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Masked Language Modeling

• We've seen autoregressive (causal, left-to-right) LMs.
• But what about tasks for which we want to peak at future 

tokens?
• Especially true for tasks where we map each input token to an 

output token
• Bidirectional encoders use masked self-attention to 
• map sequences of input embeddings (x1,...,xn) 
• to sequences of output embeddings of the same length 

(h1,...,hn), 
• where the output vectors have been contextualized using 

information from the entire input sequence. 



Bidirectional Self-Attention

a) A causal self-attention layer b) A bidirectional self-attention layer
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Easy!  We just remove the mask
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(repeated from Eq. ?? for a single attention head):
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Figure 11.2 The N ⇥ N QK| matrix showing the qi · k j values, with the upper-triangle
portion of the comparisons matrix zeroed out (set to �•, which the softmax will turn to
zero).

Fig. 11.2 shows the masked version of QK| and the unmasked version. For bidi-
rectional attention, we use the unmasked version of Fig. 11.2b. Thus the attention
computation for bidirectional attention is exactly the same as Eq. 11.1 but with the
mask removed:

head = softmax
✓

QK|
p

dk

◆
V (11.2)

Otherwise, the attention computation is identical to what we saw in Chapter 9, as is
the transformer block architecture (the feedforward layer, layer norm, and so on). As
in Chapter 9, the input is also a series of subword tokens, usually computed by one of
the 3 popular tokenization algorithms (including the BPE algorithm that we already
saw in Chapter 2 and two others, the WordPiece algorithm and the SentencePiece
Unigram LM algorithm). That means every input sentence first has to be tokenized,
and all further processing takes place on subword tokens rather than words. This will
require, as we’ll see in the third part of the textbook, that for some NLP tasks that
require notions of words (like parsing) we will occasionally need to map subwords
back to words.

To make this more concrete, the original English-only bidirectional transformer
encoder model, BERT (Devlin et al., 2019), consisted of the following:

• An English-only subword vocabulary consisting of 30,000 tokens generated
using the WordPiece algorithm (Schuster and Nakajima, 2012).

• Input context window N=512 tokens, and model dimensionality d=768
• So X, the input to the model, is of shape [N ⇥d] = [512⇥768].
• L=12 layers of transformer blocks, each with A=12 (bidirectional) multihead

attention layers.
• The resulting model has about 100M parameters.

The larger multilingual XLM-RoBERTa model, trained on 100 languages, has
• A multilingual subword vocabulary with 250,000 tokens generated using the

SentencePiece Unigram LM algorithm (Kudo and Richardson, 2018).
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Otherwise, the attention computation is identical to what we saw in Chapter 9, as is
the transformer block architecture (the feedforward layer, layer norm, and so on). As
in Chapter 9, the input is also a series of subword tokens, usually computed by one of
the 3 popular tokenization algorithms (including the BPE algorithm that we already
saw in Chapter 2 and two others, the WordPiece algorithm and the SentencePiece
Unigram LM algorithm). That means every input sentence first has to be tokenized,
and all further processing takes place on subword tokens rather than words. This will
require, as we’ll see in the third part of the textbook, that for some NLP tasks that
require notions of words (like parsing) we will occasionally need to map subwords
back to words.

To make this more concrete, the original English-only bidirectional transformer
encoder model, BERT (Devlin et al., 2019), consisted of the following:

• An English-only subword vocabulary consisting of 30,000 tokens generated
using the WordPiece algorithm (Schuster and Nakajima, 2012).

• Input context window N=512 tokens, and model dimensionality d=768
• So X, the input to the model, is of shape [N ⇥d] = [512⇥768].
• L=12 layers of transformer blocks, each with A=12 (bidirectional) multihead

attention layers.
• The resulting model has about 100M parameters.

The larger multilingual XLM-RoBERTa model, trained on 100 languages, has
• A multilingual subword vocabulary with 250,000 tokens generated using the

SentencePiece Unigram LM algorithm (Kudo and Richardson, 2018).

Casual self-attention Bidirectional self-attention



BERT: Bidirectional Encoder Representations from 
Transformers

BERT (Devlin et al., 2019)
• 30,000 English-only tokens (WordPiece tokenizer)
•  Input context window N=512 tokens, and model dimensionality d=768 
• L=12 layers of transformer blocks, each with A=12 (bidirectional) multihead-

attention layers. 
• The resulting model has about 100M parameters. 
XLM-RoBERTa (Conneau et al., 2020)
• 250,000 multilingual tokens (SentencePiece Unigram LM tokenizer)
• Input context window N=512 tokens,model dimensionality d=1024 
• L=24 layers of transformer blocks, with A=16 multihead attention layers each
•  The resulting model has about 550M parameters. 
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Masked training intuition

• For left-to-right LMs, the model tries to predict the last word from prior 
words: 

  The water of Walden Pond is so beautifully
• And we train it to improve its predictions.

• For bidirectional masked LMs, the model tries to predict one or more 
words from all the rest of the words:

  The                      of Walden Pond                  so beautifully blue 
• The model generates a probability distribution over the vocabulary for each 

missing token
• We use the cross-entropy loss from each of the model’s predictions to drive the 

learning process. 



MLM training in BERT

15% of the tokens are randomly chosen to be part of the masking 
Example: "Lunch was delicious", if delicious was randomly chosen:
Three possibilities:
1. 80%: Token is replaced with special token [MASK]
  Lunch was delicious -> Lunch was [MASK]
2. 10%: Token is replaced with a random token (sampled from unigram prob)
  Lunch was delicious -> Lunch was gasp
3. 10%: Token is unchanged
  Lunch was delicious -> Lunch was delicious



In detail

LM Head with Softmax 
over Vocabulary
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MLM loss
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probabilities y over the vocabulary:

ui = hL
i ET (11.3)

yi = softmax(ui) (11.4)

With a predicted probability distribution for each masked item, we can use cross-
entropy to compute the loss for each masked item—the negative log probability
assigned to the actual masked word, as shown in Fig. 11.3. More formally, for a
given vector of input tokens in a sentence or batch be x, let the set of tokens that are
masked be M, the version of that sentence with some tokens replaced by masks be
xmask, and the sequence of output vectors be h. For a given input token xi, such as
the word long in Fig. 11.3, the loss is the probability of the correct word long, given
xmask (as summarized in the single output vector hL

i
):

LMLM(xi) =� logP(xi|hL

i
)

The gradients that form the basis for the weight updates are based on the average
loss over the sampled learning items from a single training sequence (or batch of
sequences).

LMLM =� 1
|M|

X

i2M

logP(xi|hL

i
)

Note that only the tokens in M play a role in learning; the other words play no role
in the loss function, so in that sense BERT and its descendents are inefficient; only
15% of the input samples in the training data are actually used for training weights.1

11.2.2 Next Sentence Prediction
The focus of mask-based learning is on predicting words from surrounding contexts
with the goal of producing effective word-level representations. However, an im-
portant class of applications involves determining the relationship between pairs of
sentences. These include tasks like paraphrase detection (detecting if two sentences
have similar meanings), entailment (detecting if the meanings of two sentences en-
tail or contradict each other) or discourse coherence (deciding if two neighboring
sentences form a coherent discourse).

To capture the kind of knowledge required for applications such as these, some
models in the BERT family include a second learning objective called Next Sen-
tence Prediction (NSP). In this task, the model is presented with pairs of sentencesNext Sentence

Prediction
and is asked to predict whether each pair consists of an actual pair of adjacent sen-
tences from the training corpus or a pair of unrelated sentences. In BERT, 50% of
the training pairs consisted of positive pairs, and in the other 50% the second sen-
tence of a pair was randomly selected from elsewhere in the corpus. The NSP loss
is based on how well the model can distinguish true pairs from random pairs.

To facilitate NSP training, BERT introduces two special tokens to the input rep-
resentation (tokens that will prove useful for finetuning as well). After tokenizing
the input with the subword model, the token [CLS] is prepended to the input sen-
tence pair, and the token [SEP] is placed between the sentences and after the final
token of the second sentence. There are actually two more special tokens, a ‘First
Segment’ token, and a ‘Second Segment’ token. These tokens are added in the in-
put stage to the word and positional embeddings. That is, each token of the input

1 ELECTRA, another BERT family member, does use all examples for training (Clark et al., 2020).
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The LM head takes output of final transformer layer L, multiplies it by 
unembedding layer and turns into probabilities:

E.g., for the xi corresponding to "long", the loss is the probability of the correct 
word long, given output hL

i ): 

We get the gradients by taking the average of this loss over the batch



Next Sentence Prediction

Given 2 sentences the model predicts if they are a real pair of adjacent sentences from 
the training corpus or a pair of unrelated sentences. 
BERT introduces two special tokens 
• [CLS] is prepended to the input sentence pair, 
• [SEP] is placed between the sentences, and also after second sentence 
And two more special tokens
•  [1st segment]  and [2nd segment]
• These are added to the input embedding and positional embedding
hL

CLS from the final layer [CLS] token is input to classifier head (weights WNSP ) that 
predicts two classes:. 
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X is actually formed by summing 3 embeddings: word, position, and first/second
segment embeddings.

During training, the output vector h
L

CLS from the final layer associated with the
[CLS] token represents the next sentence prediction. As with the MLM objective,
we add a special head, in this case an NSP head, which consists of a learned set of
classification weights WNSP 2 Rd⇥2 that produces a two-class prediction from the
raw [CLS] vector h

L

CLS:

yi = softmax(hL

CLSWNSP)

Cross entropy is used to compute the NSP loss for each sentence pair presented
to the model. Fig. 11.4 illustrates the overall NSP training setup. In BERT, the NSP
loss was used in conjunction with the MLM training objective to form final loss.
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Figure 11.4 An example of the NSP loss calculation.

11.2.3 Training Regimes
BERT and other early transformer-based language models were trained on about
3.3 billion words (a combination of English Wikipedia and a corpus of book texts
called BooksCorpus (Zhu et al., 2015) that is no longer used for intellectual property
reasons). Modern masked language models are now trained on much larger datasets
of web text, filtered a bit, and augmented by higher-quality data like Wikipedia,
the same as those we discussed for the causal large language models of Chapter 9.
Multilingual models similarly use webtext and multilingual Wikipedia. For example
the XLM-R model was trained on about 300 billion tokens in 100 languages, taken
from the web via Common Crawl (https://commoncrawl.org/).

To train the original BERT models, pairs of text segments were selected from the
training corpus according to the next sentence prediction 50/50 scheme. Pairs were
sampled so that their combined length was less than the 512 token input. Tokens
within these sentence pairs were then masked using the MLM approach with the
combined loss from the MLM and NSP objectives used for a final loss. Because this
final loss is backpropagated through the entire transformer, the embeddings at each
transformer layer will learn representations that are useful for predicting words from
their neighbors. Since the [CLS] tokens are the direct input to the NSP classifier,
their learned representations will tend to contain information about the sequence as



NSP Loss with classification head
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More details

Original model was trained with 40 passes over training data
Some models (like RoBERTa) drop NSP loss
Tokenizer for multilingual models is trained from stratified sample of 
languages (some data from each language)
Multilingual models are better than monolingual models with small 
numbers of languages
• With large numbers of languages, monolingual models in that 

language can be better
• The "curse of multilinguality"
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Contextual Embeddings to represent words

[CLS] So long and thanks for all
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Static vs Contextual Embeddings

Static embeddings represent word types (dictionary entries)
Contextual embeddings represent word instances (one for each time 
the word occurs in any context/sentence)

Figure 4: Embeddings for the word "die" in different contexts, visualized with UMAP. Sample points
are annotated with corresponding sentences. Overall annotations (blue text) are added as a guide.

4.1 Visualization of word senses

Our first experiment is an exploratory visualization of how word sense affects context embeddings.
For data on different word senses, we collected all sentences used in the introductions to English-
language Wikipedia articles. (Text outside of introductions was frequently fragmentary.) We created
an interactive application, which we plan to make public. A user enters a word, and the system
retrieves 1,000 sentences containing that word. It sends these sentences to BERT-base as input, and
for each one it retrieves the context embedding for the word from a layer of the user’s choosing.

The system visualizes these 1,000 context embeddings using UMAP [15], generally showing clear
clusters relating to word senses. Different senses of a word are typically spatially separated, and
within the clusters there is often further structure related to fine shades of meaning. In Figure 4, for
example, we not only see crisp, well-separated clusters for three meanings of the word “die,” but
within one of these clusters there is a kind of quantitative scale, related to the number of people
dying. See Appendix 6.4 for further examples. The apparent detail in the clusters we visualized raises
two immediate questions. First, is it possible to find quantitative corroboration that word senses are
well-represented? Second, how can we resolve a seeming contradiction: in the previous section, we
saw how position represented syntax; yet here we see position representing semantics.

4.2 Measurement of word sense disambiguation capability

The crisp clusters seen in visualizations such as Figure 4 suggest that BERT may create simple,
effective internal representations of word senses, putting different meanings in different locations. To
test this hypothesis quantitatively, we test whether a simple classifier on these internal representations
can perform well at word-sense disambiguation (WSD).

We follow the procedure described in [20], which performed a similar experiment with the ELMo
model. For a given word with n senses, we make a nearest-neighbor classifier where each neighbor is
the centroid of a given word sense’s BERT-base embeddings in the training data. To classify a new
word we find the closest of these centroids, defaulting to the most commonly used sense if the word
was not present in the training data. We used the data and evaluation from [21]: the training data was
SemCor [17] (33,362 senses), and the testing data was the suite described in [21] (3,669 senses).

The simple nearest-neighbor classifier achieves an F1 score of 71.1, higher than the current state of
the art (Table 1), with the accuracy monotonically increasing through the layers. This is a strong
signal that context embeddings are representing word-sense information. Additionally, an even higher
score of 71.5 was obtained using the technique described in the following section.

6



Word sense

Words are ambiguous
A word sense is a discrete representation of one aspect of meaning

Contextual embeddings offer a continuous high-dimensional model 
of meaning that is more fine grained than discrete senses.
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polysemous (from Greek ‘many senses’, poly- ‘many’ + sema, ‘sign, mark’).2
A sense (or word sense) is a discrete representation of one aspect of the meaningword sense

of a word. We can represent each sense with a superscript: bank1 and bank2,
mouse1 and mouse2. These senses can be found listed in online thesauruses (or
thesauri) like WordNet (Fellbaum, 1998), which has datasets in many languagesWordNet
listing the senses of many words. In context, it’s easy to see the different meanings:

mouse1 : .... a mouse controlling a computer system in 1968.
mouse2 : .... a quiet animal like a mouse

bank1 : ...a bank can hold the investments in a custodial account ...
bank2 : ...as agriculture burgeons on the east bank, the river ...

This fact that context disambiguates the senses of mouse and bank above can
also be visualized geometrically. Fig. 11.6 shows a two-dimensional projection of
many instances of the BERT embeddings of the word die in English and German.
Each point in the graph represents the use of die in one input sentence. We can
clearly see at least two different English senses of die (the singular of dice and the
verb to die, as well as the German article, in the BERT embedding space.

Figure 4: Embeddings for the word "die" in different contexts, visualized with UMAP. Sample points
are annotated with corresponding sentences. Overall annotations (blue text) are added as a guide.
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Figure 11.6 Each blue dot shows a BERT contextual embedding for the word die from different sentences
in English and German, projected into two dimensions with the UMAP algorithm. The German and English
meanings and the different English senses fall into different clusters. Some sample points are shown with the
contextual sentence they came from. Figure from Coenen et al. (2019).

Thus while thesauruses like WordNet give discrete lists of senses, embeddings
(whether static or contextual) offer a continuous high-dimensional model of meaning
that, although it can be clustered, doesn’t divide up into fully discrete senses.

Word Sense Disambiguation

The task of selecting the correct sense for a word is called word sense disambigua-
tion, or WSD. WSD algorithms take as input a word in context and a fixed inventoryword sense

disambiguation
WSD of potential word senses (like the ones in WordNet) and outputs the correct word

sense in context. Fig. 11.7 sketches out the task.

2 The word polysemy itself is ambiguous; you may see it used in a different way, to refer only to cases
where a word’s senses are related in some structured way, reserving the word homonymy to mean sense
ambiguities with no relation between the senses (Haber and Poesio, 2020). Here we will use ‘polysemy’
to mean any kind of sense ambiguity, and ‘structured polysemy’ for polysemy with sense relations.



Word sense disambiguation (WSD)

The task of selecting the correct sense for a word.
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1-nearest neighbor algorithm for WSD

At training time, take a sense-labeled corpus like SEMCOR
Run corpus through BERT to get contextual embedding for each token
• E.g., pooling representations from last 4 BERT transformer layer
Then for each sense s of word w for n tokens of that sense, pool 
embeddings:

At test time, given a token of a target word t, compute contextual 
embedding t and choose its nearest neighbor sense from training set 
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Figure 11.7 The all-words WSD task, mapping from input words (x) to WordNet senses
(y). Figure inspired by Chaplot and Salakhutdinov (2018).

WSD can be a useful analytic tool for text analysis in the humanities and social
sciences, and word senses can play a role in model interpretability for word repre-
sentations. Word senses also have interesting distributional properties. For example
a word often is used in roughly the same sense through a discourse, an observation
called the one sense per discourse rule (Gale et al., 1992).one sense per

discourse
The best performing WSD algorithm is a simple 1-nearest-neighbor algorithm

using contextual word embeddings, due to Melamud et al. (2016) and Peters et al.
(2018). At training time we pass each sentence in some sense-labeled dataset (like
the SemCore or SenseEval datasets in various languages) through any contextual
embedding (e.g., BERT) resulting in a contextual embedding for each labeled token.
(There are various ways to compute this contextual embedding vi for a token i; for
BERT it is common to pool multiple layers by summing the vector representations
of i from the last four BERT layers). Then for each sense s of any word in the corpus,
for each of the n tokens of that sense, we average their n contextual representations
vi to produce a contextual sense embedding vs for s:

vs =
1
n

X

i

vi 8vi 2 tokens(s) (11.6)

At test time, given a token of a target word t in context, we compute its contextual
embedding t and choose its nearest neighbor sense from the training set, i.e., the
sense whose sense embedding has the highest cosine with t:

sense(t) = argmax
s2senses(t)

cosine(t,vs) (11.7)

Fig. 11.8 illustrates the model.

11.3.2 Contextual Embeddings and Word Similarity
In Chapter 6 we introduced the idea that we could measure the similarity of two
words by considering how close they are geometrically, by using the cosine as a
similarity function. The idea of meaning similarity is also clear geometrically in the
meaning clusters in Fig. 11.6; the representation of a word which has a particular
sense in a context is closer to other instances of the same sense of the word. Thus we
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Melamud et al (2016), Peters et al (2018)



1-nearest neighbor algorithm for WSD
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Similarity and contextual embeddings

• We generally use cosine as for static embeddings
• But some issues:
• Contextual embeddings tend to be anisotropic: all point in roughly the 

same direction so have high inherent cosines (Ethayarajh 2019)
• Cosine measure are dominated by a small number of "rogue" dimensions 

with very high values (Timkey and van Schijndel 2021)
• Cosine tends to underestimate human judgments on similarity of word 

meaning for very frequent words (Zhou et al., 2022)
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Adding a sentiment classification head
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Sequence-Pair classification

Assign a label to pairs of sentences:
• paraphrase detection (are the two sentences 

paraphrases of each other?) 
• logical entailment (does sentence A logically entail 

sentence B?) 
• discourse coherence (how coherent is sentence B 

as a follow-on to sentence A?)



Example: Natural Language Inference

Pairs of sentences are given one of 3 labels

Algorithm: pass the premise/hypothesis pairs through a bidirectional 
encoder and use the output vector for the [CLS] token as the input to 
the classification head .
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As an example, let’s consider an entailment classification task with the Multi-
Genre Natural Language Inference (MultiNLI) dataset (Williams et al., 2018). In
the task of natural language inference or NLI, also called recognizing textualnatural

language
inference entailment, a model is presented with a pair of sentences and must classify the re-

lationship between their meanings. For example in the MultiNLI corpus, pairs of
sentences are given one of 3 labels: entails, contradicts and neutral. These labels
describe a relationship between the meaning of the first sentence (the premise) and
the meaning of the second sentence (the hypothesis). Here are representative exam-
ples of each class from the corpus:

• Neutral
a: Jon walked back to the town to the smithy.
b: Jon traveled back to his hometown.

• Contradicts
a: Tourist Information offices can be very helpful.
b: Tourist Information offices are never of any help.

• Entails
a: I’m confused.
b: Not all of it is very clear to me.

A relationship of contradicts means that the premise contradicts the hypothesis; en-

tails means that the premise entails the hypothesis; neutral means that neither is
necessarily true. The meaning of these labels is looser than strict logical entailment
or contradiction indicating that a typical human reading the sentences would most
likely interpret the meanings in this way.

To finetune a classifier for the MultiNLI task, we pass the premise/hypothesis
pairs through a bidirectional encoder as described above and use the output vector
for the [CLS] token as the input to the classification head. As with ordinary sequence
classification, this head provides the input to a three-way classifier that can be trained
on the MultiNLI training corpus.

11.5 Fine-Tuning for Sequence Labelling: Named En-
tity Recognition

In sequence labeling, the network’s task is to assign a label chosen from a small
fixed set of labels to each token in the sequence. One of the most common sequence
labeling task is named entity recognition.

11.5.1 Named Entities
A named entity is, roughly speaking, anything that can be referred to with a propernamed entity

name: a person, a location, an organization. The task of named entity recognitionnamed entity
recognition

(NER) is to find spans of text that constitute proper names and tag the type of theNER
entity. Four entity tags are most common: PER (person), LOC (location), ORG
(organization), or GPE (geo-political entity). However, the term named entity is
commonly extended to include things that aren’t entities per se, including temporal
expressions like dates and times, and even numerical expressions like prices. Here’s
an example of the output of an NER tagger:



Fine-tuning for sequence labeling

Assign a label from a small fixed set of labels to each token 
in the sequence. 
• Named entity recognition
• Part of speech tagging
. 



Named Entity Recognition

A named entity is anything that can be referred to with a proper 
name: a person, a location, an organization
Named entity recognition (NER): find spans of text that 
constitute proper names and tag the type of the entity 
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Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money. Figure 11.10 shows typical generic
named entity types. Many applications will also need to use specific entity types like
proteins, genes, commercial products, or works of art.

Type Tag Sample Categories Example sentences
People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The IPCC warned about the cyclone.
Location LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.

Figure 11.10 A list of generic named entity types with the kinds of entities they refer to.

Named entity recognition is a useful step in various natural language processing
tasks, including linking text to information in structured knowledge sources like
Wikipedia, measuring sentiment or attitudes toward a particular entity in text, or
even as part of anonymizing text for privacy. The NER task is is difficult because
of the ambiguity of segmenting NER spans, figuring out which tokens are entities
and which aren’t, since most words in a text will not be named entities. Another
difficulty is caused by type ambiguity. The mention Washington can refer to a
person, a sports team, a city, or the US government, as we see in Fig. 11.11.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 11.11 Examples of type ambiguities in the use of the name Washington.

11.5.2 BIO Tagging
One standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows usBIO tagging

to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[PER Jane Villanueva ] of [ORG United] , a unit of [ORG United Airlines
Holding] , said the fare applies to the [LOC Chicago ] route.

Figure 11.12 shows the same excerpt represented with BIO tagging, as well asBIO
variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled O. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n+1 tags, where n is the number of entity types. BIO
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BIO Tagging

A method that lets us turn a segmentation task (finding boundaries of 
entities) into a classification task

Ramshaw and Marcus (1995)
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tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label yi to each input word xi:

Words IO Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O
. O O O
Figure 11.12 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag E
for the end of a span, and a span tag S for a span consisting of only one word.

11.5.3 Sequence Labeling
In sequence labeling, we pass the final output vector corresponding to each input
token to a classifier that produces a softmax distribution over the possible set of
tags. For a single feedforward layer classifier, the set of weights to be learned is
WK of size [d ⇥ k], where k is the number of possible tags for the task. A greedy
approach, where the argmax tag for each token is taken as a likely answer, can be
used to generate the final output tag sequence. Fig. 11.13 illustrates an example of
this approach, where yi is a vector of probabilities over tags, and k indexes the tags.

yi = softmax(hL
i WK) (11.12)

ti = argmax
k
(yi) (11.13)

Alternatively, the distribution over labels provided by the softmax for each input
token can be passed to a conditional random field (CRF) layer which can take global
tag-level transitions into account (see Chapter 17 on CRFs).

Tokenization and NER

Note that supervised training data for NER is typically in the form of BIO tags as-
sociated with text segmented at the word level. For example the following sentence
containing two named entities:

[LOC Mt. Sanitas ] is in [LOC Sunshine Canyon] .

would have the following set of per-word BIO tags.

(11.14) Mt.

B-LOC
Sanitas

I-LOC
is

O
in

O
Sunshine

B-LOC
Canyon

I-LOC
.

O

Unfortunately, the sequence of WordPiece tokens for this sentence doesn’t align
directly with BIO tags in the annotation:



Sequence labeling
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More details

We need to map between tokens (used by LLM) and words (used in 
definition of name entities)
We evaluate NER with F1 (precision/recall)
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