
RNNs and
LSTMs

Simple Recurrent Networks
(RNNs or Elman Nets)

Modeling Time in Neural Networks

Language is inherently temporal
Yet the simple NLP classifiers we've seen (for example for
sen=ment analysis) mostly ignore =me
• (Feedforward neural LMs (and the transformers we'll

see later) use a "moving window" approach to =me.)
Here we introduce a deep learning architecture with a
different way of represen=ng =me
• RNNs and their variants like LSTMs

Recurrent Neural Networks (RNNs)

Any network that contains a cycle within its network
connec1ons.
The value of some unit is directly, or indirectly,
dependent on its own earlier outputs as an input.

Simple Recurrent Nets (Elman nets)

xt

yt

ht

The hidden layer has a recurrence as part of its input
The ac1va1on value ht depends on xt but also ht-1!

Forward inference in simple RNNs

Very similar to the feedforward networks we've seen!

+

U

V

W

yt

xt

ht

ht-1

Simple recurrent neural network illustrated as a
feedforward network

8.1 • RECURRENT NEURAL NETWORKS 3

+

U

V

W

yt

xt

ht

ht-1

Figure 8.2 Simple recurrent neural network illustrated as a feedforward network. The hid-
den layer ht�1 from the prior time step is multiplied by weight matrix U and then added to
the feedforward component from the current time step.

output vector.

ht = g(Uht�1 +Wxt) (8.1)

yt = f (Vht) (8.2)

Let’s refer to the input, hidden and output layer dimensions as din, dh, and dout

respectively. Given this, our three parameter matrices are: W 2Rdh⇥din , U2Rdh⇥dh ,
and V 2 Rdout⇥dh .

We compute yt via a softmax computation that gives a probability distribution
over the possible output classes.

yt = softmax(Vht) (8.3)

The fact that the computation at time t requires the value of the hidden layer from
time t�1 mandates an incremental inference algorithm that proceeds from the start
of the sequence to the end as illustrated in Fig. 8.3. The sequential nature of simple
recurrent networks can also be seen by unrolling the network in time as is shown in
Fig. 8.4. In this figure, the various layers of units are copied for each time step to
illustrate that they will have differing values over time. However, the various weight
matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0 0
for i 1 to LENGTH(x) do

hi g(Uhi�1 + Wxi)
yi f (Vhi)

return y

Figure 8.3 Forward inference in a simple recurrent network. The matrices U, V and W are
shared across time, while new values for h and y are calculated with each time step.

8.1.2 Training

As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 8.2, we now have 3 sets of weights to update: W, the

8.1 • RECURRENT NEURAL NETWORKS 3

+

U

V

W

yt

xt

ht

ht-1

Figure 8.2 Simple recurrent neural network illustrated as a feedforward network. The hid-
den layer ht�1 from the prior time step is multiplied by weight matrix U and then added to
the feedforward component from the current time step.

output vector.

ht = g(Uht�1 +Wxt) (8.1)

yt = f (Vht) (8.2)

Let’s refer to the input, hidden and output layer dimensions as din, dh, and dout

respectively. Given this, our three parameter matrices are: W 2Rdh⇥din , U2Rdh⇥dh ,
and V 2 Rdout⇥dh .

We compute yt via a softmax computation that gives a probability distribution
over the possible output classes.

yt = softmax(Vht) (8.3)

The fact that the computation at time t requires the value of the hidden layer from
time t�1 mandates an incremental inference algorithm that proceeds from the start
of the sequence to the end as illustrated in Fig. 8.3. The sequential nature of simple
recurrent networks can also be seen by unrolling the network in time as is shown in
Fig. 8.4. In this figure, the various layers of units are copied for each time step to
illustrate that they will have differing values over time. However, the various weight
matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0 0
for i 1 to LENGTH(x) do

hi g(Uhi�1 + Wxi)
yi f (Vhi)

return y

Figure 8.3 Forward inference in a simple recurrent network. The matrices U, V and W are
shared across time, while new values for h and y are calculated with each time step.

8.1.2 Training

As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 8.2, we now have 3 sets of weights to update: W, the

Inference has to be incremental

Computing h at time t requires that we first computed h at the
previous time step!

8.1 • RECURRENT NEURAL NETWORKS 3

+

U

V

W

yt

xt

ht

ht-1

Figure 8.2 Simple recurrent neural network illustrated as a feedforward network. The hid-
den layer ht�1 from the prior time step is multiplied by weight matrix U and then added to
the feedforward component from the current time step.

output vector.

ht = g(Uht�1 +Wxt) (8.1)

yt = f (Vht) (8.2)

Let’s refer to the input, hidden and output layer dimensions as din, dh, and dout

respectively. Given this, our three parameter matrices are: W 2Rdh⇥din , U2Rdh⇥dh ,
and V 2 Rdout⇥dh .

We compute yt via a softmax computation that gives a probability distribution
over the possible output classes.

yt = softmax(Vht) (8.3)

The fact that the computation at time t requires the value of the hidden layer from
time t�1 mandates an incremental inference algorithm that proceeds from the start
of the sequence to the end as illustrated in Fig. 8.3. The sequential nature of simple
recurrent networks can also be seen by unrolling the network in time as is shown in
Fig. 8.4. In this figure, the various layers of units are copied for each time step to
illustrate that they will have differing values over time. However, the various weight
matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0 0
for i 1 to LENGTH(x) do

hi g(Uhi�1 + Wxi)
yi f (Vhi)

return y

Figure 8.3 Forward inference in a simple recurrent network. The matrices U, V and W are
shared across time, while new values for h and y are calculated with each time step.

8.1.2 Training

As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 8.2, we now have 3 sets of weights to update: W, the

Training in simple RNNs

+

U

V

W

yt

xt

ht

ht-1

Just like feedforward training:
• training set,
• a loss func<on,
• backpropaga<on

Weights that need to be updated:
• W, the weights from the input layer to the hidden layer,
• U, the weights from the previous hidden layer to the current hidden layer,
• V, the weights from the hidden layer to the output layer.

U

V

W

U

V

W

U

V

W

x1

x2

x3y1

y2

y3

h1

h3

h2

h0

Training in simple RNNs: unrolling in Ame
Unlike feedforward networks:
1. To compute loss func0on for the output
at 0me t we need the hidden layer from
0me t − 1.
2. hidden layer at 0me t influences the
output at 0me t and hidden layer at 0me
t+1 (and hence the output and loss at t+1).

So: to measure error accruing to ht,
• need to know its influence on both the

current output as well as the ones that
follow.

Unrolling in Ame (2)

We unroll a recurrent network into a feedforward
computa3onal graph elimina3ng recurrence
1. Given an input sequence,
2. Generate an unrolled feedforward network specific to input
3. Use graph to train weights directly via ordinary backprop (or

can do forward inference)

U

V

W

U

V

W

U

V

W

x1

x2

x3y1

y2

y3

h1

h3

h2

h0

RNNs and
LSTMs

Simple Recurrent Networks
(RNNs or Elman Nets)

RNNs and
LSTMs

RNNs as Language Models

Reminder: Language Modeling

8.2 • RNNS AS LANGUAGE MODELS 5

For applications that involve much longer input sequences, such as speech recog-
nition, character-level processing, or streaming continuous inputs, unrolling an en-
tire input sequence may not be feasible. In these cases, we can unroll the input into
manageable fixed-length segments and treat each segment as a distinct training item.

8.2 RNNs as Language Models

Let’s see how to apply RNNs to the language modeling task. Recall from Chapter 3
that language models predict the next word in a sequence given some preceding
context. For example, if the preceding context is “Thanks for all the” and we want
to know how likely the next word is “fish” we would compute:

P(fish|Thanks for all the)

Language models give us the ability to assign such a conditional probability to every
possible next word, giving us a distribution over the entire vocabulary. We can also
assign probabilities to entire sequences by combining these conditional probabilities
with the chain rule:

P(w1:n) =
nY

i=1

P(wi|w<i)

The n-gram language models of Chapter 3 compute the probability of a word given
counts of its occurrence with the n�1 prior words. The context is thus of size n�1.
For the feedforward language models of Chapter 7, the context is the window size.

RNN language models (Mikolov et al., 2010) process the input sequence one
word at a time, attempting to predict the next word from the current word and the
previous hidden state. RNNs thus don’t have the limited context problem that n-gram
models have, or the fixed context that feedforward language models have, since the
hidden state can in principle represent information about all of the preceding words
all the way back to the beginning of the sequence. Fig. 8.5 sketches this difference
between a FFN language model and an RNN language model, showing that the
RNN language model uses ht�1, the hidden state from the previous time step, as a
representation of the past context.

8.2.1 Forward Inference in an RNN language model

Forward inference in a recurrent language model proceeds exactly as described in
Section 8.1.1. The input sequence X= [x1; ...;xt ; ...;xN] consists of a series of words
each represented as a one-hot vector of size |V |⇥1, and the output prediction, y, is a
vector representing a probability distribution over the vocabulary. At each step, the
model uses the word embedding matrix E to retrieve the embedding for the current
word, multiples it by the weight matrix W, and then adds it to the hidden layer from
the previous step (weighted by weight matrix U) to compute a new hidden layer.
This hidden layer is then used to generate an output layer which is passed through a
softmax layer to generate a probability distribution over the entire vocabulary. That
is, at time t:

et = Ext (8.4)

ht = g(Uht�1 +Wet) (8.5)

ŷt = softmax(Vht) (8.6)

8.2 • RNNS AS LANGUAGE MODELS 5

For applications that involve much longer input sequences, such as speech recog-
nition, character-level processing, or streaming continuous inputs, unrolling an en-
tire input sequence may not be feasible. In these cases, we can unroll the input into
manageable fixed-length segments and treat each segment as a distinct training item.

8.2 RNNs as Language Models

Let’s see how to apply RNNs to the language modeling task. Recall from Chapter 3
that language models predict the next word in a sequence given some preceding
context. For example, if the preceding context is “Thanks for all the” and we want
to know how likely the next word is “fish” we would compute:

P(fish|Thanks for all the)

Language models give us the ability to assign such a conditional probability to every
possible next word, giving us a distribution over the entire vocabulary. We can also
assign probabilities to entire sequences by combining these conditional probabilities
with the chain rule:

P(w1:n) =
nY

i=1

P(wi|w<i)

The n-gram language models of Chapter 3 compute the probability of a word given
counts of its occurrence with the n�1 prior words. The context is thus of size n�1.
For the feedforward language models of Chapter 7, the context is the window size.

RNN language models (Mikolov et al., 2010) process the input sequence one
word at a time, attempting to predict the next word from the current word and the
previous hidden state. RNNs thus don’t have the limited context problem that n-gram
models have, or the fixed context that feedforward language models have, since the
hidden state can in principle represent information about all of the preceding words
all the way back to the beginning of the sequence. Fig. 8.5 sketches this difference
between a FFN language model and an RNN language model, showing that the
RNN language model uses ht�1, the hidden state from the previous time step, as a
representation of the past context.

8.2.1 Forward Inference in an RNN language model

Forward inference in a recurrent language model proceeds exactly as described in
Section 8.1.1. The input sequence X= [x1; ...;xt ; ...;xN] consists of a series of words
each represented as a one-hot vector of size |V |⇥1, and the output prediction, y, is a
vector representing a probability distribution over the vocabulary. At each step, the
model uses the word embedding matrix E to retrieve the embedding for the current
word, multiples it by the weight matrix W, and then adds it to the hidden layer from
the previous step (weighted by weight matrix U) to compute a new hidden layer.
This hidden layer is then used to generate an output layer which is passed through a
softmax layer to generate a probability distribution over the entire vocabulary. That
is, at time t:

et = Ext (8.4)

ht = g(Uht�1 +Wet) (8.5)

ŷt = softmax(Vht) (8.6)

The size of the condi.oning context for different LMs

The n-gram LM:
 Context size is the n − 1 prior words we condi3on on.

The feedforward LM:
Context is the window size.

The RNN LM:
No fixed context size; ht-1 represents en3re history

FFN LMs vs RNN LMs

V

W

et

htUht-1

et

ht

et-1et-2

U

 W

a) b)ŷt

et-1

ŷt

ht-2

WW

et-2

U

FFN RNN

…

V

W

et

htUht-1

et

ht

et-1et-2

U

 W

a) b)ŷt

et-1

ŷt

ht-2

WW

et-2

U

Forward inference in the RNN LM

Given input X of of N tokens represented as one-hot vectors

Use embedding matrix to get the embedding for current token xt

Combine …

8.2 • RNNS AS LANGUAGE MODELS 5

For applications that involve much longer input sequences, such as speech recog-
nition, character-level processing, or streaming continuous inputs, unrolling an en-
tire input sequence may not be feasible. In these cases, we can unroll the input into
manageable fixed-length segments and treat each segment as a distinct training item.

8.2 RNNs as Language Models

Let’s see how to apply RNNs to the language modeling task. Recall from Chapter 3
that language models predict the next word in a sequence given some preceding
context. For example, if the preceding context is “Thanks for all the” and we want
to know how likely the next word is “fish” we would compute:

P(fish|Thanks for all the)

Language models give us the ability to assign such a conditional probability to every
possible next word, giving us a distribution over the entire vocabulary. We can also
assign probabilities to entire sequences by combining these conditional probabilities
with the chain rule:

P(w1:n) =
nY

i=1

P(wi|w<i)

The n-gram language models of Chapter 3 compute the probability of a word given
counts of its occurrence with the n�1 prior words. The context is thus of size n�1.
For the feedforward language models of Chapter 7, the context is the window size.

RNN language models (Mikolov et al., 2010) process the input sequence one
word at a time, attempting to predict the next word from the current word and the
previous hidden state. RNNs thus don’t have the limited context problem that n-gram
models have, or the fixed context that feedforward language models have, since the
hidden state can in principle represent information about all of the preceding words
all the way back to the beginning of the sequence. Fig. 8.5 sketches this difference
between a FFN language model and an RNN language model, showing that the
RNN language model uses ht�1, the hidden state from the previous time step, as a
representation of the past context.

8.2.1 Forward Inference in an RNN language model

Forward inference in a recurrent language model proceeds exactly as described in
Section 8.1.1. The input sequence X= [x1; ...;xt ; ...;xN] consists of a series of words
each represented as a one-hot vector of size |V |⇥1, and the output prediction, y, is a
vector representing a probability distribution over the vocabulary. At each step, the
model uses the word embedding matrix E to retrieve the embedding for the current
word, multiples it by the weight matrix W, and then adds it to the hidden layer from
the previous step (weighted by weight matrix U) to compute a new hidden layer.
This hidden layer is then used to generate an output layer which is passed through a
softmax layer to generate a probability distribution over the entire vocabulary. That
is, at time t:

et = Ext (8.4)

ht = g(Uht�1 +Wet) (8.5)

ŷt = softmax(Vht) (8.6)

8.2 • RNNS AS LANGUAGE MODELS 5

For applications that involve much longer input sequences, such as speech recog-
nition, character-level processing, or streaming continuous inputs, unrolling an en-
tire input sequence may not be feasible. In these cases, we can unroll the input into
manageable fixed-length segments and treat each segment as a distinct training item.

8.2 RNNs as Language Models

Let’s see how to apply RNNs to the language modeling task. Recall from Chapter 3
that language models predict the next word in a sequence given some preceding
context. For example, if the preceding context is “Thanks for all the” and we want
to know how likely the next word is “fish” we would compute:

P(fish|Thanks for all the)

Language models give us the ability to assign such a conditional probability to every
possible next word, giving us a distribution over the entire vocabulary. We can also
assign probabilities to entire sequences by combining these conditional probabilities
with the chain rule:

P(w1:n) =
nY

i=1

P(wi|w<i)

The n-gram language models of Chapter 3 compute the probability of a word given
counts of its occurrence with the n�1 prior words. The context is thus of size n�1.
For the feedforward language models of Chapter 7, the context is the window size.

RNN language models (Mikolov et al., 2010) process the input sequence one
word at a time, attempting to predict the next word from the current word and the
previous hidden state. RNNs thus don’t have the limited context problem that n-gram
models have, or the fixed context that feedforward language models have, since the
hidden state can in principle represent information about all of the preceding words
all the way back to the beginning of the sequence. Fig. 8.5 sketches this difference
between a FFN language model and an RNN language model, showing that the
RNN language model uses ht�1, the hidden state from the previous time step, as a
representation of the past context.

8.2.1 Forward Inference in an RNN language model

Forward inference in a recurrent language model proceeds exactly as described in
Section 8.1.1. The input sequence X= [x1; ...;xt ; ...;xN] consists of a series of words
each represented as a one-hot vector of size |V |⇥1, and the output prediction, y, is a
vector representing a probability distribution over the vocabulary. At each step, the
model uses the word embedding matrix E to retrieve the embedding for the current
word, multiples it by the weight matrix W, and then adds it to the hidden layer from
the previous step (weighted by weight matrix U) to compute a new hidden layer.
This hidden layer is then used to generate an output layer which is passed through a
softmax layer to generate a probability distribution over the entire vocabulary. That
is, at time t:

et = Ext (8.4)

ht = g(Uht�1 +Wet) (8.5)

ŷt = softmax(Vht) (8.6)

Shapes

V

W

et

htUht-1

et

ht

et-1et-2

U

 W

a) b)ŷt

et-1

ŷt

ht-2

WW

et-2

U

d x 1

d x d

d x d
d x 1d x 1

|V| x d

|V| x 1

Compu.ng the probability that the next word is word k

6 CHAPTER 8 • RNNS AND LSTMS

V

W

et

htUht-1

et

ht

et-1et-2

U

 W

a) b)ŷt

et-1

ŷt

ht-2

WW

et-2

U

Figure 8.5 Simplified sketch of two LM architectures moving through a text, showing a
schematic context of three tokens: (a) a feedforward neural language model which has a fixed
context input to the weight matrix W, (b) an RNN language model, in which the hidden state
ht�1 summarizes the prior context.

When we do language modeling with RNNs (and we’ll see this again in Chapter 9
with transformers), it’s convenient to make the assumption that the embedding di-
mension de and the hidden dimension dh are the same. So we’ll just call both of
these the model dimension d. So the embedding matrix E is of shape [d ⇥ |V |], and
xt is a one-hot vector of shape [|V |⇥1]. The product et is thus of shape [d ⇥1]. W
and U are of shape [d ⇥ d], so ht is also of shape [d ⇥ 1]. V is of shape [|V |⇥ d],
so the result of Vh is a vector of shape [|V |⇥ 1]. This vector can be thought of as
a set of scores over the vocabulary given the evidence provided in h. Passing these
scores through the softmax normalizes the scores into a probability distribution. The
probability that a particular word k in the vocabulary is the next word is represented
by ŷt [k], the kth component of ŷt :

P(wt+1 = k|w1, . . . ,wt) = ŷt [k] (8.7)

The probability of an entire sequence is just the product of the probabilities of each
item in the sequence, where we’ll use ŷi[wi] to mean the probability of the true word
wi at time step i.

P(w1:n) =
nY

i=1

P(wi|w1:i�1) (8.8)

=
nY

i=1

ŷi[wi] (8.9)

8.2.2 Training an RNN language model

To train an RNN as a language model, we use the same self-supervision (or self-self-supervision

training) algorithm we saw in Section ??: we take a corpus of text as training
material and at each time step t ask the model to predict the next word. We call
such a model self-supervised because we don’t have to add any special gold labels
to the data; the natural sequence of words is its own supervision! We simply train
the model to minimize the error in predicting the true next word in the training
sequence, using cross-entropy as the loss function. Recall that the cross-entropy
loss measures the difference between a predicted probability distribution and the

6 CHAPTER 8 • RNNS AND LSTMS

V

W

et

htUht-1

et

ht

et-1et-2

U

 W

a) b)ŷt

et-1

ŷt

ht-2

WW

et-2

U

Figure 8.5 Simplified sketch of two LM architectures moving through a text, showing a
schematic context of three tokens: (a) a feedforward neural language model which has a fixed
context input to the weight matrix W, (b) an RNN language model, in which the hidden state
ht�1 summarizes the prior context.

When we do language modeling with RNNs (and we’ll see this again in Chapter 9
with transformers), it’s convenient to make the assumption that the embedding di-
mension de and the hidden dimension dh are the same. So we’ll just call both of
these the model dimension d. So the embedding matrix E is of shape [d ⇥ |V |], and
xt is a one-hot vector of shape [|V |⇥1]. The product et is thus of shape [d ⇥1]. W
and U are of shape [d ⇥ d], so ht is also of shape [d ⇥ 1]. V is of shape [|V |⇥ d],
so the result of Vh is a vector of shape [|V |⇥ 1]. This vector can be thought of as
a set of scores over the vocabulary given the evidence provided in h. Passing these
scores through the softmax normalizes the scores into a probability distribution. The
probability that a particular word k in the vocabulary is the next word is represented
by ŷt [k], the kth component of ŷt :

P(wt+1 = k|w1, . . . ,wt) = ŷt [k] (8.7)

The probability of an entire sequence is just the product of the probabilities of each
item in the sequence, where we’ll use ŷi[wi] to mean the probability of the true word
wi at time step i.

P(w1:n) =
nY

i=1

P(wi|w1:i�1) (8.8)

=
nY

i=1

ŷi[wi] (8.9)

8.2.2 Training an RNN language model

To train an RNN as a language model, we use the same self-supervision (or self-self-supervision

training) algorithm we saw in Section ??: we take a corpus of text as training
material and at each time step t ask the model to predict the next word. We call
such a model self-supervised because we don’t have to add any special gold labels
to the data; the natural sequence of words is its own supervision! We simply train
the model to minimize the error in predicting the true next word in the training
sequence, using cross-entropy as the loss function. Recall that the cross-entropy
loss measures the difference between a predicted probability distribution and the

Training RNN LM

• Self-supervision
• take a corpus of text as training material
• at each time step t
• ask the model to predict the next word.

• Why called self-supervised: we don't need human labels;
the text is its own supervision signal

• We train the model to
• minimize the error
• in predicting the true next word in the training sequence,
• using cross-entropy as the loss function.

Cross-entropy loss

The difference between:
• a predicted probability distribu3on
• the correct distribu3on.
CE loss for LMs is simpler!!!
• the correct distribu<on yt is a one-hot vector over the vocabulary
• where the entry for the actual next word is 1, and all the other entries are 0.

• So the CE loss for LMs is only determined by the probability of next word.
• So at <me t, CE loss is:

8.2 • RNNS AS LANGUAGE MODELS 7

Input
Embeddings

Softmax over
Vocabulary

So long and thanks for

long and thanks forNext word all

…

Loss

…

…

RNN
h

y

Vh

<latexit sha1_base64="9tru+5ysH1zS9iUXRg/IsnxmpMA=">AAAB/XicbVDLSsNAFL3xWesr6lKQwSK4sSQi1WXRjcsK9gFNCZPpJB06yYSZiRBCcOOvuBFxo+Av+Av+jUnbTVsPDBzOOcO993gxZ0pb1q+xsrq2vrFZ2apu7+zu7ZsHhx0lEklomwguZM/DinIW0bZmmtNeLCkOPU673viu9LtPVComokedxnQQ4iBiPiNYF5Jrnlw4XATIGWGdpbmbOSHWIxlmXERBnldds2bVrQnQMrFnpAYztFzzxxkKkoQ00oRjpfq2FetBhqVmhNO86iSKxpiMcUCzyfY5OiukIfKFLF6k0USdy+FQqTT0imS5nFr0SvE/r59o/2aQsShONI3IdJCfcKQFKqtAQyYp0TwtCCaSFRsiMsISE10UVp5uLx66TDqXdbtRbzxc1Zq3sxIqcAyncA42XEMT7qEFbSDwAm/wCV/Gs/FqvBsf0+iKMftzBHMwvv8ADJKVcA==</latexit>

� log ŷlong
<latexit sha1_base64="tuzkS/BeX/Xmg79qpWZlpeYDhtE=">AAAB/HicbVDLSsNAFL3xWesr6lKEwSK4sSQi1WXRjcsK9gFNCZPJpB06mYSZiRBC3PgrbkTcKPgN/oJ/Y9J209YDA4dzznDvPV7MmdKW9WusrK6tb2xWtqrbO7t7++bBYUdFiSS0TSIeyZ6HFeVM0LZmmtNeLCkOPU673viu9LtPVCoWiUedxnQQ4qFgASNYF5Jrnlw4PBoiZ4R1luZu5oRYj2SYYeHnedU1a1bdmgAtE3tGajBDyzV/HD8iSUiFJhwr1betWA8yLDUjnOZVJ1E0xmSMhzSbLJ+js0LyURDJ4gmNJupcDodKpaFXJMvd1KJXiv95/UQHN4OMiTjRVJDpoCDhSEeobAL5TFKieVoQTCQrNkRkhCUmuuirPN1ePHSZdC7rdqPeeLiqNW9nJVTgGE7hHGy4hibcQwvaQOAF3uATvoxn49V4Nz6m0RVj9ucI5mB8/wEiupTp</latexit>

� log ŷand
<latexit sha1_base64="0zdsmbBovZ+hafWZN7Hvufo85tU=">AAAB/3icbVDLSsNAFJ3UV62vqEs3g0VwY0lEqsuiG5cV7AOaEibTSTN0kgkzN0IIWbjxV9yIuFHwD/wF/8ak7aatBwYO55zh3nu8WHANlvVrVNbWNza3qtu1nd29/QPz8KirZaIo61AppOp7RDPBI9YBDoL1Y8VI6AnW8yZ3pd97YkpzGT1CGrNhSMYR9zklUEiuiS8cIcfYCQhkae5mTkggUGEGAYkmOs9rrlm3GtYUeJXYc1JHc7Rd88cZSZqELAIqiNYD24phmBEFnAqW15xEs5jQCRmzbLp/js8KaYR9qYoXAZ6qCzkSap2GXpEs19PLXin+5w0S8G+GGY/iBFhEZ4P8RGCQuCwDj7hiFERaEEIVLzbENCCKUCgqK0+3lw9dJd3Lht1sNB+u6q3beQlVdIJO0Tmy0TVqoXvURh1E0Qt6Q5/oy3g2Xo1342MWrRjzP8doAcb3H7Aall0=</latexit>

� log ŷthanks

<latexit sha1_base64="D3c31Jvxp3QWPr2h4tzQWmeenDs=">AAAB/HicbVDLSsNAFL3xWesr6lKEwSK4sSQi1WXRjcsK9gFNCZPppB06yYSZiRBC3PgrbkTcKPgN/oJ/Y9Jm09YDA4dzznDvPV7EmdKW9WusrK6tb2xWtqrbO7t7++bBYUeJWBLaJoIL2fOwopyFtK2Z5rQXSYoDj9OuN7kr/O4TlYqJ8FEnER0EeBQynxGsc8k1Ty4cLkbIGWOdJpmbOgHWYxmkvpBZVnXNmlW3pkDLxC5JDUq0XPPHGQoSBzTUhGOl+rYV6UGKpWaE06zqxIpGmEzwiKbT5TN0lktDlM/LX6jRVJ3L4UCpJPDyZLGbWvQK8T+vH2v/ZpCyMIo1DclskB9zpAUqmkBDJinRPMkJJpLlGyIyxhITnfdVnG4vHrpMOpd1u1FvPFzVmrdlCRU4hlM4BxuuoQn30II2EHiBN/iEL+PZeDXejY9ZdMUo/xzBHIzvP0CJlP0=</latexit>

� log ŷfor
<latexit sha1_base64="PI3y1fb9LhumoVCQRh2+Y84dRkc=">AAAB/HicbVDLSsNAFL3xWesr6lKEwSK4sSQi1WXRjcsK9gFNCZPppB06yYSZiRBC3PgrbkTcKPgN/oJ/Y9Jm09YDA4dzznDvPV7EmdKW9WusrK6tb2xWtqrbO7t7++bBYUeJWBLaJoIL2fOwopyFtK2Z5rQXSYoDj9OuN7kr/O4TlYqJ8FEnER0EeBQynxGsc8k1Ty4cLkbIGWOdJpmbOgHWYxmkmPMsq7pmzapbU6BlYpekBiVarvnjDAWJAxpqwrFSfduK9CDFUjPCaVZ1YkUjTCZ4RNPp8hk6y6Uh8oXMX6jRVJ3L4UCpJPDyZLGbWvQK8T+vH2v/ZpCyMIo1DclskB9zpAUqmkBDJinRPMkJJpLlGyIyxhITnfdVnG4vHrpMOpd1u1FvPFzVmrdlCRU4hlM4BxuuoQn30II2EHiBN/iEL+PZeDXejY9ZdMUo/xzBHIzvPyumlO8=</latexit>

� log ŷall

e

Figure 8.6 Training RNNs as language models.

correct distribution.

LCE = �
X

w2V

yt [w] log ŷt [w] (8.10)

In the case of language modeling, the correct distribution yt comes from knowing the
next word. This is represented as a one-hot vector corresponding to the vocabulary
where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next word. So at time t the CE loss is the negative log
probability the model assigns to the next word in the training sequence.

LCE(ŷt ,yt) = � log ŷt [wt+1] (8.11)

Thus at each word position t of the input, the model takes as input the correct word wt

together with ht�1, encoding information from the preceding w1:t�1, and uses them
to compute a probability distribution over possible next words so as to compute the
model’s loss for the next token wt+1. Then we move to the next word, we ignore
what the model predicted for the next word and instead use the correct word wt+1
along with the prior history encoded to estimate the probability of token wt+2. This
idea that we always give the model the correct history sequence to predict the next
word (rather than feeding the model its best case from the previous time step) is
called teacher forcing.teacher forcing

The weights in the network are adjusted to minimize the average CE loss over
the training sequence via gradient descent. Fig. 8.6 illustrates this training regimen.

8.2.3 Weight Tying

Careful readers may have noticed that the input embedding matrix E and the final
layer matrix V, which feeds the output softmax, are quite similar.

The columns of E represent the word embeddings for each word in the vocab-
ulary learned during the training process with the goal that words that have similar
meaning and function will have similar embeddings. And, since when we use RNNs
for language modeling we make the assumption that the embedding dimension and

8.2 • RNNS AS LANGUAGE MODELS 7

Input
Embeddings

Softmax over
Vocabulary

So long and thanks for

long and thanks forNext word all

…

Loss

…

…

RNN
h

y

Vh

<latexit sha1_base64="9tru+5ysH1zS9iUXRg/IsnxmpMA=">AAAB/XicbVDLSsNAFL3xWesr6lKQwSK4sSQi1WXRjcsK9gFNCZPpJB06yYSZiRBCcOOvuBFxo+Av+Av+jUnbTVsPDBzOOcO993gxZ0pb1q+xsrq2vrFZ2apu7+zu7ZsHhx0lEklomwguZM/DinIW0bZmmtNeLCkOPU673viu9LtPVComokedxnQQ4iBiPiNYF5Jrnlw4XATIGWGdpbmbOSHWIxlmXERBnldds2bVrQnQMrFnpAYztFzzxxkKkoQ00oRjpfq2FetBhqVmhNO86iSKxpiMcUCzyfY5OiukIfKFLF6k0USdy+FQqTT0imS5nFr0SvE/r59o/2aQsShONI3IdJCfcKQFKqtAQyYp0TwtCCaSFRsiMsISE10UVp5uLx66TDqXdbtRbzxc1Zq3sxIqcAyncA42XEMT7qEFbSDwAm/wCV/Gs/FqvBsf0+iKMftzBHMwvv8ADJKVcA==</latexit>

� log ŷlong
<latexit sha1_base64="tuzkS/BeX/Xmg79qpWZlpeYDhtE=">AAAB/HicbVDLSsNAFL3xWesr6lKEwSK4sSQi1WXRjcsK9gFNCZPJpB06mYSZiRBC3PgrbkTcKPgN/oJ/Y9J209YDA4dzznDvPV7MmdKW9WusrK6tb2xWtqrbO7t7++bBYUdFiSS0TSIeyZ6HFeVM0LZmmtNeLCkOPU673viu9LtPVCoWiUedxnQQ4qFgASNYF5Jrnlw4PBoiZ4R1luZu5oRYj2SYYeHnedU1a1bdmgAtE3tGajBDyzV/HD8iSUiFJhwr1betWA8yLDUjnOZVJ1E0xmSMhzSbLJ+js0LyURDJ4gmNJupcDodKpaFXJMvd1KJXiv95/UQHN4OMiTjRVJDpoCDhSEeobAL5TFKieVoQTCQrNkRkhCUmuuirPN1ePHSZdC7rdqPeeLiqNW9nJVTgGE7hHGy4hibcQwvaQOAF3uATvoxn49V4Nz6m0RVj9ucI5mB8/wEiupTp</latexit>

� log ŷand
<latexit sha1_base64="0zdsmbBovZ+hafWZN7Hvufo85tU=">AAAB/3icbVDLSsNAFJ3UV62vqEs3g0VwY0lEqsuiG5cV7AOaEibTSTN0kgkzN0IIWbjxV9yIuFHwD/wF/8ak7aatBwYO55zh3nu8WHANlvVrVNbWNza3qtu1nd29/QPz8KirZaIo61AppOp7RDPBI9YBDoL1Y8VI6AnW8yZ3pd97YkpzGT1CGrNhSMYR9zklUEiuiS8cIcfYCQhkae5mTkggUGEGAYkmOs9rrlm3GtYUeJXYc1JHc7Rd88cZSZqELAIqiNYD24phmBEFnAqW15xEs5jQCRmzbLp/js8KaYR9qYoXAZ6qCzkSap2GXpEs19PLXin+5w0S8G+GGY/iBFhEZ4P8RGCQuCwDj7hiFERaEEIVLzbENCCKUCgqK0+3lw9dJd3Lht1sNB+u6q3beQlVdIJO0Tmy0TVqoXvURh1E0Qt6Q5/oy3g2Xo1342MWrRjzP8doAcb3H7Aall0=</latexit>

� log ŷthanks

<latexit sha1_base64="D3c31Jvxp3QWPr2h4tzQWmeenDs=">AAAB/HicbVDLSsNAFL3xWesr6lKEwSK4sSQi1WXRjcsK9gFNCZPppB06yYSZiRBC3PgrbkTcKPgN/oJ/Y9Jm09YDA4dzznDvPV7EmdKW9WusrK6tb2xWtqrbO7t7++bBYUeJWBLaJoIL2fOwopyFtK2Z5rQXSYoDj9OuN7kr/O4TlYqJ8FEnER0EeBQynxGsc8k1Ty4cLkbIGWOdJpmbOgHWYxmkvpBZVnXNmlW3pkDLxC5JDUq0XPPHGQoSBzTUhGOl+rYV6UGKpWaE06zqxIpGmEzwiKbT5TN0lktDlM/LX6jRVJ3L4UCpJPDyZLGbWvQK8T+vH2v/ZpCyMIo1DclskB9zpAUqmkBDJinRPMkJJpLlGyIyxhITnfdVnG4vHrpMOpd1u1FvPFzVmrdlCRU4hlM4BxuuoQn30II2EHiBN/iEL+PZeDXejY9ZdMUo/xzBHIzvP0CJlP0=</latexit>

� log ŷfor
<latexit sha1_base64="PI3y1fb9LhumoVCQRh2+Y84dRkc=">AAAB/HicbVDLSsNAFL3xWesr6lKEwSK4sSQi1WXRjcsK9gFNCZPppB06yYSZiRBC3PgrbkTcKPgN/oJ/Y9Jm09YDA4dzznDvPV7EmdKW9WusrK6tb2xWtqrbO7t7++bBYUeJWBLaJoIL2fOwopyFtK2Z5rQXSYoDj9OuN7kr/O4TlYqJ8FEnER0EeBQynxGsc8k1Ty4cLkbIGWOdJpmbOgHWYxmkmPMsq7pmzapbU6BlYpekBiVarvnjDAWJAxpqwrFSfduK9CDFUjPCaVZ1YkUjTCZ4RNPp8hk6y6Uh8oXMX6jRVJ3L4UCpJPDyZLGbWvQK8T+vH2v/ZpCyMIo1DclskB9zpAUqmkBDJinRPMkJJpLlGyIyxhITnfdVnG4vHrpMOpd1u1FvPFzVmrdlCRU4hlM4BxuuoQn30II2EHiBN/iEL+PZeDXejY9ZdMUo/xzBHIzvPyumlO8=</latexit>

� log ŷall

e

Figure 8.6 Training RNNs as language models.

correct distribution.

LCE = �
X

w2V

yt [w] log ŷt [w] (8.10)

In the case of language modeling, the correct distribution yt comes from knowing the
next word. This is represented as a one-hot vector corresponding to the vocabulary
where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next word. So at time t the CE loss is the negative log
probability the model assigns to the next word in the training sequence.

LCE(ŷt ,yt) = � log ŷt [wt+1] (8.11)

Thus at each word position t of the input, the model takes as input the correct word wt

together with ht�1, encoding information from the preceding w1:t�1, and uses them
to compute a probability distribution over possible next words so as to compute the
model’s loss for the next token wt+1. Then we move to the next word, we ignore
what the model predicted for the next word and instead use the correct word wt+1
along with the prior history encoded to estimate the probability of token wt+2. This
idea that we always give the model the correct history sequence to predict the next
word (rather than feeding the model its best case from the previous time step) is
called teacher forcing.teacher forcing

The weights in the network are adjusted to minimize the average CE loss over
the training sequence via gradient descent. Fig. 8.6 illustrates this training regimen.

8.2.3 Weight Tying

Careful readers may have noticed that the input embedding matrix E and the final
layer matrix V, which feeds the output softmax, are quite similar.

The columns of E represent the word embeddings for each word in the vocab-
ulary learned during the training process with the goal that words that have similar
meaning and function will have similar embeddings. And, since when we use RNNs
for language modeling we make the assumption that the embedding dimension and

Teacher forcing

We always give the model the correct history to predict the next word (rather
than feeding the model the possible buggy guess from the prior :me step).
This is called teacher forcing (in training we force the context to be correct based
on the gold words)
What teacher forcing looks like:
• At word posi:on t
• the model takes as input the correct word wt together with ht−1, computes a

probability distribu:on over possible next words
• That gives loss for the next token wt+1
• Then we move on to next word, ignore what the model predicted for the next

word and instead use the correct word wt+1 along with the prior history
encoded to es:mate the probability of token wt+2.

Weight tying

The input embedding matrix E and the final layer matrix V, are similar
• The columns of E represent the word embeddings for each word in

vocab. E is [d x |V|]
• The final layer matrix V helps give a score (logit) for each word in

vocab . V is [|V| x d]
Instead of having separate E and V, we just <e them together, using ET

instead of V:

8 CHAPTER 8 • RNNS AND LSTMS

the hidden dimension are the same (= the model dimension d), the embedding ma-
trix E has shape [d ⇥ |V |]. And the final layer matrix V provides a way to score
the likelihood of each word in the vocabulary given the evidence present in the final
hidden layer of the network through the calculation of Vh. V is of shape [|V |⇥ d].
That is, is, the rows of V are shaped like a transpose of E, meaning that V provides
a second set of learned word embeddings.

Instead of having two sets of embedding matrices, language models use a single
embedding matrix, which appears at both the input and softmax layers. That is,
we dispense with V and use E at the start of the computation and E| (because the
shape of V is the transpose of E at the end. Using the same matrix (transposed) in
two places is called weight tying.1 The weight-tied equations for an RNN languageweight tying

model then become:

et = Ext (8.12)

ht = g(Uht�1 +Wet) (8.13)

ŷt = softmax(E|ht) (8.14)

In addition to providing improved model perplexity, this approach significantly re-
duces the number of parameters required for the model.

8.3 RNNs for other NLP tasks

Now that we’ve seen the basic RNN architecture, let’s consider how to apply it to
three types of NLP tasks: sequence classification tasks like sentiment analysis and
topic classification, sequence labeling tasks like part-of-speech tagging, and text

generation tasks, including with a new architecture called the encoder-decoder.

8.3.1 Sequence Labeling

In sequence labeling, the network’s task is to assign a label chosen from a small
fixed set of labels to each element of a sequence. One classic sequence labeling
tasks is part-of-speech (POS) tagging (assigning grammatical tags like NOUN and
VERB to each word in a sentence). We’ll discuss part-of-speech tagging in detail
in Chapter 17, but let’s give a motivating example here. In an RNN approach to
sequence labeling, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the given tagset, as illustrated in Fig. 8.7.

In this figure, the inputs at each time step are pretrained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U, V and W weight matrices
that comprise the network. The outputs of the network at each time step represent
the distribution over the POS tagset generated by a softmax layer.

To generate a sequence of tags for a given input, we run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output
tagset at each time step, we will again employ the cross-entropy loss during training.

1 We also do this for transformers (Chapter 9) where it’s common to call E| the unembedding matrix.

RNNs and
LSTMs

RNNs as Language Models

RNNs and
LSTMs

RNNs for Sequences

RNNs for sequence labeling

Assign a label to each element of a sequence
Part-of-speech tagging

Janet will back the bill

NNDTVBMDNNPArgmax

Embeddings

Words

e

h
Vh

y

RNN
Layer(s)

Softmax over
tags

RNNs for sequence classificaAon

Text classification

Instead of taking the last state, could use some pooling function of all
the output states, like mean pooling

x1

RNN

hn

x2 x3 xn

Softmax

FFN

10 CHAPTER 8 • RNNS AND LSTMS

x1

RNN

hn

x2 x3 xn

Softmax

FFN

Figure 8.8 Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

pools all the n hidden states by taking their element-wise mean:

hmean =
1
n

nX

i=1

hi (8.15)

Or we can take the element-wise max; the element-wise max of a set of n vectors is
a new vector whose kth element is the max of the kth elements of all the n vectors.

The long contexts of RNNs makes it quite difficult to successfully backpropagate
error all the way through the entire input; we’ll talk about this problem, and some
standard solutions, in Section 8.5.

8.3.3 Generation with RNN-Based Language Models

RNN-based language models can also be used to generate text. Text generation is
of enormous practical importance, part of tasks like question answering, machine
translation, text summarization, grammar correction, story generation, and conver-
sational dialogue; any task where a system needs to produce text, conditioned on
some other text. This use of a language model to generate text is one of the areas
in which the impact of neural language models on NLP has been the largest. Text
generation, along with image generation and code generation, constitute a new area
of AI that is often called generative AI.

Recall back in Chapter 3 we saw how to generate text from an n-gram language
model by adapting a sampling technique suggested at about the same time by Claude
Shannon (Shannon, 1951) and the psychologists George Miller and Jennifer Self-
ridge (Miller and Selfridge, 1950). We first randomly sample a word to begin a
sequence based on its suitability as the start of a sequence. We then continue to
sample words conditioned on our previous choices until we reach a pre-determined
length, or an end of sequence token is generated.

Today, this approach of using a language model to incrementally generate words
by repeatedly sampling the next word conditioned on our previous choices is called
autoregressive generation or causal LM generation. The procedure is basicallyautoregressive

generation

the same as that described on page ??, but adapted to a neural context:

• Sample a word in the output from the softmax distribution that results from
using the beginning of sentence marker, <s>, as the first input.

Autoregressive generation

So long

<s>

and

So long and

?Sampled Word

Softmax

Embedding

Input Word

RNN

Stacked RNNs

y1 y2 y3 yn

x1 x2 x3 xn

RNN 1

RNN 2

 RNN 3

BidirecAonal RNNs

RNN 2

RNN 1

x1

y2y1 y3 yn

concatenated
outputs

x2 x3 xn

12 CHAPTER 8 • RNNS AND LSTMS

the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs

the input to a subsequent layer, as shown in Fig. 8.10.

y1 y2 y3 yn

x1 x2 x3 xn

RNN 1

RNN 2

 RNN 3

Figure 8.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

Stacked RNNs generally outperform single-layer networks. One reason for this
success seems to be that the network induces representations at differing levels of
abstraction across layers. Just as the early stages of the human visual system detect
edges that are then used for finding larger regions and shapes, the initial layers of
stacked networks can induce representations that serve as useful abstractions for
further layers—representations that might prove difficult to induce in a single RNN.
The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.

8.4.2 Bidirectional RNNs

The RNN uses information from the left (prior) context to make its predictions at
time t. But in many applications we have access to the entire input sequence; in
those cases we would like to use words from the context to the right of t. One way
to do this is to run two separate RNNs, one left-to-right, and one right-to-left, and
concatenate their representations.

In the left-to-right RNNs we’ve discussed so far, the hidden state at a given time
t represents everything the network knows about the sequence up to that point. The
state is a function of the inputs x1, ...,xt and represents the context of the network to
the left of the current time.

h f

t = RNNforward(x1, . . . ,xt) (8.16)

This new notation h f

t simply corresponds to the normal hidden state at time t, repre-
senting everything the network has gleaned from the sequence so far.

To take advantage of context to the right of the current input, we can train an
RNN on a reversed input sequence. With this approach, the hidden state at time t

represents information about the sequence to the right of the current input:

hb

t
= RNNbackward(xt , . . . xn) (8.17)

12 CHAPTER 8 • RNNS AND LSTMS

the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs

the input to a subsequent layer, as shown in Fig. 8.10.

y1 y2 y3 yn

x1 x2 x3 xn

RNN 1

RNN 2

 RNN 3

Figure 8.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

Stacked RNNs generally outperform single-layer networks. One reason for this
success seems to be that the network induces representations at differing levels of
abstraction across layers. Just as the early stages of the human visual system detect
edges that are then used for finding larger regions and shapes, the initial layers of
stacked networks can induce representations that serve as useful abstractions for
further layers—representations that might prove difficult to induce in a single RNN.
The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.

8.4.2 Bidirectional RNNs

The RNN uses information from the left (prior) context to make its predictions at
time t. But in many applications we have access to the entire input sequence; in
those cases we would like to use words from the context to the right of t. One way
to do this is to run two separate RNNs, one left-to-right, and one right-to-left, and
concatenate their representations.

In the left-to-right RNNs we’ve discussed so far, the hidden state at a given time
t represents everything the network knows about the sequence up to that point. The
state is a function of the inputs x1, ...,xt and represents the context of the network to
the left of the current time.

h f

t = RNNforward(x1, . . . ,xt) (8.16)

This new notation h f

t simply corresponds to the normal hidden state at time t, repre-
senting everything the network has gleaned from the sequence so far.

To take advantage of context to the right of the current input, we can train an
RNN on a reversed input sequence. With this approach, the hidden state at time t

represents information about the sequence to the right of the current input:

hb

t
= RNNbackward(xt , . . . xn) (8.17)

8.4 • STACKED AND BIDIRECTIONAL RNN ARCHITECTURES 13

Here, the hidden state hb

t
represents all the information we have discerned about the

sequence from t to the end of the sequence.
A bidirectional RNN (Schuster and Paliwal, 1997) combines two independentbidirectional

RNN

RNNs, one where the input is processed from the start to the end, and the other from
the end to the start. We then concatenate the two representations computed by the
networks into a single vector that captures both the left and right contexts of an input
at each point in time. Here we use either the semicolon ”;” or the equivalent symbol
� to mean vector concatenation:

ht = [h f

t ; hb

t
]

= h f

t �hb

t
(8.18)

Fig. 8.11 illustrates such a bidirectional network that concatenates the outputs of
the forward and backward pass. Other simple ways to combine the forward and
backward contexts include element-wise addition or multiplication. The output at
each step in time thus captures information to the left and to the right of the current
input. In sequence labeling applications, these concatenated outputs can serve as the
basis for a local labeling decision.

RNN 2

RNN 1

x1

y2y1 y3 yn

concatenated
outputs

x2 x3 xn

Figure 8.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Bidirectional RNNs have also proven to be quite effective for sequence classifi-
cation. Recall from Fig. 8.8 that for sequence classification we used the final hidden
state of the RNN as the input to a subsequent feedforward classifier. A difficulty
with this approach is that the final state naturally reflects more information about
the end of the sentence than its beginning. Bidirectional RNNs provide a simple
solution to this problem; as shown in Fig. 8.12, we simply combine the final hidden
states from the forward and backward passes (for example by concatenation) and
use that as input for follow-on processing.

BidirecAonal RNNs for classificaAon

RNN 2

RNN 1

x1 x2 x3 xn

hn
→

h1
←

hn
→

Softmax

FFN

h1
←

RNNs and
LSTMs

RNNs for Sequences

RNNs and
LSTMs

The LSTM

MoAvaAng the LSTM: dealing with distance

• It's hard to assign probabili<es accurately when context is very far away:
• The flights the airline was canceling were full.

• Hidden layers are being forced to do two things:
• Provide informa<on useful for the current decision,
• Update and carry forward informa<on required for future decisions.

• Another problem: During backprop, we have to repeatedly mul<ply
gradients through <me and many h's
• The "vanishing gradient" problem

The LSTM: Long short-term memory network

LSTMs divide the context management problem into two
subproblems:
• removing informa<on no longer needed from the context,
• adding informa<on likely to be needed for later decision making
• LSTMs add:
• explicit context layer
• Neural circuits with gates to control informa0on flow

Forget gate

Deletes information from the context that is no longer needed.

8.5 • THE LSTM 15

called the vanishing gradients problem.vanishing

gradients

To address these issues, more complex network architectures have been designed
to explicitly manage the task of maintaining relevant context over time, by enabling
the network to learn to forget information that is no longer needed and to remember
information required for decisions still to come.

The most commonly used such extension to RNNs is the long short-term mem-

ory (LSTM) network (Hochreiter and Schmidhuber, 1997). LSTMs divide the con-long short-term

memory

text management problem into two subproblems: removing information no longer
needed from the context, and adding information likely to be needed for later de-
cision making. The key to solving both problems is to learn how to manage this
context rather than hard-coding a strategy into the architecture. LSTMs accomplish
this by first adding an explicit context layer to the architecture (in addition to the
usual recurrent hidden layer), and through the use of specialized neural units that
make use of gates to control the flow of information into and out of the units that
comprise the network layers. These gates are implemented through the use of addi-
tional weights that operate sequentially on the input, and previous hidden layer, and
previous context layers.

The gates in an LSTM share a common design pattern; each consists of a feed-
forward layer, followed by a sigmoid activation function, followed by a pointwise
multiplication with the layer being gated. The choice of the sigmoid as the activation
function arises from its tendency to push its outputs to either 0 or 1. Combining this
with a pointwise multiplication has an effect similar to that of a binary mask. Values
in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate isforget gate

to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator �,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

ft = s(U fht�1 +W f xt) (8.20)

kt = ct�1 � ft (8.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt = tanh(Ught�1 +Wgxt) (8.22)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = s(Uiht�1 +Wixt) (8.23)

jt = gt � it (8.24)

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt (8.25)

Regular passing of information

8.5 • THE LSTM 15

called the vanishing gradients problem.vanishing

gradients

To address these issues, more complex network architectures have been designed
to explicitly manage the task of maintaining relevant context over time, by enabling
the network to learn to forget information that is no longer needed and to remember
information required for decisions still to come.

The most commonly used such extension to RNNs is the long short-term mem-

ory (LSTM) network (Hochreiter and Schmidhuber, 1997). LSTMs divide the con-long short-term

memory

text management problem into two subproblems: removing information no longer
needed from the context, and adding information likely to be needed for later de-
cision making. The key to solving both problems is to learn how to manage this
context rather than hard-coding a strategy into the architecture. LSTMs accomplish
this by first adding an explicit context layer to the architecture (in addition to the
usual recurrent hidden layer), and through the use of specialized neural units that
make use of gates to control the flow of information into and out of the units that
comprise the network layers. These gates are implemented through the use of addi-
tional weights that operate sequentially on the input, and previous hidden layer, and
previous context layers.

The gates in an LSTM share a common design pattern; each consists of a feed-
forward layer, followed by a sigmoid activation function, followed by a pointwise
multiplication with the layer being gated. The choice of the sigmoid as the activation
function arises from its tendency to push its outputs to either 0 or 1. Combining this
with a pointwise multiplication has an effect similar to that of a binary mask. Values
in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate isforget gate

to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator �,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

ft = s(U fht�1 +W f xt) (8.20)

kt = ct�1 � ft (8.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt = tanh(Ught�1 +Wgxt) (8.22)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = s(Uiht�1 +Wixt) (8.23)

jt = gt � it (8.24)

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt (8.25)

Add gate

Selec:ng informa:on to add to current context

Add this to the modified context vector to get our new context vector.

8.5 • THE LSTM 15

called the vanishing gradients problem.vanishing

gradients

To address these issues, more complex network architectures have been designed
to explicitly manage the task of maintaining relevant context over time, by enabling
the network to learn to forget information that is no longer needed and to remember
information required for decisions still to come.

The most commonly used such extension to RNNs is the long short-term mem-

ory (LSTM) network (Hochreiter and Schmidhuber, 1997). LSTMs divide the con-long short-term

memory

text management problem into two subproblems: removing information no longer
needed from the context, and adding information likely to be needed for later de-
cision making. The key to solving both problems is to learn how to manage this
context rather than hard-coding a strategy into the architecture. LSTMs accomplish
this by first adding an explicit context layer to the architecture (in addition to the
usual recurrent hidden layer), and through the use of specialized neural units that
make use of gates to control the flow of information into and out of the units that
comprise the network layers. These gates are implemented through the use of addi-
tional weights that operate sequentially on the input, and previous hidden layer, and
previous context layers.

The gates in an LSTM share a common design pattern; each consists of a feed-
forward layer, followed by a sigmoid activation function, followed by a pointwise
multiplication with the layer being gated. The choice of the sigmoid as the activation
function arises from its tendency to push its outputs to either 0 or 1. Combining this
with a pointwise multiplication has an effect similar to that of a binary mask. Values
in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate isforget gate

to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator �,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

ft = s(U fht�1 +W f xt) (8.20)

kt = ct�1 � ft (8.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt = tanh(Ught�1 +Wgxt) (8.22)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = s(Uiht�1 +Wixt) (8.23)

jt = gt � it (8.24)

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt (8.25)

8.5 • THE LSTM 15

called the vanishing gradients problem.vanishing

gradients

To address these issues, more complex network architectures have been designed
to explicitly manage the task of maintaining relevant context over time, by enabling
the network to learn to forget information that is no longer needed and to remember
information required for decisions still to come.

The most commonly used such extension to RNNs is the long short-term mem-

ory (LSTM) network (Hochreiter and Schmidhuber, 1997). LSTMs divide the con-long short-term

memory

text management problem into two subproblems: removing information no longer
needed from the context, and adding information likely to be needed for later de-
cision making. The key to solving both problems is to learn how to manage this
context rather than hard-coding a strategy into the architecture. LSTMs accomplish
this by first adding an explicit context layer to the architecture (in addition to the
usual recurrent hidden layer), and through the use of specialized neural units that
make use of gates to control the flow of information into and out of the units that
comprise the network layers. These gates are implemented through the use of addi-
tional weights that operate sequentially on the input, and previous hidden layer, and
previous context layers.

The gates in an LSTM share a common design pattern; each consists of a feed-
forward layer, followed by a sigmoid activation function, followed by a pointwise
multiplication with the layer being gated. The choice of the sigmoid as the activation
function arises from its tendency to push its outputs to either 0 or 1. Combining this
with a pointwise multiplication has an effect similar to that of a binary mask. Values
in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate isforget gate

to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator �,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

ft = s(U fht�1 +W f xt) (8.20)

kt = ct�1 � ft (8.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt = tanh(Ught�1 +Wgxt) (8.22)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = s(Uiht�1 +Wixt) (8.23)

jt = gt � it (8.24)

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt (8.25)

Output gate

Decide what informa6on is required for the current hidden state (as opposed to what informa6on needs to
be preserved for future decisions).

16 CHAPTER 8 • RNNS AND LSTMS

+

xt

ht-1

ct

ht

ct

ht

ct-1

ht-1

xt

tanh

+ σ

tanh

σ

σ

+
+

+

i

g

f

o

⦿
⦿ ⦿

LSTM

ct-1

Figure 8.13 A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the
current input, x, the previous hidden state, ht�1, and the previous context, ct�1. The outputs are a new hidden
state, ht and an updated context, ct .

The final gate we’ll use is the output gate which is used to decide what informa-output gate

tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

ot = s(Uoht�1 +Woxt) (8.26)

ht = ot � tanh(ct) (8.27)

Fig. 8.13 illustrates the complete computation for a single LSTM unit. Given the
appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output.

It is the hidden state, ht , that provides the output for the LSTM at each time step.
This output can be used as the input to subsequent layers in a stacked RNN, or at the
final layer of a network ht can be used to provide the final output of the LSTM.

8.5.1 Gated Units, Layers and Networks

The neural units used in LSTMs are obviously much more complex than those used
in basic feedforward networks. Fortunately, this complexity is encapsulated within
the basic processing units, allowing us to maintain modularity and to easily exper-
iment with different architectures. To see this, consider Fig. 8.14 which illustrates
the inputs and outputs associated with each kind of unit.

At the far left, (a) is the basic feedforward unit where a single set of weights and
a single activation function determine its output, and when arranged in a layer there
are no connections among the units in the layer. Next, (b) represents the unit in a
simple recurrent network. Now there are two inputs and an additional set of weights
to go with it. However, there is still a single activation function and output.

The increased complexity of the LSTM units is encapsulated within the unit
itself. The only additional external complexity for the LSTM over the basic recurrent
unit (b) is the presence of the additional context vector as an input and output.

This modularity is key to the power and widespread applicability of LSTM units.
LSTM units (or other varieties, like GRUs) can be substituted into any of the network
architectures described in Section 8.4. And, as with simple RNNs, multi-layered
networks making use of gated units can be unrolled into deep feedforward networks

The LSTM

+
xt

ht-1

ct

ht

ct

ht

ct-1

ht-1

xt

tanh

+ σ

tanh

σ

σ

+
+

+

i

g

f

o
⦿

⦿ ⦿

LSTM

ct-1

Units
h

x xt xtht-1

ht ht

ct-1

ct

ht-1

(b)(a) (c)

⌃

g

z

a

⌃

g

z LSTM
Unit

a

FFN SRN LSTM

RNNs and
LSTMs

The LSTM

RNNs and
LSTMs

The LSTM Encoder-Decoder
Architecture

Four architectures for NLP tasks with RNNs

…

Encoder RNN

Decoder RNN

Context

…

x1 x2 xn

y1 y2 ym

…

RNN

x1 x2 xn

…y1 y2 yn

…

RNN

x1 x2 xn

y

…

RNN

x1 x2 xt-1

…x2 x3 xt

a) sequence labeling b) sequence classification

c) language modeling d) encoder-decoder

3 components of an encoder-decoder

1. An encoder that accepts an input sequence, x1:n, and
generates a corresponding sequence of contextualized
representa3ons, h1:n.
2. A context vector, c, which is a func3on of h1:n, and
conveys the essence of the input to the decoder.
3. A decoder, which accepts c as input and generates an
arbitrary length sequence of hidden states h1:m, from which
a corresponding sequence of output states y1:m, can be
obtained

Encoder-decoder

…

Encoder

Decoder

Context

…

x1 x2 xn

y1 y2 ym

Encoder-decoder for translaAon

8.7 • THE ENCODER-DECODER MODEL WITH RNNS 19

…

Encoder

Decoder

Context

…

x1 x2 xn

y1 y2 ym

Figure 8.16 The encoder-decoder architecture. The context is a function of the hidden
representations of the input, and may be used by the decoder in a variety of ways.

by any kind of sequence architecture.
In this section we’ll describe an encoder-decoder network based on a pair of

RNNs, but we’ll see in Chapter 13 how to apply them to transformers as well. We’ll
build up the equations for encoder-decoder models by starting with the conditional
RNN language model p(y), the probability of a sequence y.

Recall that in any language model, we can break down the probability as follows:

p(y) = p(y1)p(y2|y1)p(y3|y1,y2) . . . p(ym|y1, ...,ym�1) (8.28)

In RNN language modeling, at a particular time t, we pass the prefix of t � 1
tokens through the language model, using forward inference to produce a sequence
of hidden states, ending with the hidden state corresponding to the last word of
the prefix. We then use the final hidden state of the prefix as our starting point to
generate the next token.

More formally, if g is an activation function like tanh or ReLU, a function of
the input at time t and the hidden state at time t � 1, and the softmax is over the
set of possible vocabulary items, then at time t the output yt and hidden state ht are
computed as:

ht = g(ht�1,xt) (8.29)

ŷt = softmax(ht) (8.30)

We only have to make one slight change to turn this language model with au-
toregressive generation into an encoder-decoder model that is a translation model
that can translate from a source text in one language to a target text in a second:
add a sentence separation marker at the end of the source text, and then simplysentence

separation

concatenate the target text.
Let’s use <s> for our sentence separator token, and let’s think about translating

an English source text (“the green witch arrived”), to a Spanish sentence (“llegó

la bruja verde” (which can be glossed word-by-word as ‘arrived the witch green’).
We could also illustrate encoder-decoder models with a question-answer pair, or a
text-summarization pair.

Let’s use x to refer to the source text (in this case in English) plus the separator
token <s>, and y to refer to the target text y (in this case in Spanish). Then an
encoder-decoder model computes the probability p(y|x) as follows:

p(y|x) = p(y1|x)p(y2|y1,x)p(y3|y1,y2,x) . . . p(ym|y1, ...,ym�1,x) (8.31)

Fig. 8.17 shows the setup for a simplified version of the encoder-decoder model
(we’ll see the full model, which requires the new concept of attention, in the next
section).

8.7 • THE ENCODER-DECODER MODEL WITH RNNS 19

…

Encoder

Decoder

Context

…

x1 x2 xn

y1 y2 ym

Figure 8.16 The encoder-decoder architecture. The context is a function of the hidden
representations of the input, and may be used by the decoder in a variety of ways.

by any kind of sequence architecture.
In this section we’ll describe an encoder-decoder network based on a pair of

RNNs, but we’ll see in Chapter 13 how to apply them to transformers as well. We’ll
build up the equations for encoder-decoder models by starting with the conditional
RNN language model p(y), the probability of a sequence y.

Recall that in any language model, we can break down the probability as follows:

p(y) = p(y1)p(y2|y1)p(y3|y1,y2) . . . p(ym|y1, ...,ym�1) (8.28)

In RNN language modeling, at a particular time t, we pass the prefix of t � 1
tokens through the language model, using forward inference to produce a sequence
of hidden states, ending with the hidden state corresponding to the last word of
the prefix. We then use the final hidden state of the prefix as our starting point to
generate the next token.

More formally, if g is an activation function like tanh or ReLU, a function of
the input at time t and the hidden state at time t � 1, and the softmax is over the
set of possible vocabulary items, then at time t the output yt and hidden state ht are
computed as:

ht = g(ht�1,xt) (8.29)

ŷt = softmax(ht) (8.30)

We only have to make one slight change to turn this language model with au-
toregressive generation into an encoder-decoder model that is a translation model
that can translate from a source text in one language to a target text in a second:
add a sentence separation marker at the end of the source text, and then simplysentence

separation

concatenate the target text.
Let’s use <s> for our sentence separator token, and let’s think about translating

an English source text (“the green witch arrived”), to a Spanish sentence (“llegó

la bruja verde” (which can be glossed word-by-word as ‘arrived the witch green’).
We could also illustrate encoder-decoder models with a question-answer pair, or a
text-summarization pair.

Let’s use x to refer to the source text (in this case in English) plus the separator
token <s>, and y to refer to the target text y (in this case in Spanish). Then an
encoder-decoder model computes the probability p(y|x) as follows:

p(y|x) = p(y1|x)p(y2|y1,x)p(y3|y1,y2,x) . . . p(ym|y1, ...,ym�1,x) (8.31)

Fig. 8.17 shows the setup for a simplified version of the encoder-decoder model
(we’ll see the full model, which requires the new concept of attention, in the next
section).

Regular language modeling

Encoder-decoder for translaAon

8.7 • THE ENCODER-DECODER MODEL WITH RNNS 19

…

Encoder

Decoder

Context

…

x1 x2 xn

y1 y2 ym

Figure 8.16 The encoder-decoder architecture. The context is a function of the hidden
representations of the input, and may be used by the decoder in a variety of ways.

by any kind of sequence architecture.
In this section we’ll describe an encoder-decoder network based on a pair of

RNNs, but we’ll see in Chapter 13 how to apply them to transformers as well. We’ll
build up the equations for encoder-decoder models by starting with the conditional
RNN language model p(y), the probability of a sequence y.

Recall that in any language model, we can break down the probability as follows:

p(y) = p(y1)p(y2|y1)p(y3|y1,y2) . . . p(ym|y1, ...,ym�1) (8.28)

In RNN language modeling, at a particular time t, we pass the prefix of t � 1
tokens through the language model, using forward inference to produce a sequence
of hidden states, ending with the hidden state corresponding to the last word of
the prefix. We then use the final hidden state of the prefix as our starting point to
generate the next token.

More formally, if g is an activation function like tanh or ReLU, a function of
the input at time t and the hidden state at time t � 1, and the softmax is over the
set of possible vocabulary items, then at time t the output yt and hidden state ht are
computed as:

ht = g(ht�1,xt) (8.29)

ŷt = softmax(ht) (8.30)

We only have to make one slight change to turn this language model with au-
toregressive generation into an encoder-decoder model that is a translation model
that can translate from a source text in one language to a target text in a second:
add a sentence separation marker at the end of the source text, and then simplysentence

separation

concatenate the target text.
Let’s use <s> for our sentence separator token, and let’s think about translating

an English source text (“the green witch arrived”), to a Spanish sentence (“llegó

la bruja verde” (which can be glossed word-by-word as ‘arrived the witch green’).
We could also illustrate encoder-decoder models with a question-answer pair, or a
text-summarization pair.

Let’s use x to refer to the source text (in this case in English) plus the separator
token <s>, and y to refer to the target text y (in this case in Spanish). Then an
encoder-decoder model computes the probability p(y|x) as follows:

p(y|x) = p(y1|x)p(y2|y1,x)p(y3|y1,y2,x) . . . p(ym|y1, ...,ym�1,x) (8.31)

Fig. 8.17 shows the setup for a simplified version of the encoder-decoder model
(we’ll see the full model, which requires the new concept of attention, in the next
section).

Let x be the source text plus a separate token <s> and
y the target
Let x = The green witch arrive <s>
Let y = llego ́ la bruja verde

Encoder-decoder simplified

Source Text

Target Text

hn

embedding
layer

hidden
layer(s)

softmax

the green

llegó

witch arrived <s> llegó

la

la

bruja

bruja

verde

verde

</s>

(output of source is ignored)

Separator

Encoder-decoder showing context

Encoder

Decoder

hn
hd

1
he

3he
2he

1
hd

2
hd

3
hd

4

embedding
layer

hidden
layer(s)

softmax

x1 x2

y1

hd

m

x3 xn <s> y1

y2

y2

y3

y3

y4

ym

</s>

he
n = c = hd

0

(output is ignored during encoding)

20 CHAPTER 8 • RNNS AND LSTMS

Source Text

Target Text

hn

embedding
layer

hidden
layer(s)

softmax

the green

llegó

witch arrived <s> llegó

la

la

bruja

bruja

verde

verde

</s>

(output of source is ignored)

Separator

Figure 8.17 Translating a single sentence (inference time) in the basic RNN version of encoder-decoder ap-
proach to machine translation. Source and target sentences are concatenated with a separator token in between,
and the decoder uses context information from the encoder’s last hidden state.

Fig. 8.17 shows an English source text (“the green witch arrived”), a sentence
separator token (<s>, and a Spanish target text (“llegó la bruja verde”). To trans-
late a source text, we run it through the network performing forward inference to
generate hidden states until we get to the end of the source. Then we begin autore-
gressive generation, asking for a word in the context of the hidden layer from the
end of the source input as well as the end-of-sentence marker. Subsequent words
are conditioned on the previous hidden state and the embedding for the last word
generated.

Let’s formalize and generalize this model a bit in Fig. 8.18. (To help keep things
straight, we’ll use the superscripts e and d where needed to distinguish the hidden
states of the encoder and the decoder.) The elements of the network on the left
process the input sequence x and comprise the encoder. While our simplified figure
shows only a single network layer for the encoder, stacked architectures are the
norm, where the output states from the top layer of the stack are taken as the final
representation, and the encoder consists of stacked biLSTMs where the hidden states
from top layers from the forward and backward passes are concatenated to provide
the contextualized representations for each time step.

The entire purpose of the encoder is to generate a contextualized representation
of the input. This representation is embodied in the final hidden state of the encoder,
he

n
. This representation, also called c for context, is then passed to the decoder.

The simplest version of the decoder network would take this state and use it
just to initialize the first hidden state of the decoder; the first decoder RNN cell
would use c as its prior hidden state hd

0. The decoder would then autoregressively
generates a sequence of outputs, an element at a time, until an end-of-sequence
marker is generated. Each hidden state is conditioned on the previous hidden state
and the output generated in the previous state.

As Fig. 8.18 shows, we do something more complex: we make the context vector
c available to more than just the first decoder hidden state, to ensure that the influence
of the context vector, c, doesn’t wane as the output sequence is generated. We do
this by adding c as a parameter to the computation of the current hidden state. using
the following equation:

hd

t
= g(ŷt�1,h

d

t�1,c) (8.32)

Encoder-decoder equaAons

g is a stand-in for some flavor of RNN

yˆt−1 is the embedding for the output sampled from the so9max at the previous step
ˆyt is a vector of probabili=es over the vocabulary, represen=ng the probability of each
word occurring at =me t. To generate text, we sample from this distribu=on ˆyt .

8.7 • THE ENCODER-DECODER MODEL WITH RNNS 21

Encoder

Decoder

hn
hd

1
he

3he
2he

1
hd

2
hd

3
hd

4

embedding
layer

hidden
layer(s)

softmax

x1 x2

y1

hd

m

x3 xn <s> y1

y2

y2

y3

y3

y4

ym

</s>

he
n = c = hd

0

(output is ignored during encoding)

Figure 8.18 A more formal version of translating a sentence at inference time in the basic RNN-based
encoder-decoder architecture. The final hidden state of the encoder RNN, h

e
n, serves as the context for the

decoder in its role as h
d

0 in the decoder RNN, and is also made available to each decoder hidden state.

Now we’re ready to see the full equations for this version of the decoder in the basic
encoder-decoder model, with context available at each decoding timestep. Recall
that g is a stand-in for some flavor of RNN and ŷt�1 is the embedding for the output
sampled from the softmax at the previous step:

c = he

n

hd

0 = c

hd

t
= g(ŷt�1,h

d

t�1,c)

ŷt = softmax(hd

t
) (8.33)

Thus ŷt is a vector of probabilities over the vocabulary, representing the probability
of each word occurring at time t. To generate text, we sample from this distribution
ŷt . For example, the greedy choice is simply to choose the most probable word to
generate at each timestep. We’ll introduce more sophisticated sampling methods in
Section ??.

8.7.1 Training the Encoder-Decoder Model

Encoder-decoder architectures are trained end-to-end. Each training example is a
tuple of paired strings, a source and a target. Concatenated with a separator token,
these source-target pairs can now serve as training data.

For MT, the training data typically consists of sets of sentences and their transla-
tions. These can be drawn from standard datasets of aligned sentence pairs, as we’ll
discuss in Section ??. Once we have a training set, the training itself proceeds as
with any RNN-based language model. The network is given the source text and then
starting with the separator token is trained autoregressively to predict the next word,
as shown in Fig. 8.19.

Note the differences between training (Fig. 8.19) and inference (Fig. 8.17) with
respect to the outputs at each time step. The decoder during inference uses its own
estimated output ŷt as the input for the next time step xt+1. Thus the decoder will
tend to deviate more and more from the gold target sentence as it keeps generating
more tokens. In training, therefore, it is more common to use teacher forcing in theteacher forcing

decoder. Teacher forcing means that we force the system to use the gold target token

Training the encoder-decoder with teacher forcing

Encoder

Decoder

embedding
layer

hidden
layer(s)

softmax

the green

llegó

witch arrived <s> llegó

la

la

bruja

bruja

verde

verde

</s> gold
answers

L1 =
-log P(y1)

x1 x2 x3 x4

L2 =
-log P(y2)

L3 =
-log P(y3)

L4 =
-log P(y4)

L5 =
-log P(y5)

per-word
loss

y1 y2 y3 y4 y5

Total loss is the average
cross-entropy loss per

target word:

RNNs and
LSTMs

The LSTM Encoder-Decoder
Architecture

RNNs and
LSTMs

LSTM ABenCon

Problem with passing context c only from end

Requiring the context c to be only the encoder’s final hidden state
forces all the informa<on from the en<re source sentence to pass
through this representa<onal bo_leneck.

Encoder Decoderbottleneck
bottleneck

SoluAon: aRenAon

instead of being taken from the last hidden state, the context it’s a
weighted average of all the hidden states of the decoder.
this weighted average is also informed by part of the decoder state as
well, the state of the decoder right before the current token i.

8.8 • ATTENTION 23

In the attention mechanism, as in the vanilla encoder-decoder model, the context
vector c is a single vector that is a function of the hidden states of the encoder. But
instead of being taken from the last hidden state, it’s a weighted average of all the
hidden states of the decoder. And this weighted average is also informed by part of
the decoder state as well, the state of the decoder right before the current token i.
That is, c = f (he

1 . . .he

n
,hd

i�1). The weights focus on (‘attend to’) a particular part of
the source text that is relevant for the token i that the decoder is currently producing.
Attention thus replaces the static context vector with one that is dynamically derived
from the encoder hidden states, but also informed by and hence different for each
token in decoding.

This context vector, ci, is generated anew with each decoding step i and takes
all of the encoder hidden states into account in its derivation. We then make this
context available during decoding by conditioning the computation of the current
decoder hidden state on it (along with the prior hidden state and the previous output
generated by the decoder), as we see in this equation (and Fig. 8.21):

hd

i
= g(ŷi�1,h

d

i�1,ci) (8.34)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure 8.21 The attention mechanism allows each hidden state of the decoder to see a
different, dynamic, context, which is a function of all the encoder hidden states.

The first step in computing ci is to compute how much to focus on each encoder
state, how relevant each encoder state is to the decoder state captured in hd

i�1. We
capture relevance by computing— at each state i during decoding—a score(hd

i�1,h
e

j
)

for each encoder state j.
The simplest such score, called dot-product attention, implements relevance asdot-product

attention

similarity: measuring how similar the decoder hidden state is to an encoder hidden
state, by computing the dot product between them:

score(hd

i�1,h
e

j
) = hd

i�1 · he

j
(8.35)

The score that results from this dot product is a scalar that reflects the degree of
similarity between the two vectors. The vector of these scores across all the encoder
hidden states gives us the relevance of each encoder state to the current step of the
decoder.

To make use of these scores, we’ll normalize them with a softmax to create a
vector of weights, ai j, that tells us the proportional relevance of each encoder hidden
state j to the prior hidden decoder state, h

d

i�1.

ai j = softmax(score(hd

i�1,h
e

j
))

=
exp(score(hd

i�1,h
e

j
)

P
k

exp(score(hd

i�1,h
e

k
))

(8.36)

Finally, given the distribution in a , we can compute a fixed-length context vector for
the current decoder state by taking a weighted average over all the encoder hidden

ARenAon

8.8 • ATTENTION 23

In the attention mechanism, as in the vanilla encoder-decoder model, the context
vector c is a single vector that is a function of the hidden states of the encoder. But
instead of being taken from the last hidden state, it’s a weighted average of all the
hidden states of the decoder. And this weighted average is also informed by part of
the decoder state as well, the state of the decoder right before the current token i.
That is, c = f (he

1 . . .he

n
,hd

i�1). The weights focus on (‘attend to’) a particular part of
the source text that is relevant for the token i that the decoder is currently producing.
Attention thus replaces the static context vector with one that is dynamically derived
from the encoder hidden states, but also informed by and hence different for each
token in decoding.

This context vector, ci, is generated anew with each decoding step i and takes
all of the encoder hidden states into account in its derivation. We then make this
context available during decoding by conditioning the computation of the current
decoder hidden state on it (along with the prior hidden state and the previous output
generated by the decoder), as we see in this equation (and Fig. 8.21):

hd

i
= g(ŷi�1,h

d

i�1,ci) (8.34)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure 8.21 The attention mechanism allows each hidden state of the decoder to see a
different, dynamic, context, which is a function of all the encoder hidden states.

The first step in computing ci is to compute how much to focus on each encoder
state, how relevant each encoder state is to the decoder state captured in hd

i�1. We
capture relevance by computing— at each state i during decoding—a score(hd

i�1,h
e

j
)

for each encoder state j.
The simplest such score, called dot-product attention, implements relevance asdot-product

attention

similarity: measuring how similar the decoder hidden state is to an encoder hidden
state, by computing the dot product between them:

score(hd

i�1,h
e

j
) = hd

i�1 · he

j
(8.35)

The score that results from this dot product is a scalar that reflects the degree of
similarity between the two vectors. The vector of these scores across all the encoder
hidden states gives us the relevance of each encoder state to the current step of the
decoder.

To make use of these scores, we’ll normalize them with a softmax to create a
vector of weights, ai j, that tells us the proportional relevance of each encoder hidden
state j to the prior hidden decoder state, h

d

i�1.

ai j = softmax(score(hd

i�1,h
e

j
))

=
exp(score(hd

i�1,h
e

j
)

P
k

exp(score(hd

i�1,h
e

k
))

(8.36)

Finally, given the distribution in a , we can compute a fixed-length context vector for
the current decoder state by taking a weighted average over all the encoder hidden

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

How to compute c?
We'll create a score that tells us how much to focus on each encoder
state, how relevant each encoder state is to the decoder state:

We’ll normalize them with a so`max to create weights αi j , that tell us
the relevance of encoder hidden state j to hidden decoder state, hd

i-1

And then use this to help create a weighted average:

8.8 • ATTENTION 23

In the attention mechanism, as in the vanilla encoder-decoder model, the context
vector c is a single vector that is a function of the hidden states of the encoder. But
instead of being taken from the last hidden state, it’s a weighted average of all the
hidden states of the decoder. And this weighted average is also informed by part of
the decoder state as well, the state of the decoder right before the current token i.
That is, c = f (he

1 . . .he

n
,hd

i�1). The weights focus on (‘attend to’) a particular part of
the source text that is relevant for the token i that the decoder is currently producing.
Attention thus replaces the static context vector with one that is dynamically derived
from the encoder hidden states, but also informed by and hence different for each
token in decoding.

This context vector, ci, is generated anew with each decoding step i and takes
all of the encoder hidden states into account in its derivation. We then make this
context available during decoding by conditioning the computation of the current
decoder hidden state on it (along with the prior hidden state and the previous output
generated by the decoder), as we see in this equation (and Fig. 8.21):

hd

i
= g(ŷi�1,h

d

i�1,ci) (8.34)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure 8.21 The attention mechanism allows each hidden state of the decoder to see a
different, dynamic, context, which is a function of all the encoder hidden states.

The first step in computing ci is to compute how much to focus on each encoder
state, how relevant each encoder state is to the decoder state captured in hd

i�1. We
capture relevance by computing— at each state i during decoding—a score(hd

i�1,h
e

j
)

for each encoder state j.
The simplest such score, called dot-product attention, implements relevance asdot-product

attention

similarity: measuring how similar the decoder hidden state is to an encoder hidden
state, by computing the dot product between them:

score(hd

i�1,h
e

j
) = hd

i�1 · he

j
(8.35)

The score that results from this dot product is a scalar that reflects the degree of
similarity between the two vectors. The vector of these scores across all the encoder
hidden states gives us the relevance of each encoder state to the current step of the
decoder.

To make use of these scores, we’ll normalize them with a softmax to create a
vector of weights, ai j, that tells us the proportional relevance of each encoder hidden
state j to the prior hidden decoder state, h

d

i�1.

ai j = softmax(score(hd

i�1,h
e

j
))

=
exp(score(hd

i�1,h
e

j
)

P
k

exp(score(hd

i�1,h
e

k
))

(8.36)

Finally, given the distribution in a , we can compute a fixed-length context vector for
the current decoder state by taking a weighted average over all the encoder hidden

8.8 • ATTENTION 23

In the attention mechanism, as in the vanilla encoder-decoder model, the context
vector c is a single vector that is a function of the hidden states of the encoder. But
instead of being taken from the last hidden state, it’s a weighted average of all the
hidden states of the decoder. And this weighted average is also informed by part of
the decoder state as well, the state of the decoder right before the current token i.
That is, c = f (he

1 . . .he

n
,hd

i�1). The weights focus on (‘attend to’) a particular part of
the source text that is relevant for the token i that the decoder is currently producing.
Attention thus replaces the static context vector with one that is dynamically derived
from the encoder hidden states, but also informed by and hence different for each
token in decoding.

This context vector, ci, is generated anew with each decoding step i and takes
all of the encoder hidden states into account in its derivation. We then make this
context available during decoding by conditioning the computation of the current
decoder hidden state on it (along with the prior hidden state and the previous output
generated by the decoder), as we see in this equation (and Fig. 8.21):

hd

i
= g(ŷi�1,h

d

i�1,ci) (8.34)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure 8.21 The attention mechanism allows each hidden state of the decoder to see a
different, dynamic, context, which is a function of all the encoder hidden states.

The first step in computing ci is to compute how much to focus on each encoder
state, how relevant each encoder state is to the decoder state captured in hd

i�1. We
capture relevance by computing— at each state i during decoding—a score(hd

i�1,h
e

j
)

for each encoder state j.
The simplest such score, called dot-product attention, implements relevance asdot-product

attention

similarity: measuring how similar the decoder hidden state is to an encoder hidden
state, by computing the dot product between them:

score(hd

i�1,h
e

j
) = hd

i�1 · he

j
(8.35)

The score that results from this dot product is a scalar that reflects the degree of
similarity between the two vectors. The vector of these scores across all the encoder
hidden states gives us the relevance of each encoder state to the current step of the
decoder.

To make use of these scores, we’ll normalize them with a softmax to create a
vector of weights, ai j, that tells us the proportional relevance of each encoder hidden
state j to the prior hidden decoder state, h

d

i�1.

ai j = softmax(score(hd

i�1,h
e

j
))

=
exp(score(hd

i�1,h
e

j
)

P
k

exp(score(hd

i�1,h
e

k
))

(8.36)

Finally, given the distribution in a , we can compute a fixed-length context vector for
the current decoder state by taking a weighted average over all the encoder hidden

24 CHAPTER 8 • RNNS AND LSTMS

states.

ci =
X

j

ai j h
e

j
(8.37)

With this, we finally have a fixed-length context vector that takes into account
information from the entire encoder state that is dynamically updated to reflect the
needs of the decoder at each step of decoding. Fig. 8.22 illustrates an encoder-
decoder network with attention, focusing on the computation of one context vector
ci.

Encoder

Decoder

hd
i-1he

3he
2he

1
hd

ihidden
layer(s)

x1 x2

yi-1

x3 xn
yi-2 yi-1

yi

he
n

ci

.2.1.3.4attention
weights

ci-1

ci

<latexit sha1_base64="TNdNmv/RIlrhPa6LgQyjjQLqyBA=">AAACAnicdVDLSsNAFJ3UV62vqCtxM1gEVyHpI9Vd0Y3LCvYBTQyT6bSddvJgZiKUUNz4K25cKOLWr3Dn3zhpK6jogQuHc+7l3nv8mFEhTfNDyy0tr6yu5dcLG5tb2zv67l5LRAnHpIkjFvGOjwRhNCRNSSUjnZgTFPiMtP3xRea3bwkXNAqv5SQmboAGIe1TjKSSPP3AEUngjVIHsXiIvJSOpnB4Q7zR1NOLpmGaVbtqQdOwLbtk24qY5Yp9VoOWsjIUwQINT393ehFOAhJKzJAQXcuMpZsiLilmZFpwEkFihMdoQLqKhiggwk1nL0zhsVJ6sB9xVaGEM/X7RIoCISaBrzoDJIfit5eJf3ndRPZP3ZSGcSJJiOeL+gmDMoJZHrBHOcGSTRRBmFN1K8RDxBGWKrWCCuHrU/g/aZUMyzbKV5Vi/XwRRx4cgiNwAixQA3VwCRqgCTC4Aw/gCTxr99qj9qK9zltz2mJmH/yA9vYJSymYCA==</latexit>X

j

�ijh
e
j

�ij <latexit sha1_base64="y8s4mGdpwrGrBnuSR+p1gJJXYdo=">AAAB/nicdVDJSgNBEO2JW4zbqHjy0hgEL4YeJyQBL0EvHiOYBbIMPT09mTY9C909QhgC/ooXD4p49Tu8+Td2FkFFHxQ83quiqp6bcCYVQh9Gbml5ZXUtv17Y2Nza3jF391oyTgWhTRLzWHRcLClnEW0qpjjtJILi0OW07Y4up377jgrJ4uhGjRPaD/EwYj4jWGnJMQ+Cgedk7NSa9IgXq955MKDOrWMWUQnNAFGpYtfsakUTZNtWGUFrYRXBAg3HfO95MUlDGinCsZRdCyWqn2GhGOF0UuilkiaYjPCQdjWNcEhlP5udP4HHWvGgHwtdkYIz9ftEhkMpx6GrO0OsAvnbm4p/ed1U+bV+xqIkVTQi80V+yqGK4TQL6DFBieJjTTARTN8KSYAFJkonVtAhfH0K/yets5JVKdnX5WL9YhFHHhyCI3ACLFAFdXAFGqAJCMjAA3gCz8a98Wi8GK/z1pyxmNkHP2C8fQICDpWK</latexit>

hd
i�1 · he

j

……

Figure 8.22 A sketch of the encoder-decoder network with attention, focusing on the computation of ci. The
context value ci is one of the inputs to the computation of hd

i
. It is computed by taking the weighted sum of all

the encoder hidden states, each weighted by their dot product with the prior decoder hidden state hd

i�1.

It’s also possible to create more sophisticated scoring functions for attention
models. Instead of simple dot product attention, we can get a more powerful function
that computes the relevance of each encoder hidden state to the decoder hidden state
by parameterizing the score with its own set of weights, Ws.

score(hd

i�1,h
e

j
) = hd

t�1Wsh
e

j

The weights Ws, which are then trained during normal end-to-end training, give the
network the ability to learn which aspects of similarity between the decoder and
encoder states are important to the current application. This bilinear model also
allows the encoder and decoder to use different dimensional vectors, whereas the
simple dot-product attention requires that the encoder and decoder hidden states
have the same dimensionality.

We’ll return to the concept of attention when we define the transformer archi-
tecture in Chapter 9, which is based on a slight modification of attention called
self-attention.

8.9 Summary

This chapter has introduced the concepts of recurrent neural networks and how they
can be applied to language problems. Here’s a summary of the main points that we

Encoder-decoder with a<en=on, focusing on the
computa=on of c

Encoder

Decoder

hd
i-1he

3he
2he

1
hd

ihidden
layer(s)

x1 x2

yi-1

x3 xn
yi-2 yi-1

yi

he
n

ci

.2.1.3.4attention
weights

ci-1

ci

<latexit sha1_base64="TNdNmv/RIlrhPa6LgQyjjQLqyBA=">AAACAnicdVDLSsNAFJ3UV62vqCtxM1gEVyHpI9Vd0Y3LCvYBTQyT6bSddvJgZiKUUNz4K25cKOLWr3Dn3zhpK6jogQuHc+7l3nv8mFEhTfNDyy0tr6yu5dcLG5tb2zv67l5LRAnHpIkjFvGOjwRhNCRNSSUjnZgTFPiMtP3xRea3bwkXNAqv5SQmboAGIe1TjKSSPP3AEUngjVIHsXiIvJSOpnB4Q7zR1NOLpmGaVbtqQdOwLbtk24qY5Yp9VoOWsjIUwQINT393ehFOAhJKzJAQXcuMpZsiLilmZFpwEkFihMdoQLqKhiggwk1nL0zhsVJ6sB9xVaGEM/X7RIoCISaBrzoDJIfit5eJf3ndRPZP3ZSGcSJJiOeL+gmDMoJZHrBHOcGSTRRBmFN1K8RDxBGWKrWCCuHrU/g/aZUMyzbKV5Vi/XwRRx4cgiNwAixQA3VwCRqgCTC4Aw/gCTxr99qj9qK9zltz2mJmH/yA9vYJSymYCA==</latexit>X

j

↵ijh
e
j

↵ij <latexit sha1_base64="y8s4mGdpwrGrBnuSR+p1gJJXYdo=">AAAB/nicdVDJSgNBEO2JW4zbqHjy0hgEL4YeJyQBL0EvHiOYBbIMPT09mTY9C909QhgC/ooXD4p49Tu8+Td2FkFFHxQ83quiqp6bcCYVQh9Gbml5ZXUtv17Y2Nza3jF391oyTgWhTRLzWHRcLClnEW0qpjjtJILi0OW07Y4up377jgrJ4uhGjRPaD/EwYj4jWGnJMQ+Cgedk7NSa9IgXq955MKDOrWMWUQnNAFGpYtfsakUTZNtWGUFrYRXBAg3HfO95MUlDGinCsZRdCyWqn2GhGOF0UuilkiaYjPCQdjWNcEhlP5udP4HHWvGgHwtdkYIz9ftEhkMpx6GrO0OsAvnbm4p/ed1U+bV+xqIkVTQi80V+yqGK4TQL6DFBieJjTTARTN8KSYAFJkonVtAhfH0K/yets5JVKdnX5WL9YhFHHhyCI3ACLFAFdXAFGqAJCMjAA3gCz8a98Wi8GK/z1pyxmNkHP2C8fQICDpWK</latexit>

hd
i�1 · he

j

……

RNNs and
LSTMs

LSTM ABenCon

