fraction of the rest of the agents (agents 1 to n) may take (depending on the

discount rate) an irreversible action as soon as they communicate with the leading agents and their

neighbors (i.e., after the second communication round concludes), thus, perfect asymptotic learning

fails. However, if the leading agents do not “coordinate”, then they exit early and this may lead

the rest of the agents to take a delayed (after the third communication round), but more informed

action. Generally, in the presence of leading agents, asymptotic learning may occur in all or some of

the induced equilibria, even when condition (3) does not hold.

In the rest of this section, we present two corollaries that help clarify the intuition behind the

asymptotic learning result and identify the role of certain types of agents on information spread in a

given society. We focus on perfect asymptotic learning, since we can obtain sharper results, though

we can state similar corollaries for ε, δ-asymptotic learning for any ε and δ. All corollaries are again

expressed in terms of the network topology. Also, for simplicity, for the rest of this section, we assume

that the in-degree and the out-degree of an agent are non-decreasing with n.

In particular, Corollary 1 identifies a group of agents, that is crucial for a society to permit

asymptotic learning: information mavens (a term inspired by Gladwell (2000)), who have high in-

degrees (“information hubs”) and can thus act as effective aggregators of information. The importance

of information mavens is clearly illustrated by our learning results. Our next definition formalizes this

notion.

Definition 6. Agent i is called an information maven of society {Gn}∞n=1 if i has an infinite in-degree,

i.e., if

lim
n→∞

indegni =∞.

16



Let MAVEN ({Gn}∞n=1) denote the set of mavens of society {Gn}∞n=1.

For any agent j, let dMAVEN ,nj denote the shortest distance defined in communication network Gn

between j and a maven k ∈MAVEN ({Gn}∞n=1). Finally, let Wn denote the set of agents that are at

distance at most equal to their perfect observation radius from a maven in communication network

Gn, i.e., Wn = {j
∣∣ dMAVEN ,nj ≤ τnj }.

The following corollary highlights the importance of information mavens for asymptotic learning.

Informally, it states that if almost all agents have a short path to a maven, then asymptotic learning

occurs.

Corollary 1. Suppose that Assumption 1 holds, so that communication is truthful. Then, asymptotic

learning occurs in society {Gn}∞n=1 if

lim
n→∞

1

n
·
∣∣Wn

∣∣ = 1.

According to Corollary 1, asymptotic learning is obtained when almost all agents are at a “short

distance” away from an information maven (less than their observation radius).

As mentioned in the Introduction, a second type of information hub also plays an important role

in asymptotic learning. While mavens have high in-degree and are thus able to effectively aggregate

dispersed information, they may not be in the right position to distribute this aggregated information.

If so, even in a society that has several information mavens, a large fraction of the agents may not

benefit from their information. Social connectors, on the other hand, are defined as agents with a high

out-degree, and thus play the role of spreading the information aggregated by the mavens. Before

stating the proposition, we define social connectors.

Definition 7. Agent i is called a social connector of society {Gn}∞n=1 if i has an infinite out-degree,

i.e., if

lim
n→∞

outdegni =∞.

The following corollary illustrates the role of social connectors for asymptotic learning.

Corollary 2. Suppose that Assumption 1 holds, so that communication is truthful. Consider a society

{Gn}∞n=1, such that the set of information mavens does not grow at the same rate as the society itself,

i.e.,

lim
n→∞

∣∣MAVEN ({Gn}∞n=1) ∩ {1, · · · , n}
∣∣

n
= 0.

Moreover, all mavens in the society have bounded out-degree, i.e., there exists k > 0, such that,

lim sup
n→∞

outdegni < k, for all i ∈MAV EN({Gn}∞n=1).

Then, for asymptotic learning to occur, the society should contain a social connector within a short
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distance to a maven, i.e.,

dMAVEN ,ni ≤ τni , for some social connector i.

Recall that the corollaries were expressed for societies for which both the in-degree and the out-

degree of an agent are non-decreasing in the size of the society n. This choice simplified the exposition

considerably; if this was not the case, the corollaries would have been expressed in terms of the agents

with the largest in-degree and out-degree within the observation radius of an agent for each n.

Corollary 2 thus states that unless the set of mavens grows at the same rate as the society or

there are agents that are both mavens and connectors , then information aggregated at the mavens is

spread through the out-links of a connector. These two corollaries highlight two ways in which society

can achieve perfect asymptotic learning. First, it may contain several information mavens who not

only collect and aggregate information but also distribute it to almost all the agents in the society.

Second, it may contain a sufficient number of information mavens, who pass their information to social

connectors, and almost all the agents in the society are a short distance away from social connectors

and thus obtain accurate information from them. This latter pattern is more plausible in practice than

one in which the same agents collect and distribute dispersed information. For example, a website or

a news source may need to rely on information mavens (journalists, researchers or analysts) to collect

sufficient information and then reach a large number of individuals, and this may permit information

to be aggregated efficiently.

The results summarized in Proposition 1 as well as in Corollaries 1 and 2 can be seen both as positive

and negative, as already noted in the Introduction. On the one hand, communication structures that

do not feature information mavens (or connectors) do not lead to perfect asymptotic learning, and

information mavens may be viewed as unrealistic or extreme. On the other hand, as already noted

above, much communication in modern societies happens through agents that play the role of mavens

and connectors (see again Gladwell (2000)). These are highly connected agents that are able to collect

and distribute crucial information. Perhaps more importantly, most individuals obtain some of their

information from news sources, media, and websites, which exist partly or primarily for the purpose

of acting as information mavens and connectors.17 In particular, Reinstein and Snyder (2005) exploit

the difference in timing between the release of a movie and the posting of a review by two of the most

prominent critics, Siskel and Ebert, to argue for the importance of a positive review, especially in

movie categories with a lot of uncertainty and little prior information (e.g., narrower release movies).

Moreover, they show that a positive review increases the total number of consumers attending the

17For example, a news website such as cnn.com acts as a connector that spreads the information aggregated by
the journalists-mavens to interested readers. Similarly, a movie review website, e.g., imdb.com, spreads the aggregate
knowledge of movie reviewers to interested movie aficionados.
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movie rather than simply shifting consumers to view the movie earlier. Similarly, Sorensen (2007)

exploits time lags between the release of a book and its inclusion to the New York Times bestsellers

list to establish similar results. We view the above evidence as conforming with our findings: in the

absence of input from mavens-connectors, information is not aggregated efficiently, since it is their

input that induces agents to buy certain products.

The result that asymptotic learning requires the presence of information hubs (information mavens

and social connectors) is in contrast to one of the key insights of several non-Bayesian models of

learning. Both in Bala and Goyal (1998) and in models based on DeGroot’s approach to learning

(e.g., DeMarzo, Vayanos, and Zwiebel. (2003) and Golub and Jackson (2010)), the existence of a

highly connected individual or group of individuals (a “royal family” in the terminology of Bala and

Goyal (1998)) precludes learning because it leads to excessive duplication of information. In our

framework, because agents are fully Bayesian and information is tagged, such duplication does not

take place and information hubs play a central role in quickly aggregating and disseminating dispersed

information. Thus they are conduits rather than barriers to asymptotic learning.

Finally, an important point to highlight is that although our results are shown in a setting where

agents may end up passing a number of signals that grows with the size of the society (which might

be considered as an unappealing feature of the model) our qualitative insights regarding asymptotic

learning remain true even if a summary statistic rather than the entire tagged information that an

agent has is communicated. In the environment we described the posterior mean and precision about

the state given the messages that an agent has received is a sufficient statistic of her information.

Thus in this case the agent can simply exchange this low dimensional information rather than all the

messages she has received. This would be without any loss of generality when the network structure

does not contain loops and, therefore, there exists no agent that receives the information of another

agent from more than one sources (there is no replication of information). Even when the network

contains loops we show in Proposition 2 that asymptotic learning obtains when individuals report just

their posterior mean under the same conditions as when they report their entire information set.

Assumption 2 (Low Dimensional Communication). Communication between agents is low-dimensional

when agents just report their posterior mean about the underlying state θ when communication takes

place, i.e., if agent j communicates with agent i at time t, then i sends to j message

mn
ij,t = E[θ

∣∣Ini,t].
Proposition 2. If perfect asymptotic learning occurs in society {Gn}∞n=1 under Assumption 1, then

perfect asymptotic learning occurs in society {Gn}∞n=1 under Assumption 2, i.e., when agents just

report their posterior mean about the underlying state θ.

Proposition 1 and Corollary 1 imply that asymptotic learning occurs under Assumption 1 when the
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Figure 3: Hierarchical Society.

underlying network structure features information mavens, i.e., agents with an arbitrarily large in-

degree. The intuition behind Proposition 2 above is simply that mavens can still aggregate and

distribute a large amount of information even when they receive low dimensional communication.

3.3 Asymptotic Learning in Random Graphs

We now illustrate the results outlined in Subsection 3.2 by applying them to hierarchical graphs, a

class of random graphs defined below. Note that in the present section we assume that communication

networks are bidirectional, or equivalently that if agent i ∈ Bn
j,1 then j ∈ Bn

i,1. Conditional on the

realization of the network structure, both the state of the world θ and the private signals are distributed

as in the previous sections.

Definition 8 (Hierarchical graphs). A sequence of communication networks {Gn}∞n=1, where Gn =

{N n, En}, is called ζ-hierarchical (or simply hierarchical) if it was generated by the following process:

(i) Agents are born and placed into layers. In particular, at each step n a new agent is born and

placed in layer `.

(ii) Layer index ` is initialized to 1 (i.e., the first node belongs to layer 1). A new layer is created

(and subsequently the layer index increases by one) at time period n ≥ 2 with probability 1/n1+ζ ,

where ζ > 0.

(iii) Finally, for every n we have

P ((i, j) ∈ En) = p
|Nn` |

, independently for all i, j ∈ N n that belong to the same layer `,

where N n
` denotes the set of agents that belong to layer ` at step n and p is a scalar, such that

0 < p < 1. Moreover,

P ((i, k) ∈ En) =
1

|N<`|
and P (∪k(i, k) ∈ En) = 1 for all i ∈ Nn

` , k ∈ Nn
<`, ` > 1,

where N n
<` denotes the set of agents that belong to a layer with index lower than ` at step n.
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In words, agents are born sequentially and placed into layers starting from layer 1 (the top layer).

As long as the layer index does not increase, a new agent is placed into the same layer as her predecessor.

The layer index increases at every step with some probability, that decreases with the number of steps

(and, thus, ensures that with high probability layers with high indices contain more agents than layers

with low indices). Finally, each agent has an edge with her predecessors in the same layer and with

her predecessors in layers with lower indices uniformly at random with some probability. The last

property implies that older agents (agents that were born earlier) connect to more agents.

Intuitively, a hierarchical sequence of communication networks resembles a pyramid, where the

top contains only a few agents and as we move towards the base, the number of agents grows. The

following argument provides an interpretation of the model. Agents on top layers can be thought of

as “special” nodes, that the rest of the nodes have a high incentive to connect to. Moreover, agents

tend to connect to other agents in the same layer, as they share common features with them (which

can be interpreted as a form of homophily). As a concrete example, academia can be thought of

as such a pyramid, where the top layer includes the few institutions, then the next layer includes

academic departments, research labs and finally at the lower levels reside the webpages of professors

and students.

Proposition 3. Suppose that Assumption 1 holds, so that communication is truthful, and consider

society {Gn}∞n=1. There exist r̄ > 0 and a function ζ(η) such that perfect asymptotic learning occurs

in society {Gn}∞n=1 with probability at least 1−η, if the sequence of communication networks {Gn}∞n=1

is ζ(η)−hierarchical and the discount rate is r < r̄.

The probability η that perfect asymptotic learning fails is related here to the stochastic process

that generated the graph. We can also show that the popular preferential attachment and Erdős-

Renyi graphs do not lead to asymptotic learning (we omit these results to save space). This can be

interpreted as implying that asymptotic learning is unlikely in several important networks. Never-

theless, these network structures, though often used in practice, do not provide a good description of

the structure of many real life networks. In contrast, our results show that asymptotic learning takes

place in hierarchical graphs, where “special” agents are likely to receive and distribute information to

lower layers of the hierarchy. Although this result is useful in pointing out certain structures where

information can be aggregated efficiently, our analysis on the whole suggests that the conditions for

perfect asymptotic learning are somewhat stringent.

3.4 Strategic Communication

Next we explore the implications of relaxing the assumption that agents cannot manipulate the mes-

sages they send. In particular, we replace Assumption 1 with the following:
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Figure 4: Agents may have an incentive to misreport/not disclose their information.

Assumption 3 (Strategic Communication). Communication between agents is strategic if

mn
ij,t ∈ Rn,

for all agents i, j and time t.

This assumption highlights that strategic communication does not impose any constraints on the

messages exchanged (except that they belong to Rn). In particular, mn
ij,t is a decision variable of

agent i at time t and it is measurable with respect to the information available to agent i at time

t. Allowing strategic communication adds an extra dimension in an agent’s strategy, since the agent

can choose not to disclose (part) of her information set in the hope that this increases her expected

payoff. In contrast with “cheap talk” models, externalities in our framework are purely informational.

Thus an agent may have an incentive not to disclose (part of) her information as a means to obtain

more information from the information exchange process (by inducing a later exit decision from her

neighbors).18

Figure 4 illustrates how incentives for non-truthful communication may arise. Here, agent B may

have an incentive not to disclose her information to agent A. In particular, for a set of parameter

values we have that if agexnt B is truthful to A, then A takes an action after the first communication

round. On the other hand, if B does not disclose her information to A, then A waits for an additional

time period and B obtains access to the information of agents 9, 10 and 11.

Let (σn,mn) denote an action-message strategy profile, where mn = {mn
1 , · · · ,mn

n} and mn
i =

[mn
ij,τ ]t=0,1,···, for j such that i ∈ Bn

j,1. Also let Pσn,mn refer to the conditional probability when agents

behave according to the action-message strategy profile (σn,mn).

Definition 9. An action-message strategy profile (σn,∗,mn,∗) is a pure-strategy perfect Bayesian Equi-

librium of the information exchange game Γinfo(G
n) if for every i ∈ N n and communication round τ ,

we have

E(σn,∗,mn,∗)(U
n
i,τ

∣∣Ini,τ ) ≥ E((σni,τ ,σ
n
i,−τ ,σ

n,∗
−i ),(mni,τ ,m

n
i,−τm

n,∗
−i ))(U

n
i,τ

∣∣Ini,τ ),

for all mn
i,τ ,m

n
i,−τ , and σni,τ , σ

n
i,−τ . We denote the set of equilibria of this game by INFO(Gn).

Similarly we extend the definitions of asymptotic learning (cf. Definitions 2 and 3). We show that

18Recall that when an agent exits, then she does not communicate new information (but she can still communicate
the information she obtained up to the time of her exit).
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strategic communication does not harm perfect asymptotic learning. The main intuition behind this

result is that it is weakly dominant for an agent to report her private signal truthfully to a neighbor

with a high in-degree (maven), as long as others are truthful to the maven.

Proposition 4. If perfect asymptotic learning occurs in society {Gn}∞n=1 under truthful communica-

tion (cf., Assumption 1), then there exists an equilibrium (σ,m), such that perfect asymptotic learning

occurs in society {Gn}∞n=1 along equilibrium (σ,m) when we allow strategic communication (cf., As-

sumption 3).

This proposition therefore implies that the focus on truthful reporting was without much loss of

generality as far as perfect asymptotic learning is concerned. In any communication network in which

there is perfect asymptotic learning, even if agents can strategically manipulate information, there is

arbitrarily little benefit in doing so. Thus the main lessons about asymptotic learning derived above

apply regardless of whether communication is strategic or not.

However, this proposition does not imply that all learning outcomes are identical under truthful

and strategic communication. In particular, as illustrated in Figure 5, strategic communication may

lead agents to take a better action with higher probability than under truthful communication (cf.

Assumption 1). The main reason for this (counterintuitive) fact is that under strategic communication

an agent may delay taking an action compared to the non-strategic environment. Therefore, the agent

obtains more information from the communication network and, consequently, chooses an action, that

is closer to optimal. In particular, in the example illustrated in Figure 5, if agents A, B decide not to

disclose their information, then agents 1, · · · , n may delay their action so as to communicate with the

neighbors of A1, · · · , An and thus take an action based on more information.

Finally, note that relaxing Assumption 1 by imposing no restrictions on the messages that agents

exchange, would lead to multiple equilibria. In particular, a “babbling” equilibrium always exists:

agents send uninformative messages and ignore the messages they receive from their peers. A complete

characterization of the equilibria of the information exchange game under strategic communication is

beyond the scope of this paper. Our main goal in this section was to show that perfect asymptotic

learning is robust (at least in some equilibria) to strategic communication. Moreover, we illustrated

that the introduction of strategic communication has non-trivial welfare implications even in the case

when externalities among agents are purely informational.

3.5 Welfare

In this subsection, we turn to the question of efficient communication and compare equilibrium allo-

cations (communication and action profiles in equilibrium) with those that would be dictated by the

welfare-maximizing social planner. We identify conditions under which a social planner can improve

over an equilibrium strategy profile. In doing so, we illustrate that communication over social networks

might be inefficient because agents do not internalize the positive externality that delaying their action
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Figure 5: Strategic communication may lead to better actions.

generates for their peers.

A social planner whose objective is to maximize the aggregate expected welfare of the population of

n agents would implement the timing profile that is a solution to the following optimization problem.

max
spn

n∑
i=1

Espn [Uni ], (4)

where spn = (τn,sp1 , · · · , τn,spn ) and τn,spi implies that agent i stops exchanging information and takes

an action after τn,spi communication rounds. With some abuse of notation, for the rest of this section,

we denote by spn the optimal allocation, i.e., the solution to the optimization problem defined above.

Similarly with the asymptotic analysis for equilibria, we define a sequence of optimal allocations for

societies of growing size, sp = {spn}∞n=1. We are interested in identifying conditions under which the

social planner can / cannot achieve an asymptotically better allocation than an equilibrium (sequence

of equilibria) σ, i.e., we are looking at the expression:

lim
n→∞

∑
i∈Nn Espn [Uni ]−

∑
i∈Nn Eσ[Uni ]

n
.

The next proposition shows a direct connection between learning and efficient communication.

Proposition 5. Consider society {Gn}∞n=1. If Condition (3) holds, i.e., limk→∞ limn→∞
1
n

∣∣V n
k

∣∣ = 0,

then:

(i) perfect asymptotic learning occurs in all equilibria σ.

(ii) all equilibria are asymptotically efficient, i.e.,

lim
n→∞

∑
i∈Nn Espn [Uni ]−

∑
i∈Nn Eσ[Uni ]

n
= 0,

24



for all equilibria σ.

However, communication is not always efficient. In what follows, we contrast the decision problem

of an individual agent i with that of the social planner and show when equilibria can be inefficient.

With a slight abuse of notation, Uni (k, σ) denotes the expected payoff of agent i when agents behave

according to profile σ and the agent has observed k signals. Agent i decides to take an irreversible

action at time t and not to wait for an additional dt, when other agents behave according to σ, if (see

Appendix B)

r + λ

λ

(
ψ − 1

ρ+ ρ̄kn,σi,t

)
≥ Uni (kn,σi,t + |Bn,σ

i,|Tt|+1| − |B
n,σ
i,|Tt||, σ). (5)

Similarly, in the corresponding optimal allocation agent i exits at time t and does not wait if:

r + λ

λ

(
ψ − 1

ρ+ ρ̄kn,spi,t

)
≥ Uni (kn,spi,t + |Bn,sp

i,|Tt|+1| − |B
n,sp
i,|Tt||, sp) +

∑
j 6=i

Esp[Unj
∣∣i “waits” at t]− Esp[Unj

∣∣i “exits” at t],

(6)

The comparison of (5) with (6) shows the reason for why equilibria may be inefficient in this setting:

when determining when to act, agent i does not take into account the positive externality that a later

action exerts on others. This externality is expressed by the summation on the right hand side of (6)

(which is always non-negative).

We next derive sufficient conditions under which a social planner outperforms an equilibrium

allocation σ. Consider agents i and j such that i ∈ Bn
j,1 and τn,σj > τn,σi + 1, which implies that

Bn
j,τn,σj

⊃ Bn
i,τn,σi

(i.e., agent j communicates with a superset of the agents that i communicates with

before taking an action). Also, let kn,σ
ij,τn,σi

denote the additional agents that j would observe if i delayed

her irreversible action by dt. Then, the aggregate welfare of the two agents increases if the following

condition holds:

Unj (kn,σ
j,τn,σj

+ kn,σ
ij,τn,σi

) + Uni (kn,σ
i,τn,σi

+ kn,σ
ij,τn,σi

) > Unj (kn,σ
j,τn,σj

) +
r + λ

λ
Uni (kn,σ

i,τn,σi
), (7)

Let set Dn,σ
k,` denote the following set of agents: j ∈ Dn,σ

k,` , if

(i) kn,σ
j,τn,σj

≤ k.

(ii) There exists an agent i ∈ Bn,σ
j,1 such that τn,σj > τn,σi + 1 and if i exits at τn,σi + 1, then j gains

access to at least ` additional signals.

Intuitively, set Dn,σ
k,` contains agents that would obtain higher payoff in expectation if one of their

neighbors delayed taking her irreversible action. In particular, under equilibrium profile σ, agent
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j ∈ Dn,σ
k,` takes an action after observing at most k signals. If her neighbor i delayed her action by one

communication round, then she would have access to at least k + ` signals by the time of her action.

The following proposition provides a sufficient condition for an equilibrium to be inefficient. It

simply states that if there is a sufficiently large set of agents, that would obtain higher expected

payoff if one of their neighbors deviates from equilibrium profile σ by delaying her action, then (i) the

equilibrium profile σ is inefficient; and (ii) asymptotic learning does not occur at σ for an appropriate

choice of parameters.

Proposition 6. Consider society {Gn}∞n=1 and equilibrium σ = {σn}∞n=1. Assume that limn→∞
|Dn,σk,` |
n >

ξ > 0, for k, ` that satisfy the following:

r

λ
ψ +

2

ρ+ ρ̄(k + `)
<
(

2 +
r

λ

) 1

ρ+ ρ̄k
.

Then, there exists a ζ > 0, such that

lim
n→∞

∑
i∈Nn Espn [Uni ]−

∑
i∈Nn Eσ[Uni ]

n
> ζ,

i.e., equilibrium σ is asymptotically inefficient. Moreover, there exist ε, δ such that ε, δ-asymptotic

learning fails in equilibrium σ.

We close this section with a discussion on the implications of increasing the information that

agents have access to at the beginning of the information exchange process. Consider the following

setting: agents at time t = 0 have access to k public signals in addition to their private signal. This

results in the following tradeoff: on the one hand, agents are better informed about the underlying

state, but then, on the other hand, they have less incentive to delay taking an action, and obtain

and share information with others. In particular, one can show that when all agents have access to

the same k public signals, then information sharing will be reduced compared to a setting without

public signals, in the sense that agents take an irreversible action earlier. Moreover, in some cases the

presence of public signals leads to a strict decrease in the aggregate welfare. Thus more information

is not necessarily better for the aggregate welfare of the agents.19 In view of this result, the recent

surge of user-generated content in the form of product reviews and recommendations may not be

as beneficial as it is sometimes argued, since there is some evidence (although not conclusive) that

online recommendation systems tend to steer consumers towards popular choices and reduce product

diversity (see Sorensen (2007) and Fleder and Hosanagar (2009)).

4 Network Formation

We have so far studied information exchange among agents over a given communication network

Gn = (N n, En). We now analyse how this communication network emerges. We assume that link

19This result is similar in spirit to those in Duffie, Malamud, and Manso (2009) and in Morris and Shin (2002), both
of which show how greater availability of public information may reduce welfare.
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formation is costly. In particular, communication costs are captured by an n× n nonnegative matrix

Cn, where Cnij denotes the cost that agent i has to incur in order to form the directed link (j, i) with

agent j. As noted previously, a link’s direction coincides with the direction of the flow of messages. In

particular, agent i incurs a cost to form in-links. We refer to Cn as the communication cost matrix. We

assume that Cnii = 0 for all i ∈ N n. Our goal in this section is to provide conditions under which the

network structures that emerge as equilibria of the network formation game defined below guarantee

asymptotic learning. Our results indicate that easy access to information may preclude asymptotic

learning, as it reduces the incentives for further information sharing. Moreover, asymptotic learning

may depend on how well agents coordinate in equilibrium: we show that there may be multiple

equilibria that induce sparser/denser network structures and lead to different answers for asymptotic

learning.

We define agent i’s link formation strategy, gni , as an n-tuple such that gni ∈ {0, 1}n and gnij = 1

implies that agent i forms a link with agent j. The cost agent i has to incur if she implements strategy

gni is given by

Cost(gni ) =
∑
j∈N

Cnij · gnij .

The link formation strategy profile gn = (gn1 , · · · , gnn) induces the communication network Gn =

(N n, En), where (j, i) ∈ En if and only if gnij = 1.

We extend our environment to the two-stage Network Learning Game Γ(Cn), where Cn denotes

the communication cost matrix. The two stages of the network learning game can be described as

follows:

Stage 1 [Network Formation Game]: Agents choose their link formation strategies simultaneously.

The link formation strategy profile gn induces the communication network Gn = (N n, En).

We refer to stage 1 of the network learning game, when the communication cost matrix is Cn as the

network formation game and we denote it by Γnet(C
n).

Stage 2 [Information Exchange Game]: Agents communicate over the induced network Gn as

studied in previous sections.

We next define the equilibria of the network learning game Γ(Cn). Note that we use the standard

notation g−i and σ−i to denote the strategies of agents other than i. Also, we let σi,−t denote the

vector of actions of agent i at all times except t.

Definition 10. A pair (gn,∗, σn,∗) is a pure-strategy perfect Bayesian Equilibrium of the network

learning game Γ(Cn) if

(a) σn,∗ ∈ INFO(Gn), where Gn is induced by the link formation strategy gn,∗.

(b) For all i ∈ N n, gn,∗i maximizes the expected payoff of agent i given the strategies of other agents
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gn,∗−i , i.e.,

gn,∗i ∈ argmax
gni ∈{0,1}n

Eσ[χi(g
n
i , g

n,∗
−i )] ≡ Eσ(Uni

∣∣Ini,0)− Cost(gni ).

for all σ ∈ INFO(G̃n), where G̃n is induced by link formation strategy (gni , g
n,∗
−i ).

We denote the set of equilibria of this game by NET (Cn).

Similar to the analysis of the information exchange game, we consider a sequence of communication

cost matrices {Cn}∞n=1, where for fixed n,

Cn : N n ×N n → R+ and Cnij = Cn+1
ij for all i, j ∈ N n. (8)

For the remainder of the section, we focus on the social cliques communication cost structure. The

properties of this communication structure are stated in the next assumption.

Assumption 4. Let cnij ∈ {0, c} for all pairs (i, j) ∈ N n×N n, where c < 1
ρ+ρ̄ . Moreover, let cij = cji

for all i, j ∈ N n (symmetry), and cij + cjk ≥ cik for all i, j, k ∈ N n (triangle inequality).

The assumption that c < 1
ρ+ρ̄ rules out the degenerate case where no agent forms a costly link.

The symmetry and triangle inequality assumptions are imposed to simplify the definition of a social

clique, which is introduced next. Suppose Assumption 4 holds. We define a social clique (cf. Figure

6) Hn ⊂ N n as a set of agents such that

i, j ∈ Hn if and only if cij = cji = 0.

Note that this set is well-defined since, by the triangle inequality and symmetry assumptions, if an

agent i does not belong to social clique Hn, then cij = c for all j ∈ Hn. Hence, we can uniquely

partition the set of nodes N n into a set of Kn pairwise disjoint social cliques Hn = {Hn
1 , · · · , Hn

Kn}.
We use the notation Hnk to denote the set of pairwise disjoint social cliques that have cardinality

greater than or equal to k, i.e., Hnk = {Hn
i , i = 1, . . . ,Kn | |Hn

i | ≥ k}. We also use SCn(i) to

denote the social clique that agent i belongs to. Social cliques represent groups of individuals that are

linked to each other at zero cost. These can be thought of as “friendship networks”, which are linked

for reasons unrelated to information exchange and thus can act as conduits of such exchange at low

cost. Agents can exchange information without incurring any costs (beyond the delay necessary for

obtaining information) within their social cliques. However, if they wish to obtain further information,

from outside their social cliques, they have to pay a cost at the beginning in order to form a link.20

We consider a sequence of communication cost matrices {Cn}∞n=1 satisfying condition (8) and

Assumption 4, and we refer to this sequence as a communication cost structure. As shown above,

20 It is straightforward to see that social cliques of different sizes are isomorphic to agents having access to signals of
varying precision.
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Figure 6: Social cliques.

the communication cost structure {Cn}∞n=1 uniquely defines sequences, {Hn}∞n=1 and {Hnk}∞n=1 for

k > 0, which are sets of pairwise disjoint social cliques. Our goal is to identify conditions on the

communication cost structure that lead to the emergence of networks which guarantee asymptotic

learning. For brevity, we focus entirely on perfect asymptotic learning. Similar results can be obtained

for ε, δ-asymptotic learning.

Proposition 7. Suppose that Assumption 1 holds, so that communication is truthful, and let {Cn}∞n=1

satisfy Assumption 4, i.e., {Cn}∞n=1 is a social cliques communication cost structure. Then, there exists

a constant k̄ = k̄(c) such that the following hold:

(a) Suppose that

lim sup
n→∞

∣∣Hn
k̄

∣∣
n
≥ ε for some ε > 0. (9)

Then, perfect asymptotic learning does not occur in any network equilibrium (g, σ).

(b) Suppose that

lim
n→∞

∣∣Hn
k̄

∣∣
n

= 0 and lim
n→∞

∣∣Hn
`

∣∣ =∞ for some `. (10)

Then, perfect asymptotic learning occurs in all network equilibria (g, σ) when the discount rate

r satisfies 0 < r < r̄, where r̄ > 0 is a constant.

(c) Suppose that there exists M > 0 such that

lim
n→∞

∣∣Hn
k̄

∣∣
n

= 0 and lim sup
n→∞

∣∣Hn
`

∣∣ < M for all `, (11)

and let agents be patient, i.e., consider the case, when the discount rate r → 0.21 Then, there

exists c̄ > 0 such that

21Formally, we study the expression limn→∞ limr→0 P(g,σ)

([
1
n

∑n
i=1(1−Mn,ε

i )
]
> ε
)
.
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Figure 7: Network formation among social cliques.

(i) If c ≤ c̄, perfect asymptotic learning occurs in all network equilibria (g, σ).

(ii) If c > c̄, there exists at least one network equilibrium (g, σ), where there is no perfect

asymptotic learning and there exists at least one network equilibrium (g, σ) where perfect

asymptotic learning occurs.

Even though network formation games have several equilibria, the structure of our network forma-

tion and information exchange game enables us to obtain a fairly complete characterization of what

types of environments lead to the formation of networks that subsequently induce perfect asymptotic

learning. In particular, the first part of Proposition 7 shows that perfect asymptotic learning cannot

occur in any equilibrium if the number of sufficiently large social cliques increases at the same rate

as the size of the society. This is intuitive; when this is the case, there are many social cliques of

sufficiently large size that none of their members wish to engage in further costly communication with

members of other social cliques. But since several of these do not contain an information hub social

learning is precluded.

In contrast, the second part of the proposition shows that if the number of disjoint and sufficiently

large social cliques is limited (grows less rapidly than the size of the society) and some of them are large

enough to contain information hubs, then perfect asymptotic learning takes place in all equilibria22

(provided that future is not heavily discounted). In this case, as shown by Figure 7(a), sufficiently

many social cliques connect to the larger social cliques acting as information hubs, ensuring effective

aggregation of information for the great majority of the agents in the society. It is important that the

discount factor is not too small, otherwise smaller cliques do not find it beneficial to form links with

larger cliques.

22The result no longer holds when we replace Assumption 1 with Assumption 3, as there would then exist additional
equilibria (e.g., babbling equilibria) in the information exchange stage, which would lead to different equilibrium network
configurations in the first stage.
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The third part of the proposition outlines a more interesting configuration, potentially leading to

perfect asymptotic learning. In this case, many small social cliques form an “informational ring”(Figure

7(b)). Each is small enough that it finds it beneficial to connect to another social clique, provided that

this other clique also connects to others and obtains further information. This intuition also clarifies

why such information aggregation takes place only in some equilibria. The expectation that others

do not form the requisite links leads to a coordination failure. Interestingly, however, if agents are

sufficiently patient and the cost of link formation is not too large, the coordination failure equilibrium

disappears, because it becomes beneficial for each clique to form links with another one, even if further

links are not forthcoming. Finally, the ring structure is a direct consequence of the fact that agents

are patient (and has been shown to emerge as an equilibrium configuration in other models of network

formation, e.g., Bala and Goyal (2000)).

5 Conclusion

We have developed a framework for the analysis of information exchange through communication

and investigated its implications for information aggregation in large societies. An underlying state

determines the payoffs from different actions. Agents decide which agents to form a communication

link with incurring the associated cost. After receiving a private signal correlated with the underlying

state, they exchange information over the induced communication network until taking an (irreversible)

action.

Our model draws close attention to two main features of social learning: first, the timing of actions

is often endogenous and it is determined by the tradeoff between the cost of waiting and the benefit

of becoming more informed over time about the underlying environment. Second, the communication

network typically imposes constraints on the rate at which an agent acquires information and plays

an important role on whether agents end up taking “good” actions.

Our focus has been on asymptotic learning, defined as the fraction of agents taking the correct

action converging to one in probability as a society grows large. We showed that asymptotic learning

occurs if and, under some additional mild assumptions, only if the induced communication network

includes information hubs and most agents are at a short distance from a hub. Thus asymptotic

learning requires information to be aggregated in the hands of a few agents. This kind of aggregation

also requires truthful communication, which we show is an equilibrium even when we allow for strategic

communication in large societies (partly as a consequence of the fact that there is no conflict among the

agents concerning which action is the best). This insight offers a sharp contrast to a result often seen

in the social learning literature: in our setting, the existence of highly connected agents is a necessary

condition for learning, not an impediment to it. In particular, in several “myopic” models of learning,

widely observed individuals obstruct learning, since their private information is overrepresented in the

communication process. In our approach, agents are fully Bayesian and information is tagged and,
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thus, such duplication of information is avoided. On the contrary, hubs facilitate efficient information

aggregation and are prerequisites for asymptotic learning.

Our welfare analysis identifies a novel information externality arising in communication over net-

works. Individuals serve two roles: they are both sources of information, but they enable the trans-

mission of information between different parts of the network through their social connections as

well. This leads to an interesting insight on the dynamics of information exchange over networks:

more precise signals (or larger social cliques) reduce the incentives for communication and may lead

to a decrease in aggregate welfare. Interestingly, this information externality can explain in a fully

Bayesian model the empirical observation that agents’ actions are often grouped according to their

social network position (for a “myopic” learning model that delivers the same prediction see DeMarzo,

Vayanos, and Zwiebel. (2003)).

We also provide a systematic investigation of what types of cost structures, and associated social

cliques which consist of groups of individuals linked to each other at zero cost (such as friendship net-

works), ensure the emergence of communication networks that lead to asymptotic learning. Our main

result on network formation shows that societies with too many (disjoint) and sufficiently large social

cliques do not form communication networks that lead to asymptotic learning, because each social

clique would have sufficient information to make communication with others not sufficiently attrac-

tive. Asymptotic learning results if social cliques are not too large so as to encourage communication

across cliques.

Beyond the specific results presented in this paper, we believe that the modeling framework devel-

oped here opens the way for a more general analysis of the impact of the structure of social networks

on social learning. An interesting avenue for future research would be to investigate how our results

would change in the presence of ex ante or ex post heterogeneity of preferences. Another notable

direction is to consider an environment where agents exchange information over multiple issues (and

end up taking multiple actions), i.e., communication is over a multi-dimensional state of the world

(x, θ ∈ Rk). Then, we conjecture that a one-dimensional quantity that captures the agent’s position

in the network would be sufficient to predict her actions along all dimensions.23

23A similar result, i.e., that agents’ beliefs over multiple issues can be characterized by a unidimensional measure, was
established in DeMarzo, Vayanos, and Zwiebel. (2003). There, the result was an outcome of the over-representation of
the prior information of “central” agents. In our model, this is no longer possible as information is tagged and agents are
Bayesian. However, agents choose the timing of their actions and we expect that their network distance to information
hubs will be sufficient to predict their actions over multiple issues.
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Appendix A: ε, δ-asymptotic learning

In Appendix A, we present a generalization of Proposition 1. In particular, we provide conditions

which guarantee that ε, δ-asymptotic learning occurs/does not occur in a society under equilibrium

profile σ. Recall that erf(x) = 2√
π

∫ x
0 e
−t2dt denotes the error function of the normal distribution.

The proof of the proposition can be found in Appendix B.

Proposition 8. Suppose that Assumption 1 holds, so that communication is truthful. Then,

(a) ε, δ-asymptotic learning does not occur in society {Gn}∞n=1 under equilibrium profile σ if there

exists k, η > 0 such that

lim inf
n→∞

1

n
·
∣∣V n,σ
k

∣∣ ≥ η > ε and erf

(
ε

√
ρ+ kρ̄

2

)
< (1− δ)(1− ε/η). (12)

(b) ε, δ-asymptotic learning occurs in society {Gn}∞n=1 under equilibrium profile σ if there exists

k, ζ > 0 such that

lim sup
n→∞

1

n
·
∣∣V n,σ
k

∣∣ ≤ ζ < ε and erf

(
ε

√
ρ+ ρ̄k

2

)
> 1− δ(ε− ζ)

1− ζ
. (13)

This proposition provides conditions such that ε, δ-asymptotic learning takes place (or does not take

place). Intuitively, asymptotic learning is precluded if there exists a significant fraction of the society

that takes an action before seeing a large set of signals, since in this case there is a large enough

probability that these agents will take an action far away from the optimal one. The proposition

quantifies the relationship between the fraction of agents taking actions before seeing a large set of

signals and the quantities ε and δ. Because agents are estimating a normal random variable from noisy

observations (where the noise is also normally distributed), their probability of error is captured by

the error function erf(x), which is naturally decreasing in the number of observations. In particular,

the probability that an agent with k signals takes an action at least ε away from the optimal action

is equal to erfc

(
ε
√

ρ+ρ̄k
2

)
, and this enables us to characterize the fraction of agents that will take an

action at least ε away from the optimal one in terms of the set V n,σ
k as well as ε and δ. We thus obtain

sufficient conditions for both ε, δ-learning to take place and for it to be incomplete. Finally, recall that

equilibria and subsequently k-radius sets depend on the discount rate (thus, different discount rates

result in different answers for ε, δ-learning). In this context, Proposition 8 implies that if ε, δ-learning

occurs in a society under an equilibrium profile when the discount rate is r, then there exists an

equilibrium profile for which ε, δ-learning occurs in that society for all r′ < r, i.e., when agents are

more patient.
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Appendix B: Proofs

Proofs from Section 3

Proof of Lemma 1. Recall that, by the principle of optimality, agent i’s optimal continuation payoff

at information set Ini,t, when the rest of the agents behave according to strategy profile σ, is given by:

Uni,t = max

{
ψ − 1

ρ+ρ̄kni,t
(when she takes the optimal irreversible action),

e−rdt E[Eσ(Uni,t+dt|Ini,t+dt)
∣∣Ini,t] (when she decides to wait, i.e., x = “wait”),

where kni,t denotes the number of distinct private signals agent i has observed up to time t. The first

line is equal to the expected payoff for the agent when she chooses the optimal irreversible action

under information set Ini,t, i.e., E[θ|Ini,t], and she has observed kni,t private signals, while the second line

is equal to the discounted expected continuation payoff.

For the latter, note first that since the discount rate r is greater than zero, agent i will exit after a

finite number of communication rounds. Thus the following set represents the number of signals agent

i observes if she decides to wait for 1, 2, · · · communication rounds:

{kni,t + |Bn,σ
i,|Tt|+1| − |B

n,σ
i,|Tt||, k

n
i,t + |Bn,σ

i,|Tt|+2| − |B
n,σ
i,|Tt||, · · · }.

Note that given the other agents’ strategy profiles, the quantities |Bn,σ
i,|Tt|+s| are deterministic for every

s. This is a consequence of the normality assumption on the private signals. In particular, when

signals are normal, agents exit after they observe a given number of signals and this number does not

depend on the actual realization of the signals (as opposed to if the signals were binary, for example).

Moreover, since communication follows a Poisson process with rate λ, we obtain that the expected

delay ts before an additional s communication rounds are completed satisfies E(e−rts) =
(

λ
λ+r

)s
.

Therefore, if agent i decides to wait for s additional communication rounds and take an action after

the additional s-th communication round is completed, her expected utility is given by:(
λ

λ+ r

)s(
ψ − 1

ρ+ ρ̄(kni,t + |Bn,σ
i,|Tt|+s| − |B

n,σ
i,|Tt||)

)
.

Note that since we assume that signals are identically distributed and independent, the value

function can simply be expressed as a function of the number of distinct signals in Ini,t, k
n
i,t and profile

σ. The agent chooses to take an irreversible action and not to wait if

ψ − 1

ρ+ ρ̄kni,t
≥ e−rdt E[Eσ(Uni,t+dt|Ini,t+dt)

∣∣Ini,t]
≥ max

s

(
λ

λ+ r

)s(
ψ − 1

ρ+ ρ̄(kni,t + |Bn,σ
i,|Tt|+s| − |B

n,σ
i,|Tt||)

)
(14)

Note that the right hand side of (14) is upper bounded by λ(λ + r)ψ (since s ≥ 1), whereas the
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left hand side is increasing in the number of private signals kni,t and in the limit is equal to ψ. This

establishes the lemma.

The next lemma will be used in the rest of the Appendix. It shows that the probability of choosing

an action that is more than ε away from the optimal for agent i ∈ V n,σ
k , i.e., Pσ (Mn,ε

i = 0), is

uniformly bounded away from 0.

Lemma 2. Let k > 0 be a constant, such that the k-radius set V n,σ
k is non-empty. Then,

P(Mn,ε
i = 0) ≥ erfc

(
ε

√
ρ+ ρ̄k

2

)
for all i ∈ V n

k,σ,

where erfc(x) = 1 − erf(x) = 1 − 2√
π

∫ x
0 e
−t2dt is the complementary error function. Moreover, if

i /∈ V n,σ
k , then

P(Mn,ε
i = 0) < erfc

(
ε

√
ρ+ ρ̄k

2

)
.

Proof. Note that because of our normality assumption, after observing ` private signals the posterior

distribution of θ is normal with precision ρ+ ρ̄`. Then, the probability that Mn,ε
i = 0 is simply equal

to the probability that the error does not belong to the interval [−ε, ε], i.e.,

P(Mn,ε
i = 0) = erfc

(
ε

√
ρ+ ρ̄`

2

)
.

The lemma follows since agent i ∈ V n,σ
k , thus she takes an irreversible action after observing at most

k private signals. Similarly, we obtain the expression for an agent i /∈ V n,σ
k .

Let jni = argmaxk∈Bn
i,τn
i

indegnk and define set X as

X = {i ∈ N
∣∣ lim
n→∞

indegnjni =∞}.

In other words, consider the agent with the maximum in-degree in i’s neighborhood. Then, i belongs to

set X if the maximum in-degree grows to infinity as the society grows larger. Note that the superscript

n at the definition of j implies that the agent with the maximum in-degree depends on the size of the

society and might be different for different n’s.

Proposition 9. Suppose that Assumption 1 holds, so that communication is truthful. Then, perfect

asymptotic learning occurs in society {Gn}∞n=1 in any equilibrium σ if

lim
n→∞

1

n
|X| = 1.

Proof. Consider equilibrium profile σ and society {Gn}∞n=1 such that limn→∞
1
n |X| = 1.

Let jn,σi = argmaxk∈Bn,σ
i,τn
i

indegnk and define set Zσ as the following set of agents

Zσ = {i ∈ N
∣∣ lim
n→∞

indegnjn,σi
=∞}.
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Node `
Node jNode i

dist(`, j)

τnjτnj

dist(`, i) ≤ τni

Agent j’s observation set Bn
j,τnj

Agent i’s observation set Bn
i,τni

Figure 8: Proof of Proposition 9.

Next, we show that X = Zσ.

Consider i ∈ X and let Pn = {`, i1, · · · , iK , i} denote the shortest path in communication net-

work Gn between i and agent ` = jni , i.e., ` is such that ` = arg maxk∈Bn
i,τn
i

. Let N0 such that

maxz∈Bn
i,τn
i

indegnz > k for all n > N0, where k is sufficiently large. Then, we show that (refer to

Figure 8) for n > N0:

` ∈ Bn
s,τns

for all s ∈ Pn. (15)

Assume for the sake of contradiction that condition (15) does not hold. Then, let

j = argmin
j′
{distn(`, j′)

∣∣j′ ∈ Pn and distn(`, j′) > τnj′},

where recall that τni denotes the perfect observation radius of agent i. For agents i, j we have τni > τnj

and dist(j, i) + τnj < dist(`, i) ≤ τni , since otherwise ` ∈ Bn
j,τnj

. This implies that Bn
j,τnj
⊂ Bn

i,τni
.

Furthermore,

ψ − 1

ρ+ ρ̄|Bn
j,τnj
|
>

(
λ

λ+ r

)dist(`,j)−τnj (
ψ − 1

ρ+ ρ̄k

)
, (16)

In particular, the left hand side is equal to the expected payoff of agent j if she takes an irreversible

action at time τnj after receiving |Bn
j,τnj
| observations, whereas the right hand side is a lower bound on

the expected payoff if agent j delays taking an action until after she communicates with agent `. The

inequality follows, from the definition of the observation radius for agent j. On the other hand, since

for agent i, ` ∈ Bn
i,τni

, we have

ψ − 1

ρ+ ρ̄(|Bn
j,τnj
|)
<

(
λ

λ+ r

)dist(`,i)−dist(j,i)−τnj (
ψ − 1

ρ+ ρ̄(k + k′)

)
, for some k′ > 0. (17)

For k large enough we conclude that dist(`, j) > dist(`, i) − dist(j, i), which is a contradiction. This

implies that (15) holds.

To complete the proof, we need to show that if s ∈ Pn, where Pn is the shortest path defined above,
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i.e., the shortest path from agent i ∈ X to the agent with the largest in-degree in her neighborhood

Bn
i,τni

(call the latter `), then ` ∈ Bn,σ
s,τns

, for every equilibrium σ. We will show the claim by induction

on the distance from agent `. Obviously, the claim is true for length equal to zero. Suppose that

the claim is true for distance at most t. Then, we will show that the claim is true for distance t+1.

Let w denote the following agent: w ∈ Pn and dist(w, `) = t + 1. Then, from above ` ∈ Bn
w,τnw

.

Moreover, from the induction hypothesis, for an agent i in the shortest path from w to ` we have that

` ∈ Bn,σ
i,τni

, which implies that distn,σ(w, `) = distn(w, `). Thus for k sufficiently large (i.e., for n > N0),

` ∈ Bn,σ
w,τnw

, i.e., agent w will not exit before communicating with `. If this was not the case, then we

would have that ` /∈ Bn
w,τnw

, i.e., w /∈ Pn. Note that the crucial point in this part of the proof was that

all agents in the path from w to ` do not exit before communicating with ` along equilibrium strategy

profile σ.

Finally, by the hypothesis of the proposition, i.e., limn→∞
1
n |X| = 1, we conclude that limn→∞

1
n |Z

σ| =
1, for any equilibrium σ. The latter implies that limk→∞ limn→∞

1
n |V

n,σ
k | = 0, thus asymptotic learning

occurs along equilibrium σ from Proposition 8.

Proof of Proposition 1. The first part of Proposition 1 follows directly from Proposition 9, since

lim
k→∞

lim
n→∞

1

n
|V n
k | = 0⇒ lim

n→∞

1

n
|X| = 1,

and the fact that agents exit after a finite number of communication rounds (since the discount rate

r is greater than zero).

To conclude the proof we need to show that if asymptotic learning occurs along some equilibrium

σ when condition (3) does not hold, then the society contains a set of leading agents. In particular,

consider a society {Gn}∞n=1 in which condition (3) does not hold and equilibrium σ = {σn}∞n=1 along

which asymptotic learning occurs in the society. This implies that there should exist a subset {Rn,σ}∞n=1

of agents and an ε > 0 such that limn→∞
1
n |R

n,σ| > ε and there is an infinite index set J for which

i ∈ Rnj ,σ and τ
nj
i < τ

nj ,σ
i , for j ∈ J, (18)

and

|Bnj

i,τ
nj
i

| < |Bnj ,σ

i,τ
nj
i

|. (19)

From equations (18) and (19) we obtain that there exists a collection of agents {Sn}∞n=1 such that:

(i) Rn,σ ⊆ Snfollow. If this were not true, then agents in Rn,σ would not obtain any information from

the network along σ and, thus, would not learn.

(ii) There exists a k > 0 such that Sn ⊆ V n
k .

(ii) limn→∞
1
n |S

n| = 0, since otherwise asymptotic learning would not occur under equilibrium σ.

Note that {Sn}∞n=1 is a set of leading agents [cf. Definition 5] and Proposition 1(ii) follows.
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Proof of Proposition 2. Consider ε, δ > 0 and recall from Corollary 1 that asymptotic learning

occurs when almost all agents are at a short distance away from an information maven. Let i be a

maven and let n̄ be such that indegni > k for n > n̄ where k is such that erfc

(
ε
√

ρ+ρ̄k
2

)
< δ. Then,

Lemma 2 implies that the following holds for maven i,

P
(∣∣E[θ

∣∣Ini,t1 ]− θ
∣∣ > ε

)
< δ, for all n > n̄, (20)

where t1 is the first time when communication takes place. Note that Equation (20) holds even under

the assumption of low-dimensional communication (cf. Assumption 2), since an agent can infer the

private signals of her direct neighbors from the messages she receives in the first communication round

(if agent j sends a message to agent i at time t = t1, then mn
ji,t1

= E[θ
∣∣sj ] = sj).

24

Furthermore, consider any agent j that is directly connected to maven i, i.e., i ∈ Bn
j,1. Then, the

following information monotonicity holds for agent j’s information set after the second communication

round

P
(∣∣E[θ

∣∣Inj,t2 ]− θ
∣∣ > ε

)
≤ P

(∣∣E[θ
∣∣Ini,t1 ]− θ

∣∣ > ε
)
, (21)

where t2 denotes the second time when communication takes place. This relies on the simple observa-

tion that one strategy available to the agents that communicate directly with a maven is to imitate the

action taken by the maven. Similarly, the observation can be generalized for the direct neighbors of j

(that communicate indirectly with the maven in two communication rounds) and for the neighbors of

the neighbors of j and so on. The claim follows by combining Equation (21) with the arguments in

the proof of Proposition 1.

Proof of Proposition 3. Consider the following two events A and B.

Event A: Layer 1 (the top layer) has more than k agents, where k > 0 is a scalar.

Event B: The total number of layers is more than k.

From the definition of a hierarchical sequence of communication networks, we have

P(A) =
k∏
i=2

(
1− 1

i1+ζ

)
< exp

(
−

k∑
i=2

1

i1+ζ

)
. (22)

Also,

P(B) ≤ E(L)

k
=

1

k

∞∑
i=2

1

i1+ζ
, (23)

from Markov’s inequality, where L is a random variable that denotes the number of layers in the

hierarchical society. Let ζ(η) be small enough and k (and consequently n) large enough such that∑k
i=2

1
i1+ζ > log 4

η and
∑∞

i=2
1

i1+ζ < k·η
4 . For those values of ζ and k we obtain P(A) < η/4 and

P(B) < η/4. Next, consider the event C = Ac ∩ Bc, which from Eqs. (22) and (23) has probability

P(C) > 1− η/2 for the values of ζ and k chosen above. Moreover, we consider

24Agent j’s information set before communication first takes place contains only her private signal.
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Event D: The agents on the top layer are information mavens, i.e., limn→∞ |Bn
i,1| =∞, for all i ∈ N n

1 .

We claim that event D occurs with high probability if C occurs, i.e., P(D
∣∣ C) > 1−η/2, which implies

P(C ∩D) = P(D
∣∣ C)P(C) > (1− η/2)2 > 1− η. (24)

In particular, note that conditional on event C occurring, the total number of layers and the total

number of agents in the top layer is at most k. From the definition of a hierarchical society, agents

in layers with index ` > 1 have an edge to a uniform agent that belongs to a layer with lower index,

with probability one. Therefore, if we denote the degree of an agent in a top layer by Dn1 we have

Dn1 =

T n2∑
i=1

I level2i,1 + · · ·+
T nL∑
i=1

I levelLi,1 , (25)

where T ni denotes the random number of agents in layer i and I levelji,1 is an indicator variable that

takes value one if there is an edge from agent i to agent 1 (here levelj denotes that i belongs to level

j). Again from the definition, we have P(I levelji1 = 1) = 1∑j−1
`=1 T

n
`

, where the sum in the denominator

is simply the total number of agents that lie in layers with lower index, and finally, T n1 + · · · T nL = n.

We can obtain a lower bound on the expected degree of an agent in the top layer conditional on event

C by viewing (25) as the following optimization problem:

min
x2

x1
+ · · ·+ xk

x1 + · · ·+ xk−1

s.t.
∑k

j=1 xj = n,

0 ≤ x1 ≤ k,
0 ≤ x2, · · · , xk−1,

since the number of layers is bounded by k, as we condition on C. By solving the problem we obtain

that the objective function is lower bounded by φ(n), where φ(n) = O(n1/k) for every n. Then,

E[Dn1
∣∣C] =

=

k∑
`=2

∑
k1≤k,··· ,k`
k1+···+k`=n

P(L = `, T n1 = k1, · · · , T n` = k`|C) · E[Dn1
∣∣C,L = `, T n1 = k1, · · · , T n` = k`]

≥
k∑
`=2

∑
k1≤k,··· ,k`
k1+···+k`=n

P(L = `, T n1 = k1, · · · , T n` = k`|C) · φ(n) = φ(n), (26)

where Eq. (26) follows since E[Dn1
∣∣C,L = `, T n1 = k1, · · · , T n` = k`] ≥ φ(n) for all values of ` (2 ≤ ` ≤ k)

and k1, · · · , k` (k1 ≤ k, k1 + · · ·+ k` = n) from the optimal solution of the optimization problem. The

same lower bound applies for all agents in the top layer. Similarly we have for the variance of the
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degree of an agent in the top layer (we use `, k1, · · · , k` as a shorthand for L = `, T n1 = k1, · · · , T n` = k`)

var[Dn1
∣∣C] =

k∑
`=2

∑
k1≤k,··· ,k`
k1+···+k`=n

P(`, k1, · · · , k`|C) · var[Dn1
∣∣C, `, k1, · · · , k`]

=

k∑
`=1

∑
k1≤k,··· ,k`
k1+···+k`=n

P(`, k1, · · · , k`|C) ·
(
k2 var(I level2i,1 ) + · · ·+ k` var(I level`i,1 )

)
(27)

≤
k∑
`=1

∑
k1≤k,··· ,k`
k1+···+k`=n

P(`, k1, · · · , k`|C) ·
(
k2E(I level2i,1 ) + · · ·+ k`E(I level`i,1 )

)
= E[Dn1

∣∣C], (28)

where Eq. (27) follows by noting that conditional on event C and the number of layers and the agents

in each layer being fixed, the indicator variables (defined above) are independent and Eq. (28) follows

since the variance of an indicator variable is smaller that its expectation. We conclude that the variance

of the degree is smaller than the expected value and from Chebyschev’s inequality we conclude that

P(D) ≥ P(
⋂
i∈Nn1

Dni
φ(n)

> ζ) > 1− η/2,

where ζ > 0, i.e., with high probability all agents in the top layer are information mavens (recall that

limn→∞ φ(n) =∞).

We have shown that when event C∩D occurs, there is a path of length at most k (the total number

of layers) from each agent to an agent at the top layer, i.e., an information maven with high probability.

Therefore, if the discount rate r is smaller than some bound (r < r̄), then perfect asymptotic learning

occurs by Corollary 1. Finally, we complete the proof by noting that P(C ∩D) > (1− η/2)2 > 1− η.

Proof of Proposition 4.

Proposition 4 is a direct consequence of the next lemma, which intuitively states that there is no

incentive to lie to an agent with a large number of neighbors, assuming that everybody else is truthful.

For the remainder of the proof, we restrict attention to strategies for all agents except the deviating

party, where the recipient of a message considers its content to be truthful, unless she spots an

inconsistency with other messages she has received in previous time periods, in which case she ignores

the later message. If an inconsistency is spotted between messages received in the same time period,

the recipient ignores all those messages.

Lemma 3 (Truthful Communication to a High Degree Agent). There exists a scalar k > 0, such

that truth-telling to agent i, with indegni ≥ k, in the first time period is an equilibrium of INFO(Gn).

Formally,

(σn,truth,mn,truth) ∈ INFO(Gn),
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where mn,truth
ji,0 = sj for j ∈ Bn

i,1.

Proof. The proof is based on the following argument. Suppose that all agents in Bn
i,1 except j report

their signals truthfully to i. Moreover, let |Bn
i,1| ≥ k, where k is a large constant (see below). Then, it

is a weakly dominant strategy for j to report her signal truthfully to i, since j’s message is not pivotal

for agent i, i.e., i will take an irreversible action after the first communication step, no matter what

j reports. In particular, let k̄ be such that ψ − 1
ρ+(k̄−1)ρ̄

> λ
λ+rψ (such a k̄ exists when r > 0). The

left hand side of the expression is the expected payoff of agent i in an equilibrium profile, where she

receives k − 1 truthful messages in the first communication step (measured at the time that the first

communication step occurs). The right hand side is an upper bound on the expected continuation

payoff. Note that if |Bn
i,1| ≥ k ≥ k̄ and all but j report their signal truthfully, then i will exit after

the first communication step (no matter what j reports). Moreover, agent j will exit in the second

communication round after receiving the information from agent i. Therefore, it is weakly dominant

for agent j to report truthfully to agent i in the first communication round.

Corollary 1 implies that asymptotic learning occurs thanks to high degree agents - mavens. In

particular, for asymptotic learning to occur in a society along equilibrium σ when communication is

truthful, it has to be that all but a negligible fraction of the agent acquire information from mavens.

Given this fact and from Lemma 3, we obtain that there exists an equilibrium (σ,m) where asymptotic

learning occurs, even when we allow for strategic communication (an agent can simply act upon the

information propagated by the mavens and ignore all other information).

Proof of Proposition 5. The first part follows directly from Proposition 1(i). The second part

is derived using similar arguments as those in the proof of Proposition 9. In particular, for all but a

negligible fraction of the agents and k, n large enough it holds: Xn
k = Zn,σk for all σ. Moreover, for

i ∈ Xn
k ∩Z

n,σ
k , τni = τn,σi . This implies that all equilibria are asymptotically efficient, since the expected

payoff an agent achieves in the “no exit” benchmark, i.e., in the idealized setting that the agent exits

optimally when assuming that no other agent exits, is an upper bound on the payoff that the agent

can achieve under any strategy profile (and, in particular, under the socially optimal allocation).

Proof of Proposition 6. The claim follows by noting that the social planner could choose the

following strategy profile: for each j ∈ Dn,σ
k,` delay i’s irreversible action by at least one communication

step, where i is an agent such that if i delays then j gains access to a least ` additional signals.

Moreover, it is straightforward to see that there exist ε, δ for which ε, δ-learning fails.

Proofs from Section 4

Proof of Proposition 7

First we make an observation which will be used frequently in the subsequent analysis. Consider an

agent i such that Hn
SC(i) ∈ H

n
k̄
, where k̄ is an integer appropriately chosen (see below), i.e., the size

of the social clique of agent i is greater than or equal to k̄, |Hn
SC(i)| ≥ k̄. Suppose agent i does not
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form a link with cost c with any agents outside her social clique. If she makes a decision at time t = 0

based on her signal only, her expected payoff is ψ − 1
ρ+ρ̄ . If she waits for one period, she has access

to the signals of all the agents in her social clique (i.e., she has access to at least k̄ signals), implying

that her expected payoff would be bounded from below by λ/(r + λ)
(
ψ − 1/(ρ+ ¯ρ)k̄

)
. Hence, her

expected payoff E[ψi(g
n)] satisfies

E[ψi(g
n)] ≥ max

{
ψ − 1

ρ+ ρ̄
,

λ

r + λ

(
ψ − 1

ρ+ ρ̄k̄

)}
,

for any link formation strategy gn and along any σ ∈ INFO(Gn) (where Gn is the communication

network induced by gn). Suppose now that agent i forms a link with cost c with an agent outside her

social clique. Then, her expected payoff is bounded from above by

E[ψi(g
n)] < max

{
ψ − 1

ρ+ ρ̄
,

λ

r + λ

(
ψ − 1

ρ+ ρ̄k̄

)
,

(
λ

λ+ r

)2

ψ − c

}
,

where the third term in the maximum is an upper bound on the payoff she could get by having access

to the signals of all agents she is connected to in two time steps (i.e., signals of the agents in her social

clique and in the social clique that she is connected to). Combining the preceding two relations, we

see that an agent i with Hn
SC(i) ∈ H

n
k̄

will not form any costly links in any network equilibrium, i.e.,

gnij = 1 if and only if SC(j) = SC(i) for all i such that |Hn
SC(i)| ≥ k̄. (29)

where k̄ is the smallest constant such that

λ

r + λ

(
ψ − 1

ρ+ ρ̄k̄

)
≥
(

λ

λ+ r

)2

ψ − c.

(a) Condition (9) implies that for all sufficiently large n, we have∣∣Hnk̄ ∣∣ ≥ ξn, (30)

where ξ > 0 is a constant. For any ε with 0 < ε < ξ, we have

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
= P


 ∑
i| |Hn

SC(i)
|<k̄

1−Mn,ε
i

n
+

∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n

 > ε


≥ P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
> ε

 . (31)
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The right-hand side of the preceding inequality can be re-written as

P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
> ε

 = 1− P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
≤ ε


= 1− P

 ∑
i| |Hn

SC(i)
|≥k̄

Mn,ε
i

n
≥ w − ε

 ,

where w =
∑

i| |Hn
SC(i)

|≥k̄
1
n . By Eq. (30), it follows that for n sufficiently large, we have w ≥ ξ. Using

Markov’s inequality, the preceding relation implies

P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
> ε

 ≥ 1−

∑
i| |Hn

SC(i)
|≥k̄ E[Mn,ε

i ]

n
· 1

w − ε
. (32)

By Lemma 2 and observation (29), for an agent i with |Hn
SC(i)| ≥ k̄ it holds that

P(Mn,ε
i = 0) ≥ erfc

ε
√
ρ+ |Hn

SC(i)|ρ̄
2

 , and therefore

E[Mn,ε
i ] ≤ 1− erfc

ε
√
ρ+ |Hn

SC(i)|ρ̄
2

 .

Now assuming that social cliques are ordered by size (Hn
1 is the biggest), we can re-write Eq. (32) as

P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
> ε

 ≥

≥ 1−

∑|Hn
k̄
|

j=1 |Hn
j |
(

1− erfc

(
ε

√
ρ+|Hn

j |ρ̄
2

))
(w − ε) · n

≥ 1− w · (1− ζ)

w − ε
≥ 1− ξ · (1− ζ)

ξ − ε
> δ (33)

Here, the second inequality is obtained since the largest value for the sum is achieved when all sum-

mands are equal and ζ = erfc

(
ε

√
ρ+ k̄ρ̄

2

)
. The third inequality holds using the relation w ≥ ξ and

choosing appropriate values for ε, δ.

This establishes that for all sufficiently large n, we have

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
> δ > 0,
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which implies

lim sup
n→∞

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
> δ,

and shows that perfect asymptotic learning does not occur in any network equilibrium.

(b) We show that if the communication cost structure satisfies condition (10), then asymptotic learn-

ing occurs in all network equilibria (g, σ) = ({gn, σn})∞n=1. For an illustration of the resulting commu-

nication networks, when condition (11) holds, refer to Figure 7(a). Let Bn
i (Gn) be the neighborhood

of agent i in communication network Gn (induced by the link formation strategy gn),

Bn
i (Gn) = {j

∣∣ there exists a path P in Gn from j to i},

i.e., Bn
i (Gn) is the set of agents in Gn whose information agent i can acquire over a sufficiently large

(but finite) period of time.

We first show that for any agent i such that lim supn→∞
∣∣Hn

SC(i)

∣∣ < k̄, her neighborhood in any

network equilibrium satisfies limn→∞
∣∣Bn

i

∣∣ =∞. We use the notion of an isolated social clique to show

this. For a given n, we say that a social clique Hn
` is isolated (at a network equilibrium (g, σ)) if no

agent in Hn
` forms a costly link with an agent outside Hn

` in (g, σ). Equivalently, a social clique Hn
` is

not isolated if there exists at least one agent j ∈ Hn
` , such that j incurs cost c and forms a link with

an agent outside Hn
` .

We show that for an agent i with lim supn→∞
∣∣Hn

SC(i)

∣∣ < k̄, the social clique Hn
SC(i) is not isolated

in any network equilibrium for all sufficiently large n. Using condition (10), we can assume without loss

of generality that social cliques are ordered by size from largest to smallest and that limn→∞ |Hn
1 | =∞.

Suppose that Hn
SC(i) is isolated in a network equilibrium (g, σ). Then the expected payoff of agent i

is upper bounded (similarly with above)

E[ψi(g
n)] ≤ max

{
ψ − 1

ρ+ ρ̄
,

λ

r + λ

(
ψ − 1

ρ+ ρ̄(k̄ − 1)

)}
Using the definition of k̄, it follows that for some ε > 0,

E[ψi(g
n)] ≤ max

{
ψ − 1

ρ+ ρ̄
,

(
λ

r + λ

)2

ψ − c− ε

}
(34)

Suppose next that agent i forms a link with an agent j ∈ Hn
1 . Her expected payoff E[χi(g

n)]

satisfies

E[χi(g
n)] ≥

(
λ

r + λ

)2

·

(
ψ − 1

ρ+ ρ̄
∣∣Hn

1

∣∣
)
− c,

since in two time steps, she has access to the signals of all agents in the social clique Hn
1 . Since
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limn→∞ |Hn
1 | =∞, there exists some N1 such that

E[χi(g
n)] >

(
λ

λ+ r

)2

ψ − c− ε for all n > N1.

Comparing this relation with Eq. (34), we conclude that under the assumption that r < r̄ (for appro-

priate r̄), the social clique Hn
SC(i) is not isolated in any network equilibrium for all n > N1.

Next, we show that limn→∞ |Bn
i | =∞ in any network equilibrium. Assume to arrive at a contra-

diction that lim supn→∞ |Bn
i | <∞ in some network equilibrium. This implies that lim supn→∞ |Bn

i | <
|Hn

1 | for all n > N2 > N1. Consider some n > N2. Since Hn
SC(i) is not isolated, there exists some

j ∈ Hn
SC(i) such that j forms a link with an agent h outside Hn

SC(i). Since lim supn→∞ |Bn
i | < |Hn

1 |,
agent j can improve her payoff by changing her strategy to gnjh = 0 and gnjh′ = 1 for h′ ∈ Hn

1 , i.e., j is

better off deleting her existing costly link and forming one with an agent in social clique Hn
1 . Hence,

for any network equilibrium, we have

lim
n→∞

|Bn
i | =∞ for all i with lim sup

n→∞
|Hn

SC(i)| < k̄ (35)

We next consider the probability that a non-negligible fraction (ε-fraction) of agents takes an action

that is at least ε-away from optimal with probability at least δ along a network equilibrium (g, σ). For

any n, we have from Markov’s inequality

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
≤ 1

ε
·
n∑
i=1

E[1−Mn,ε
i ]

n
(36)

We next provide upper bounds on the individual terms in the sum on the right-hand side. We have

E[1−Mn,ε
i ] ≤ erfc

(
ε

√
ρ+ ρ̄|Bn

i |
2

)
. (37)

Consider an agent i with lim supn→∞ |Hn
SC(i)| < k̄ (i.e., |Hn

SC(i)| < k̄ for all n large). By Eq. (35),

we have limn→∞ |Bn
i | = ∞. Together with Eq. (37), this implies that for some ζ > 0, there exists

some N such that for all n > N , we have

E[1−Mn,ε
i ] <

ε ζ

2
for all i with lim sup

n→∞
|Hn

SC(i)| < k̄. (38)

Consider next an agent i with lim supn→∞ |Hn
SC(i)| ≥ k̄, and for simplicity, let us assume that the

limit exists, i.e., limn→∞ |Hn
SC(i)| ≥ k̄.25

25The case when the limit does not exist can be proven by focusing on different subsequences. In particular, along
any subsequence Ni such that limn→∞,n∈Ni |Hn

SC(i)| ≥ k̄, the same argument holds. Along any subsequence Ni with

limn→∞,n∈Ni |Hn
SC(i)| < k̄, we can use an argument similar to the previous case to show that limn→∞,n∈Ni |Bni | = ∞,

and therefore E[1−Mn,ε
i ] < ε ζ

2
for n large and n ∈ Ni.
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This implies that |Hn
SC(i)| ≥ k̄ for all large n, and therefore,

∑
i| lim supn→∞ |Hn

SC(i)
|≥k̄

E[1−Mn,ε
i ]

n
≤
|Hnk |∑
j=1

|Hn
j |
n
· erfc

ε
√
ρ+ ρ̄|Hn

j |
2

 ≤ |Hnk̄ |
n
· k̄,

where the first inequality follows from Eq. (37). Using condition (10), i.e., limn→∞

∣∣Hn
k̄

∣∣
n = 0, this

relation implies that there exists some Ñ such that for all n > Ñ , we have∑
i| lim supn→∞ |Hn

SC(i)
|≥k̄

E[1−Mn,ε
i ]

n
<
ε ζ

2
. (39)

Combining Eqs. (38) and (39) with Eq. (36), we obtain for all n > max {N, Ñ},

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
< ζ,

where ζ > 0 is an arbitrary scalar. This implies that

lim
n→∞

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
= 0,

for all ε, showing that perfect asymptotic learning occurs along every network equilibrium.

(c) The proof proceeds in two parts. First, we show that if condition (11) is satisfied, learning occurs

in at least one network equilibrium (g, σ). In particular, we explicitly profile a strategy profile (g, σ)

such that when condition (11) is satisfied, (g, σ) is a network equilibrium along which learning occurs.

Then, we show that there exists a c̄ > 0, such that if c < c̄, then learning occurs in all network

equilibria. We complete the proof by showing that if c > c̄, then there exist network equilibria, in

which asymptotic learning fails, even when condition (11) holds. We consider the case when agents

are patient, i.e., the discount rate r → 0. We consider k̄, such that c > 1
ρ+ρ̄k̄

and c < 1
ρ+ρ̄(k̄−1)

− ε′, for

some ε′ > 0 (such a k̄ exists). Finally, we assume that c < 1
ρ+ρ̄ , since otherwise no agent would have

an incentive to form a costly link.

Part 1: We assume, without loss of generality, that social cliques are ordered by size (Hn
1 is the small-

est). LetHn
<k̄

denote the set of social cliques of size less than k̄, i.e., Hn
<k̄

= {Hn
i , i = 1, . . . ,Kn | |Hn

i | <
k̄}. Finally, let rec(j) and send(j) denote two special nodes for social clique Hn

j , the receiver and the

sender (they might be the same node). We claim that (gn, σn) described below and depicted in Figure

7(b) is an equilibrium of the network learning game Γ(Cn) for n large enough and r sufficiently close

to zero.

gnij =


1 if SC(i) = SC(j), i.e., i, j belong to the same social clique,
1 if i = rec(`− 1) and j = send(`) for 1 < ` ≤ |Hn

<k̄
|,

1 if i = rec(|Hn
<k̄
|) and j = send(1),

0 otherwise
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and σn ∈ INFO(Gn), where Gn is the communication network induced by gn. In this communication

network, social cliques with size less than k̄ are organized in a directed ring, and all agents i, such

that |Hn
SC(i)| < k̄ have the same neighborhood, i.e., Bn

i = Bn for all such agents. Note that in this

network equilibrium, only the receivers of each social clique form costly links (it is exactly those links

that facilitate the exchange of information among different cliques).

Next, we show that the strategy profile (gn, σn) described above is indeed an equilibrium of the network

learning game Γ(Cn). We restrict attention to large enough n’s. In particular, let N be such that∑|HN
<k̄
|

i=1 |HN
i | > k̄ and consider any n > N (such N exists from condition (11)). Moreover, we assume

that the discount rate is sufficiently close to zero. We consider the following two cases.

Case 1: Agent i is not a receiver. Then, gnij = 1 if and only if SC(j) = SC(i). Agent i’s neighborhood

as noted above is set Bn, which is such that ψ − 1
ρ+ρ̄|Bn| > ψ − c from the assumption on n, i.e.,

n > N , where N such that
∑|HN

<k̄
|

i=1 |HN
i | > k̄. Agent i can communicate with all agents in Bn in at

most |H<k̄| communication steps. Therefore, her expected payoff is lower-bounded by

E[χi(g
n)] ≥

(
λ

λ+ r

)∣∣Hn
<k̄

∣∣
·
(
ψ − 1

ρ+ ρ̄k̄

)
> ψ − c,

under any equilibrium σn for r sufficiently close to zero. Agent i can deviate by forming a costly

link with agent m, such that SC(m) 6= SC(i). However, this is not profitable since from above her

expected payoff under (gn, σn) is at least ψ − c (which is the maximum possible payoff if an agent

chooses to form a costly link).

Case 2: Agent i is a receiver, i.e., there exists exactly one j, such that SC(j) 6= SC(i) and gnij = 1.

Using a similar argument as above we can show that it is not profitable for agent i to form an additional

costly link with an agent m, such that SC(m) 6= SC(i). On the other hand, agent i could deviate by

setting gnij = 0. However, then her expected payoff would be

E[χi(g
n)] = max

{
ψ − 1

ρ+ ρ̄
,

λ

r + λ

(
ψ − 1

ρ+ ρ̄|Hn
i |

)}
(40)

≤ max

{
ψ − 1

ρ+ ρ̄
,

λ

r + λ

(
ψ − 1

ρ+ ρ̄(k̄ − 1)

)}
< ψ − c− ε′

<

(
λ

r + λ

)∣∣Hn
<k̄

∣∣ (
ψ − 1

ρ+ ρ̄|Bn|

)
− c− ε,

for discount rate sufficiently close to zero. Therefore deleting the costly link is not a profitable devi-

ation. Similarly we can show that it a (weakly) dominant strategy for the receiver not to replace her

costly link with another costly link.

We showed that (gn, σn) is an equilibrium of the network learning game. Note that we described a

link formation strategy, in which social cliques connect to each other in a specific order (in increasing

size). There is nothing special about this ordering and any permutation of the first |Hn
<k̄
| cliques is an
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Hn
`1 X

Hn
`2

(a) Deviation for i ∈ Hn
`1

- property (i).

X

Hn
`

(b) Deviation for i ∈ Hn
` - property (ii).

Figure 9: Communication networks under condition (11).

equilibrium as long as they form a directed ring. Finally, any node in a social clique can be a receiver

or a sender.

Next, we argue that asymptotic learning occurs in network equilibria (g, σ) = {(gn, σn)}∞n=1,

where for all n > N , N is a large constant, gn has the form described above. As shown above,

all agents i for which Hn
SC(i) < k̄ have the same neighborhood, which we denoted by Bn. Moreover,

limn→∞ |Bn| =∞, since social cliques with size less than k̄ are connected to the ring and, by condition

(11), limn→∞
∑

i| |Hn
i |<k̄
|Hn

i | = ∞. For discount rate r sufficiently close to zero and from arguments

similar to those in the proof of part (b), we conclude that asymptotic learning occurs in network

equilibria (g, σ).

Part 2: We have shown a particular form of network equilibria, in which asymptotic learning occurs.

The following proposition states that for discount rate sufficiently close to zero network equilibria fall

in one of two forms.

Proposition 10. Suppose Assumptions 1, 4 and condition (11) hold. Then, an equilibrium (gn, σn)

of the network learning game Γ(Cn) can be in one of the following two forms.

(i) (Incomplete) Ring Equilibrium: Social cliques with indices {1, · · · , j}, where j ≤ |Hn
<k̄
|,

form a directed ring as described in Part 1 and the rest of the social cliques are isolated. We

call those equilibria ring equilibria and, in particular, a ring equilibrium is called complete if

j = |Hn
<k̄
|, i.e., if all social cliques with size less than k̄ are not isolated.

(ii) Directed Line Equilibrium: Social cliques with indices {1, · · · , j}, where j ≤ |Hn
<k̄
|, and clique

with index |Hn
Kn | (the largest clique) form a directed line with the latter being the endpoint. The

rest of the social cliques are isolated.

Proof. Let (gn, σn) be an equilibrium of the network learning game Γ(Cn). Monotonicity of the

expected payoff as a function of the number of signals observed implies that if clique Hn
` is not

isolated, then no clique with index less than ` is isolated in the communication network induced by gn.

In particular, let rec(`) be the receiver of social clique Hn
` and E[ψrec(`)(g

n)] be her expected payoff.

Consider an agent i such that SC(i) = `′ < ` and, for the sake of contradiction, Hn
`′ is isolated in

the communication network induced by gn. Social cliques are ordered by size, therefore, |Hn
`′ | ≤ |Hn

` |.
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Now, we use the monotonicity mentioned above. Consider the expected payoff of i:

E[ψi(g
n)] = max

{
ψ − 1

ρ+ ρ̄
,

λ

λ+ r

(
ψ − 1

ρ+ ρ̄|Hn
`′ |

)}
≤ max

{
ψ − 1

ρ+ ρ̄
,

λ

λ+ r

(
ψ − 1

ρ+ ρ̄|Hn
` |

)}
< E[ψrec(`)(g

n)], (41)

where the last inequality follows from the fact that agent rec(`) formed a costly link. Consider a

deviation, gn,deviationi for agent i, in which gn,deviationi,rec(`) = 1 and gn,deviationij = gnij , i.e., agent i forms a

costly link with agent conn(`). Then,

E[ψi(g
n,deviation)] ≥ λ

λ+ r
E[ψrec(`)(g

n)] > E[ψi(g
n)],

from (41) and for discount rate sufficiently close to zero. Therefore, social clique Hn
`′ will not be

isolated in any network equilibrium (gn, σn).

Next, we show two structural properties that all network equilibria (gn, σn) should satisfy, when

the discount rate r is sufficiently close to zero. We say that there exists a path P between social

cliques Hn
`1

and Hn
`2

, if there exists a path between some i ∈ Hn
`1

and j ∈ Hn
`2

. Also, we say that the

in-degree (out-degree) of social clique Hn
`1

is k, if the sum of in-links (out-links) of the nodes in Hn
`1

is

k, i.e., Hn
`1

has in-degree k if
∑

i∈Hn
`1

∑
j /∈Hn

`1

gnij = k.

(i) Let Hn
`1
, Hn

`2
be two social cliques that are not isolated. Then, there should exist a directed path

P in Gn induced by gn between the two social cliques.

(ii) The in-degree and out-degree of each social clique is at most one.

Figure 9 provides an illustration of why the properties hold for patient agents. In particular, for

property (i), let i = rec(Hn
`1

) and j = rec(Hn
`2

) and assume, without loss of generality, that |Bn
i | ≤ |Bn

j |.
Then, for discount rate sufficiently close to zero and from monotonicity of the expected payoff, we

conclude that i has an incentive to deviate, delete her costly link and form a costly link with agent

j. Property (ii) follows due to similar arguments. From the above, we conclude that the only two

potential equilibrium topologies are the (incomplete) ring and the directed line with the largest clique

being the endpoint under the assumptions of the proposition.

So far we have shown a particular form of network equilibria that arise under condition (11), in

which asymptotic learning occurs. We also argued that under condition (11) only (incomplete) ring

or directed line equilibria can arise for network learning game Γ(Cn). In the remainder we show that

there exists a bound c̄ > 0 on the common cost c for forming a link between two social cliques, such

that if c < c̄ all network equilibria (g, σ) that arise satisfy that gn is a complete ring equilibrium for

all n > N , where N is a constant. In those network equilibria asymptotic learning occurs as argued

in Part 1. On the other hand, if c > c̄ coordination among the social cliques may fail and additional
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equilibria arise in which asymptotic learning does not occur. Let

c̄n = min
k≥k1

{
− 1

ρ+ ρ̄(
∑k

j=1 |Hn
j |+ |Hn

k+1|)
+

1

ρ+ ρ̄|Hn
k+1|)

}
(42)

where k1 such that
∑k1

j=1 |Hn
j | ≥ |Hn

Kn | (size of the largest clique). Moreover, let c̄ = lim infn→∞ c̄
n.

The following proposition concludes the proof.

Proposition 11. Suppose Assumptions 1, 4 and condition (11) hold. If c < c̄ asymptotic learning

occurs in all network equilibria (g, σ). Otherwise, there exist equilibria in which asymptotic learning

does not occur.

Proof. Let the common cost c be such that c < c̄, where c̄ is defined as above, and consider a network

equilibrium (g, σ). Let N be a large enough constant and consider the corresponding gn for n > N .

We claim that gn is a complete ring equilibrium for all such n. Assume for the sake of contradiction

that the claim is not true. Then, from Proposition 10, gn is either an incomplete ring equilibrium or

a directed line equilibrium. We consider the former case (the latter case can be shown with similar

arguments). There exists an isolated social clique Hn
` , such that |Hn

` | < k̄ and all cliques with index

less than ` are not isolated and belong to the incomplete ring. However, from the definition of c̄ we

obtain that an agent i ∈ Hn
` would have an incentive to connect to the incomplete ring, thus we reach

a contradiction. In particular, consider the following link formation strategy for agent i:

gn,deviationim = 1 for agent m ∈ Hn
`−1 and gn,deviationij = gnij for j 6= m.

Then,

E[χni (gn,deviation)] ≥
(

λ

λ+ r

)|Hn
<k̄
|
(
ψ − 1

ρ+ ρ̄(
∑`−1

j=1 |Hn
j |+ |Hn

` |)

)
− c

> max

{
ψ − 1

ρ+ ρ̄
,

λ

λ+ r

(
ψ − 1

ρ+ ρ̄|Hn
` |

)}
= E[χni (gn)],

where the strict inequality follows from the definition of c̄ for r sufficiently close to zero. Thus we

conclude that if c < c̄, gn is a complete ring for all n > N , where N is a large constant, and from

Part 1 asymptotic learning occurs in all network equilibria (g, σ). On the contrary, if c > c̄, then there

exists an infinite index set W , such that for all n in the (infinite) subsequence, {nw}w∈W , there exists

a k, such that
1

ρ+ ρ̄(
∑k

j=1 |Hn
j |+ |Hn

k+1|)
− c < 1

ρ+ ρ̄|Hn
k+1|

. (43)

Moreover, |Hn
k+1| < k̄ and

∑k
j=1 |Hn

j | ≥ |Hn
Kn |. We conclude that for (43) to hold it has to be that∑k

j=1 |Hn
j | < R, where R is a uniform constant for all n in the subsequence. Consider (g, σ)∞n=1, such

that for every n in the subsequence, gn is such that social cliques with index greater than k (as described
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above) are isolated and the rest form an incomplete ring or a directed line and σn = INFO(Gn), where

Gn is the communication network induced by gn. From above, we obtain that for c > c̄, (gn, σn) is an

equilibrium of the network learning game Γ(Cn). Perfect asymptotic learning, however, fails in such

an equilibrium, since for every i ∈ Nn, |Bn
i | ≤ R, where Bn

i denotes the neighborhood of agent i.

Proofs from Appendix A

Proof of Proposition 8. First, we show that learning fails if condition (12) holds, i.e., there exists

a k > 0, such that

η = lim inf
n→∞

1

n
·
∣∣V n,σ
k

∣∣ > ε and erf

(
ε

√
ρ+ ρ̄k

2

)
< (1− δ)(1− ε/η). (44)

From condition (44) we obtain that there exists an infinite index set J such that for the sequence of

communication networks restricted to index set J , i.e., {Gnj}∞j=1 it holds∣∣V nj
k

∣∣ ≥ η · nj for j ∈ J.

Now restrict attention to index set J , i.e., consider n = nj for some j ∈ J . Then,

Pσ
(

1
n

∑n
i=1M

n,ε
i > 1− ε

)
= Pσ

(
1
n

[∑
i∈V n,σk

Mn,ε
i +

∑
i/∈V n,σk

Mn,ε
i

]
> 1− ε

)
≤ Pσ

(
1
n

[∑
i∈V n,σk

Mn,ε
i + n−

∣∣V n,σ
k

∣∣] > 1− ε
)

= Pσ
(

1
n

∑
i∈V n,σk

Mn,ε
i >

∣∣V n,σk

∣∣
n − ε

) ,

where the inequality follows since we let Mn,ε
i = 1 for all i /∈ V n,σ

k . Next we use Markov’s inequality

Pσ

 1

n

∑
i∈V n,σk

Mn,ε
i >

∣∣V n,σ
k

∣∣
n
− ε

 ≤ Eσ
[∑

i∈V n,σk
Mn,ε
i

]
n ·
(∣∣V n,σ

k

∣∣/n− ε) .
We can view each summand above as an independent Bernoulli variable with success probability

bounded above by erfc

(
ε
√

ρ+ρ̄k
2

)
from Lemma 2. Thus

Eσ
[∑

i∈V n,σ
k

Mn,ε
i

]
n·
(∣∣V n,σk

∣∣/n−ε) ≤

∣∣V n,σk

∣∣erf(ε√ ρ+ρ̄k
2

)
n·
(∣∣V n,σk

∣∣/n−ε)
≤ η

η−εerf

(
ε
√

ρ+ρ̄k
2

)
< 1− δ,

where the second inequality follows from the fact that n was chosen such that
∣∣V n,σ
k

∣∣ ≥ η · n. Finally,

the last expression follows from the choice of k (cf. Condition (12)). We obtain that for all j ∈ J it

holds that

Pσ

([
1

nj

nj∑
i=1

(
1−Mnj ,ε

i

)]
> ε

)
≥ δ.
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Since J is an infinite index set we conclude that

lim sup
n→∞

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
≥ δ,

thus ε, δ-asymptotic learning is incomplete when (12) holds.

Next, we prove that Condition (13) is sufficient for ε, δ-asymptotic learning. As mentioned above, if

agent i takes an irreversible action after observing ` signals, then the probability that Mn,ε
i = 1 is

equal to

Pσ(Mn,ε
i = 1) = erf

(
ε

√
ρ+ ρ̄`

2

)
. (45)

Similarly with above, we have

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
≤ Pσ

([
1

n

∑
i/∈V

(1−Mn,ε
i )

]
> ε−

∣∣V ∣∣
n

)

≤
Eσ
[∑

i/∈V (1−Mn,ε
i )
]

n
(
ε−

∣∣V ∣∣/n) , (46)

where V =
{
i
∣∣ ∣∣Bn

i,τn,σi

∣∣ ≤ k} and the second inequality follows from Markov’s inequality. By

combining Eqs. (45) and (46) and letting kn,σi denote the number of private signals that agent i

observed before taking an action,

Eσ
[∑

i/∈V (1−Mn,ε
i )
]

n
(
ε−

∣∣V ∣∣/n) ≤

∑
i/∈V 1− erf

(
ε

√
ρ+ ρ̄

kn,σi
2

)
n
(
ε−

∣∣V ∣∣/n) . (47)

We have

erf

(
ε

√
ρ+ ρ̄kn,σi

2

)
> 1− δ(ε− ζ)

1− ζ
, (48)

for all i /∈ V from the definition of k (cf. Condition (13)). Thus combining Eqs. (46),(47) and (48),

we obtain

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
< δ for all n > N,

where N is a sufficiently large constant, which implies that condition (13) is sufficient for asymptotic

learning.
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