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In a film adaptation of the short story “The Minority 
Report,” experts track the brain activity of a small group 
of “precognitive” mutants to forecast the crimes of citi-
zens (Dick, 2002). Although the notion that brain activ-
ity in a few individuals could be used to forecast others’ 
behavior might seem relegated to the realm of science 
fiction, recent technological advances have moved 
researchers closer to establishing “neuroforecasting” as 
a scientific fact.

Since the turn of the 21st century, improvements in 
the spatial and temporal resolution of neuroimaging 
methods have allowed researchers to visualize neural 
activity that can predict and promote individual choice 
(Knutson, Rick, Wimmer, Prelec, & Loewenstein, 2007; 
Plassmann, Doherty, Rangel, & O’Doherty, 2007). For 
instance, the spatiotemporal resolution (on the order 
of millimeters and seconds) of functional MRI (or fMRI) 
has allowed investigators to track changes in the neural 
activity (or oxygenation) of subcortical circuits impli-
cated in appetitive and aversive motivation seconds 
before choice. These anticipatory changes in brain 
activity can inform predictions about individuals’ ten-
dencies to approach or avoid various options ranging 
from gambles to purchases to investments (Knutson & 
Greer, 2008; D. J. Levy & Glimcher, 2012), both during 
and after scanning (I. Levy, Lazzaro, Rutledge, & 
Glimcher, 2011) and even in the absence of conscious 
reflection (Tusche, Bode, & Haynes, 2010).

At the same time, the rise of large and novel Internet 
markets has opened up opportunities for tracking and 
even forecasting aggregate choice (Choi & Varian, 2012). 
These parallel developments raise the question of 
whether brain activity could be used not only to predict 
individual choice but also to forecast aggregate choice. 
Accordingly, researchers have begun to explore whether 
brain activity in laboratory samples can forecast aggre-
gate choice in markets, how neural measures compare 
with more traditional measures (such as self-reported 
ratings and choices), and which markets best support 
forecasts. Below, we consider relevant theory, survey 
recent findings, and explore potential implications.

Scaling to the Aggregate

While the term “prediction” can refer to the use of an 
individual’s neural data to predict his or her own behav-
ior, we adopt the distinct term neuroforecasting here 
to refer to the use of brain activity from a group of 
individuals to forecast the behavior of a separate and 
independent group. Neuroforecasting further implies 
(but does not necessitate) that forecasts apply to the 
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future behavior of larger groups. While neuroforecast-
ing does not necessarily imply that neural data must 
provide better information than traditional behavioral 
measures (such as ratings or choice), demonstrations 
of added value might motivate and justify further 
research and development (Ariely & Berns, 2010).

But how might individual choice—or even its 
components—scale to inform forecasts of aggregate 
choice? While many theories make strong implicit 
assumptions about scaling from individual to aggregate 
choice, no explicit consensus exists. According to a 
no-scaling account, even if one could use neural data 
to predict individual choice, many factors (e.g., unsys-
tematic individual preferences, gaming of others’ sys-
tematic preferences, random noise) might conspire to 
obscure the influence of neural data at the level of 
aggregate choice. The efficient-market hypothesis, for 
instance, implies that individual choices should “wash 
out” at the aggregate level, such that no individual’s 
choice provides information about future market behav-
ior (Fama, 1970). Conversely, according to a total-scaling 
account, if one begins with an accurate model of a 
representative individual’s choice, one could simply 
multiply that model (perhaps along with some noise) 
to derive an accurate estimate of aggregate choice. 
Expected utility theory, for instance, implies total scal-
ing (Von Neumann & Morgenstern, 1944). Standing 
between these two extremes, we suggest an intermedi-
ate partial-scaling account, in which some choice com-
ponents may generalize more across individuals than 
others (and by extension, more than individual choice 
itself, which constitutes the end point of all supporting 
components). If the partial-scaling account holds, then 
identifying choice components that generalize best 
across individuals could potentially improve forecasts 
of aggregate choice.

Neuroforecasting With fMRI

Motivated by theoretical challenges from economics 
(Bernheim, 2008) and the promise of practical applica-
tions (Smidts et al., 2014), researchers have begun to 
explore whether fMRI measures might inform not only 
predictions of individual choice but also forecasts of 
aggregate choice (only peer-reviewed, published find-
ings are considered below; Karmarkar & Yoon, 2016). 
Although a few other published studies have attempted 
to forecast aggregate choice using other methods, such 
as electroencephalography (EEG; Boksem & Smidts, 
2015; Dmochowski et al., 2014), we do not review them 
here because of their current inability to resolve sub-
cortical sources of activity.

An initial and fortuitous example of neuroforecasting 
came from a study of peer influence, in which teenag-
ers were exposed to music clips culled from an Internet 

site while undergoing MRI. Two years later, the research-
ers realized that they could obtain measures of aggre-
gate song performance in the form of Internet 
downloads. By averaging brain activity and ratings (i.e., 
of liking) in response to these songs, the researchers 
found that the sample’s averaged brain activity in the 
subcortical nucleus accumbens (NAcc) and cortical 
medial prefrontal cortex (mPFC) could forecast aggre-
gate song downloads 2 years later (log-transformed). 
Moreover, increased NAcc activity could account for 
the positive association of mPFC activity with down-
loads. Averaged explicit ratings of liking collected from 
the laboratory sample, however, did not forecast aggre-
gate song downloads (Berns & Moore, 2012). These 
findings were consistent with earlier speculation that 
“hidden information” in a group of individuals’ neural 
responses might eventually allow investigators to fore-
cast aggregate choice, even beyond more traditional 
behavioral measures (Ariely & Berns, 2010).

Other researchers then explored whether brain activ-
ity in a laboratory sample could account for aggregate 
responses to persuasive messages. They found that the 
sample’s average mPFC response to different antismok-
ing advertisements was associated with call volume in 
response to those ads, even when the activity in control 
regions (i.e., primary visual cortex, primary motor cor-
tex, supplementary eye fields, and ventral striatum) and 
ad effectiveness ratings were not (Falk, Berkman, & 
Lieberman, 2012; see also Falk et  al., 2016). These 
researchers later argued for a brain-as-predictor 
approach, in which brain activity predicts subsequent 
behavior—either in the same or in different individuals—
as well as the possibility of neural activity improving 
predictions derived from traditional behavioral mea-
sures (Berkman & Falk, 2013, p. 45).

Following these initial demonstrations, a few studies 
explicitly sought to link brain activity in laboratory 
samples to aggregate choice (Table 1). In a study of 
microloan appeal success, researchers found that while 
NAcc and mPFC activity in response to microloan 
appeals predicted individual lending choices within a 
sample, only the sample’s average NAcc activity (but 
not activity in other regions implicated in choice, 
including the mPFC, anterior insula, and amygdala) 
forecasted loan appeal success on the Internet—and 
did so to a greater extent than did the sample’s choices. 
The sample’s ratings of positive arousal in response to 
the loan appeals also continued to forecast loan appeal 
success on the Internet (Genevsky & Knutson, 2015).

In a study of advertising effectiveness, researchers 
collected multiple measures of neural, physiological, 
and behavioral responses to advertisements (including 
self-reported ratings, skin conductance responses, heart 
rate, eye tracking data, EEG, and fMRI). Similar to the 
findings of the microlending study, of these measures, 
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only the sample’s average self-report ratings and fMRI 
NAcc activity (but not activity in other regions impli-
cated in choice, including the mPFC, dorsolateral pre-
frontal cortex, and amygdala) forecasted increased sales 
in markets where those ads were presented (Venkatraman 
et al., 2015). In another study of advertising effective-
ness, researchers found that the sample’s activity in a 
combined set of regions in response to ads (which 
prominently included the NAcc and mPFC) forecasted 
subsequent purchases of food (i.e., chocolates) placed 
near those ads in a supermarket, while the sample’s 
rated ad preferences did not (Kühn, Strelow, & Gallinat, 
2016).

Further, in a study of news virality, researchers found 
that a sample’s combined NAcc and mPFC activity in 
response to news headlines with summaries, as well as 
rated intentions to share, forecasted the extent to which 
those stories were shared on the Internet (Scholz et al., 
2017). Finally, in a study of crowdfunding appeal suc-
cess, researchers found that while both NAcc and mPFC 
activity predicted individual choices to fund, only the 
sample’s average NAcc activity forecasted crowdfunding 
appeal success on the Internet weeks later—despite the 
fact that the sample’s average behavioral measures 
(including choices and affect ratings) did not forecast 
aggregate choice (Genevsky, Yoon, & Knutson, 2017).

Together, these findings not only demonstrate the 
plausibility of neuroforecasting but also raise the intrigu-
ing possibility that not all neural processes that contrib-
ute to individual choice equally forecast aggregate 

choice (Table 1). While the current number of relevant 
studies is small and so can support only qualitative 
impressions, most of these studies implicate regions 
associated with reward processing (i.e., the NAcc and 
mPFC) in forecasts of aggregate choice. This pattern of 
findings applies even after considering activity in other 
regions of interest or after performing whole-brain anal-
yses. The few studies that have directly compared neu-
ral predictors of individual with aggregate choice, 
however, seem to implicate sampled NAcc activity in 
aggregate choice more often than mPFC activity 
(Genevsky & Knutson, 2015; Genevsky et  al., 2017;  
Venkatraman et al., 2015).

Combined with the partial-scaling account, we sus-
pect that an affect-integration-motivation (or AIM) 
framework inspired by research on neural predictors of 
individual choice could highlight which neural compo-
nents are most likely to generalize from individual to 
aggregate choice (Samanez-Larkin & Knutson, 2015). 
According to this modular and hierarchical scheme, 
rapid neural signals from evolutionarily conserved affec-
tive circuits are cortically integrated with individual con-
textually relevant concerns and then relayed to motor 
preparatory circuits that can support motivated choice 
behavior (Fig. 1). Specifically with respect to fMRI mark-
ers, activity associated with gain anticipation in the ven-
tral striatum (including the NAcc) and loss anticipation 
in the anterior insula is integrated with other factors 
related to personal relevance over time in the mPFC and 
then relayed up to the dorsomedial prefrontal cortex 

Table 1.  Studies Forecasting Aggregate Choice With Functional MRI (as of July 15, 2017)

Study
Stimuli (number, 
length, mode) N

Individual 
measure

Aggregate 
outcome

Neural 
analysis

Individual 
choice 

predictor

Aggregate 
outcome 
forecaster

Berns and Moore 
(2012)a

Songs (sixty 15-s 
clips)

32 Song ratings Song 
downloads

Region + 
brain

— NAcc

Falk, Berkman, and 
Lieberman (2012)

Ads (ten 30-s clips) 31 Ad ratings Ad-related calls Region — MFPC

Genevsky and 
Knutson (2015)

Loan appeals (eighty 
6-s print)

28 Appeal ratings, 
lending choice

Loan rate, 
success

Region + 
brain

NAcc, 
mPFC

NAcc

Venkatraman et al. 
(2015)

Ads (thirty-seven 
30-s clips)

33 Ad ratings, 
biometrics

Ad-related price 
elasticity

Region Amygdala, 
mPFC

NAcc

Kühn, Strelow, and 
Gallinat (2016)a

Ads (six 3-s print) 18 Ad ratings Ad-related sales Region — NAcc + mPFC 
+ others 
(combined)

Falk et al. (2016) Ads (twenty 4-s print) 47 Ad ratings Ad-related 
click-throughs

Region — mPFC

Scholz et al. (2017)b News articles (eighty 
10-s print)

41 Article ratings Article forwards Region + 
brain

— NAcc + mPFC 
(combined)

Genevsky, Yoon, and 
Knutson (2017)a,b

Funding appeals 
(thirty-six 6-s print)

30 Appeal ratings, 
funding choice

Funding 
success

Region + 
brain

NAcc, 
mPFC

NAcc

Note: mPFC = medial prefrontal cortex; NAcc = nucleus accumbens.
aIn these studies, sample assessment preceded aggregate outcome. bThese studies included a replication sample.
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and connected dorsal striatum to potentiate motivated 
behavior—including choice.

Combining partial scaling with the AIM framework 
implies that while both affective and integrative com-
ponents might support individual choice, affective com-
ponents may generalize more broadly across individuals 
than integrative components, which instead should 
show more precise sensitivity to idiosyncratic goals and 
contexts. For example, while both Alex and Brian might 
salivate when faced with a tray of warm soft chocolate 
chip cookies, Brian might grab one and gulp it down, 
while Alex abstains after contemplating the health 
implications of eating one. A counterintuitive implica-
tion of the AIM framework is that although affective 
components may reflect greater choice consistency 
across individuals (Knutson, Katovich, & Suri, 2014), 
integrative components may confer greater choice con-
sistency within individuals (Camille, Griffiths, Vo, Fellows, 
& Kable, 2011). While Brian and Alex’s shared affective 
neural responses make them both salivate in an appeti-
tive response to cookies, their distinctive integrative 
neural responses lead them to make different choices 
with respect to consumption.

Future Directions

Brain activity might offer unique information capable 
of improving forecasts of aggregate choice. In some 
cases, the contribution of this “hidden information” may 
supersede even that afforded by individual choice itself 
or other traditional behavioral measures (such as self-
report ratings). The potential for brain activity to 

forecast aggregate choice when behavior does not 
raises a paradox of particularity, in which only a subset 
of the components that produce individual choice gen-
eralize to forecast aggregate choice. The generalizable 
components may in turn afford more accurate forecasts 
of aggregate choice than individual choice itself. By 
implication, breaking down choice into its component 
processes could allow investigators to discover which 
of these components best scales to the aggregate. Neu-
roimaging might therefore provide a valuable tool for 
deconstructing choice components and testing their 
generalizability, both within and across individuals.

The AIM framework highlights which choice com-
ponents might best forecast aggregate choice by imply-
ing that affective responses generalize more broadly 
than cognitive integrative responses (which nonetheless 
promote choice consistency in individuals). Indeed, in 
some studies, affective components (such as NAcc 
activity) appear to generalize best to forecast aggregate 
choice of goods (Berns & Moore, 2012; Genevsky & 
Knutson, 2015). Other findings, however, suggest that 
integrative components (such as mPFC activity) forecast 
aggregate responses to informational appeals (Falk 
et  al., 2012). A different but complementary market-
matching account might maintain that generalizable 
components of choice reflect the most relevant features 
of choice options for a given market. So appeals for 
gambling may prominently recruit positive affective 
circuits, whereas appeals for insurance might instead 
recruit negative affective circuits, and appeals to iden-
tity might instead recruit circuits relevant to personal 
goal relevance (Kuhnen & Knutson, 2005). If the 

Affect

Integration

Motivation

NAcc
mPFC

Aggregate

Individual

Generalization Component Circuit

Fig. 1.  Affect-integration-motivation (AIM) framework aligned with proposed gradient of choice 
generalization. Ascending circuits (right) implement component functions that integrate affective 
and other responses to motivate choice (center). Although higher integrative circuits may promote 
choice consistency within individuals, lower affective circuits may show broader generalization 
in forecasting choice across individuals (left). mPFC = medial prefrontal cortex; NAcc = nucleus 
accumbens.
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market-matching account holds, then identifying which 
choice components best forecast aggregate choice 
could indicate the most salient features of associated 
markets, which might in turn suggest which interven-
tions could exert the most leverage on choices in those 
markets.

After establishing the possibility of neuroforecasting, 
researchers can turn toward more specifically address-
ing how, when, and why neuroforecasting works. More 
sophisticated neuroimaging designs and analyses may 
improve forecasts, particularly if they can extract critical 
features from complex multivariate data, generalize to 
other samples, and replicate across scenarios (Grosenick, 
Klingenberg, Katovich, Knutson, & Taylor, 2013). Mark-
ers of individuals with more predictive neural activity 
(for instance, stronger neural signals or more similarity 
to market actors) remain to be characterized. Features 
of markets where neuroforecasting can add value to 
traditional measures need to be specified. While future 
research may move in diverse directions, it seems safe 
to claim that the path taken has already propelled neu-
roforecasting from the realm of science fiction into one 
of scientific fact.

Recommended Reading

Ariely, D., & Berns, G. S. (2010). (See References). A review 
of neuromarketing suggesting that brain activity could 
add value to conventional choice measures if it can reveal 
otherwise “hidden information.”

Berkman, E. T., & Falk, E. B. (2013). (See References). 
Proposes the “brain-as-predictor approach” for using 
neural activity from focus groups to forecast the success 
of persuasive appeals.

Berns, G. S., & Moore, S. E. (2012). (See References). First 
demonstration that group functional MRI activity can fore-
cast aggregate song downloads 2 years later—even when 
ratings cannot.

Genevsky, A., & Knutson, B. (2015). (See References). Direct 
demonstration that group brain activity can supersede 
group choice in forecasting microlending appeal success 
on the Internet.

Samanez-Larkin, G. R., & Knutson, B. (2015). (See References). 
Proposes the affect-integration-motivation (AIM) frame-
work for using a hierarchical and ascending sequence of 
neural components to predict individual choice.
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