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DISCRETE CHOICE

** Data of the form (xz, C') where “alternative Z is chosen from the set C” and C

is a subset of X, the universe of N alternatives

* Discrete choice settings are ubiquitous

Uber

L|meB|ke

Calr@@

FROM CREATOR

SPIKE LEE
SHES

GLITCH

NEW EPISODES NEW EPISODES

HRVE §T

9 COlA

Google

digital camera

All

See Digital Cameras

Refurbished DSC W800 20... PowerShot ...
$159.99 $88.99 $116.53

Refurbished Best Buy Walm:

ﬁ--@:a‘

Canon EOS
Rebel T6 EF-S
$399.99
Canon

) W Special offer

Canon
PowerShot ...
$109.00
Amazon.com




ESSENTIAL IN MACHINE LEARNING

Search Engine Ranking B
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Search engine with augmented relevance ranking by community participation
Z Xu, P Berkhin, DE Rose, J Mao, D Ku, Q Lu... - US Patent ..., 2011 - Google Patents

Embodiments of the present invention provide systems and methods for ranking a result set.

The method according to one embodiment comprises selecting an item from the result set,

selecting a user profile from one or more user profiles and selecting one or more items of ...
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The index-based XXL search engine for querying XML data with relevance
ranking . .
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I nverse re i nfo rceme n-l- I earn i n g Adiabatic quantum algorithm for search engine ranking

S Garnerone, P Zanardi, DA Lidar - Physical review letters, 2012 - APS

We propose an adiabatic quantum algorithm for generating a quantum pure state encoding

of the PageRank vector, the most widely used tool in ranking the relative importance of
internet pages. We present extensive numerical simulations which provide evidence that this ...
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INDEPENDENCE OF IRRELEVANT ALTERNATIVES (I1A)

* Fully determines the workhorse Multinomial Logit (MNL) Model

r,y €A N Pr(z from A) _ Pr(z from B) P,c = T ~eA,
x,y € B Pr(y from A)  Pr(y from B) 2 zec =
1A MNL or “Softmax”

* Cannot account for behavioral economics “anomalies” all over the place
= Compromise Effect

= Search Engine Ads (leong-Mishra-Sheffet ’12, Yin et al. ’14)

= Google Web Browsing Choices (Benson-Kumar-Tomkins ’16)

“* Explosion of new online choice domains

Can we test lIA?

Savings

»

Compromise Effect

Size

v



BUT FIRST, WHY HYPOTHESIS TESTING?

Hypothesis tests provide an objective measure of inference (Johari et al,

2015)

Interpretable: rejecting at level a gives precise false positive control

Transparent: can apply personal tolerance of error to a p-value

Starting point for understanding theoretical behavior of statistical problems
e.g. High dimensional models

A clean, precise framework

Recent results in discrete distributions

Property tests require far fewer samples than estimates (Acharya et al, 2015; Valiant and
Valiant, 2017)



TESTING I1A: AN AGE OLD PROBLEM

“an idea of the sample sizes
needed for the two
alternative case” — Luce

“two sets of computationally
convenient specification tests”
— Hausman and McFadden

“a battery of statistical tests
that quantify IlA violations” —
Benson et al.

“...majority of tests based
upon partitioning the choice
set appear to have very
poor size properties...” — Fry
and Harris

“a series of diagnostic tests
for the property are
developed” — McFadden et
al.

& ror

s

“a modified [test].
eliminate the asymptotic

bias... yet avoids

computational problems” —

Small and Hsiao

1985

.. to “tests of the IIA assumption...
based on estimation of a
choice set are unsatisfactory
for applied work” — Cheng

and Long

O 2007



FOLKLORE

“We do not believe tests
of ITA are useful...can al-

“to have anything like a .
most always obtain some

sensitive test... it is clear :
that rather large sample tests that...reject the null
sizes are required from each Wben using the Samei'nodel
subset” — (Luce, 1959) with the same data” —
(Long and Freese, 2014)

“It is likely that part of
the problem arises through

the poor size properties “I can’t recommend these
of the asymptotic proce- tests to anyone” — (Paul
dures.” — (Fry and Har- Allison, 2012)

ris, 1998)



ANNA KARENINA
PRINCIPLE

| 6

Happy families are all alike;
every unhappy family is
unhappy in its own way

Leo Tolstoy, Anna Karenina

A few ways to be “rational”, many ways to be “irrational”
The MNL model has a low dimensional representation

A model of arbitrary choice can behave arbitrarily on any single
subset of alternatives

A combinatorial number of ways to deviate from IIA



APPROACHES TO THE PROBLEM

Classical Asymptotics (Prior work)
“Fixed cells” assumptions: N = oo while d remains fixed
Likelihood Ratio Tests, y? Tests are optimal in the minimax sense
But in practice, N is small

High Dimensional Asymptotics
Both N and d — 00, use relative rate to get problem complexity
Unclear how to preserve comparison structure for this problem

Finite Sample Analysis (Our work)
Many recent developments: (Acharya et al, 2015; Valiant and Valiant, 2017; Wei and Wainwright 2016)

The : Comparison structure does not disappear + guidance on large N + ‘special dimension
dependence’

The bad: lower bound is hard, achievable upper bound is unknown



WHAT IS THE RELEVANT DIMENSION?

Independence

Let X and Y be two discrete random variables with m and n states respectively.

Model a joint distribution: "#i.y; = Pr(X =z;NY =y;)

Ty Tyo Ty Ty, Tyn—1 Tyn
Mg, = PI’(X = 331) Hy : Tasy; = Ta; Ty,
ey = Pr(X = x25) oo o e € D,y Ty € Ay
°
* Although the null model has
only m + n — 2 parameters,
° °

the full space of alternatives
has mn — 1 parameters




WHAT IS THE RELEVANT DIMENSION?

Independence of lrrelevant Alternatives
“* Model a “choice system”:

T;.C; = PI“(C — C@ Nx = ’L)

J

71 Y2 3 Y4 Tn—1 Tn
w(Cy) = Pr(C = Cy) Hy : mic, = w(Cj)——0
Zkecj Tk
w(c2) :Pr(O:OQ) o000 ”bUEAma"YEAn
[ [

Although the null model has
only m + n — 2 parameters,
the full space of alternatives

w(Cp,) = Pr(C = Cy,) has d = )-|C| parameters




PRESENT WORK: DEFINING THE PROBLEM

Choice System: q € Ag, where q(; ¢y = w(C)P, ¢
— defined differently from (Falmagne, 1978), who did not consider w(C')

ITA constraints q only by restricting P

— P — Y
x,C ZyEC Yy

Pc - the space of all possible ¢
PéIA C Pc - the space of all ¢ satisfying the IIA condition.
Crucial assumptions:

— (' are of even size

— every item appears an even number of times over C



TESTING PROBLEM: SEPARATION

Hy: (z,C) ~p" for some unknown p € P}

“* Might be tempted to write:
Hy: (z,C) ~ ¢ for some unknown q € P¢ \ P4

** But tests cannot be analyzed without a notion of separation

** Indifference zone between null and alternative, beyond which false acceptance a serious error

“» Separation makes division of IlA vs non-IlIA sharp

0:0 TV? )
Why TV Mse={q:q€Pe, inf |lg—pllrv > 8.

“* Interpretable: all events are § apart pePLA

\/

** Many other measure of separation

: N 1A
“* Actual testing problem: Hoy : (z,C) ~p" for some unknown p € P;

Hy : (z,C) ~ ¢V for some unknown q € M;_.




SEPARATION

“Inside the yolk, or outside the egg”



COMPARISON INCIDENCE GRAPH

o Go = (X,C, E) - bipartite undirected graph with n
nodes for each item, and with m nodes for each set,
and d edges denoting membership of item x € X in

a set C €.

e (G¢ is Eulerian if all C' € C are of even size, and all
xr € X appears in an even number of sets.

A reoccurring example:

C={{1,2},{1,3},11,4},12,3},{2,4},{3,4}, {1,2,3,4}}
N e e Ve e ~ <
C1 CQ Cg C4 C5 C’6 C'T
n=4,m="7,d =16

The resulting G¢



TESTING PROBLEM: RISK

e Hypothesis test of interest: Given N samples from a ¢ for a known C,
determine if ¢ € Prya or g € My

e ¢:(x1,C1),....(xNn,Cn) — {0,1} - a tester, i.e. ¢ defined as a map from

Dy
data to decision: IIA or not

¢ Rn5(Po.d) = subpep, gent, 30" (¢(Dn) = 1) + 54V (¢(Dn) = 0) - the
“worst case error” of a ¢

e Objective: Lower bound Ry ;(Py) = infy Ry s(Po,¢), the error of the
best possible test.



MAIN RESULT

Theorem. Up to some constant ¢; and problem parameters u(c) and a(o) that depend on

the Eulerian comparison incidence graph Ge, the minimax risk R N,(s(PéUA) 15 lower bounded

as
1 1 ta(o)N26* 3
- _ (exp (Clﬂ(a) Od(O') . 1) < RNﬁ(péIA)-
2 4 d ’
The testing radius then scales as 5N(PéIA) = i and the sample complexity as
p(o)a(o) 1 VN

ITAY Vd
Ns(Pe™) = ety

e (o) and (o) are structural problem parameters dependent on G¢

— universal constants for dense graphs, at most 2n for any graph

— leads to weakened universal bound:

1 1 c1n’ N?2§4 3
§_Z(eXp(1 d _1) < By s(Pe).



CONSEQUENCES (HIGH LEVEL)

e Pessimism: a lower bound for the setting of all subsets:

1 1 cintN25% 3
B s(Pe?) 2 9 Z(eXp ( : on—2 ) N 1)

— best possible test for IIA has worst case error of % until the samples are expo-
nentially large in n

— Anna Karenina principle at work

e Optimism: a lower bound for the setting of all pairs:

)=} oo (325) )

— Packing argument reduces a(o) and u(o) to constants

— Rationality is much easier to test if you restrict the number of irrationalities it is
tested against



CONSEQUENCES (HIGH LEVEL)

e A simple “cycle” among n items: e.g. {i,j},{j, k},{k,1},..{z, i}

1 1
~1 (exp (cln4N254) — 1) °

— Lower bound falls away fast, regardless of n - “dimension free”

1
Ry s(Pe™) > 5

— Researcher priors are valuable in very low data settings






REDUCING THE PROBLEM

e Two stages of reductions

— Reduction 1: ’PgA vs Mg — uniform (pg) vs Mse

— Reduction 2: uniform (pg) vs Msc — po vs M-mixture of perturbations g. = ﬁ Zb b, e

* where:
eb
Qb,e = Po + Pl
+ and b € {—1,1}9 satisfies
Y bec=0 VzeX, Y byo=0 VCeC.
ceC yel

Cox
* Reduction 2 gives a binary hypothesis test
e Perturbations exit PS4 for any e

— IIA allowed to vary uniformly over items and sets — b travel “orthogonally” to that

— Another way to motivate is that the MLE is always uniform to this point

e We use a mixture beacuse it models, in a single distribution, the hardness of both resolving the non-ITA
perturbation and distinguishing it from an ITA point

M c

S >




CONSTRUCTING PERTURBATIONS

“* Are there any such b2 How do we construct them?

Recall: C' are of even size, and every item appears an even number of times over C, and so Gg¢ is
Eulerian

Values in vector b can be thought as directing the edges of G¢

The constraints:

D bpo=0 VzeX, Y b,c=0 VCEeC.
ggc yel

— Can be thought as ensuring indegree of every node equals outdegree

— That is, b are Fulerian Orientations of G¢!

The process:

— Find some simple cycle decomposition o € 2, where 2 is the collection of all decompositions of

Ge and |o| is the number of cycles in decomposition

« Fulerian graphs can always be decomposed into simple cycles

- Since G¢ bipartite, also bounded size cycles

— Construct 29! b’s by orienting each cycle clockwise and counter clockwise and toggling

Our example from before



AN ILLUSTRATION:

1 c,
2 C,
3 C
; 1
———————— >
4
2 c,
3 C,
4 Cs

A cycle decomposition o of G¢

Orienting the decomposition



AN ILLUSTRATION:

1 c,
2 C,
3 C
; 1
———————— >
4
2 c,
3 C,
4 Cs

A cycle decomposition o of G¢

A
DG

Orienting the decomposition




PUTTING IT ALL TOGETHER

e A variation on LeCam’s Method for binary hypothesis tests
— Mild variations on a traditional chain of inequalities

e Two main quantities: u(o) (average cycle length) and (o) (average squared cycle
length

e Main intuition: smaller the cycle decomposition, the better the result

— Can always use worst case n result if all else fails



EXPERIMENTAL INTUITIONS

The bound, as a function of the cycle decomposition, is revealing for
experimental design

Tradeoff: want to broaden scope of test, but more sets means the minimum
error of any tester goes up; either due to bigger d or due to changes in
a(o)and (o) above a threshold

Goal: maximize coverage of choice sets given a fixed number of samples
and a risk threshold

With this in mind,



REVISITING THE CONSEQUENCES

e All subsets:

1 1( (cln4N254) 1)%

———|e — :

2 a\TP\Tan2

— Any true test of ITA must encompass all subsets, as it is a property defined of
the complete choice system

RN,(S (PHA )

— Lower bound is constructed by considering all even sized subsets

x a simple calculation reveals every item appears an even number of times

— Global “n” lower bound suffices since d exponential in n
. AN/ On—2
— Sample complexity: Ns(PH*) =< Y5~
n—2

— Testing Radius: dy(PHH) =< %



REVISITING THE CONSEQUENCES

o All pairs:

RN 5 (PIIA)

B i(exp (;(15—61)) -1)"

— (¢ is Eulerian only when n is odd

l\Dlr—\

— An old result by Kirkman: for n = 6x + 1 and n = 6x + 3, any complete graph
can be decomposed into triangles
x Corollary is that G¢ can be decomposed into 6-cycles

* o) and p(o) are both constants

— Feder et al show a similar result for n = 6z 4 5: triangles + one 4-cycle

— Sample complexity: N(;(’PHA) = <; Testing Radius: oy (PHA) \/L%

— In many matchups, pairs are the only relevant sets - tests scale linearly with
items!



A SPECIAL CASE

e A simple “cycle” among n items: e.g. {i,5},{J,k},{k,1},..{z, i}

1 1 3
Ry 5(PH™) > 571 (exp (cln4N254) - 1) °
— Upper bound on «(7) is sharp, since only cycle decomposition of G¢ is G itself
— Lower bound falls away fast, regardless of n - “dimension free”

x feature reminiscent of property testing for cyclicality
e In settings of highly limited samples, bound suggests choosing a simple cycle C

— In choice systems rife with ITA violations, most cycles would contain some

— The benefit of picking a cycle, over, say, all pairs is a low rate of test error, since
pair tests will necessarily have high test error

x Trades off a result guarenteed to be errant for a more conservative result
likely to be veritable



MODEL BASED TESTS

Another notion of a prior stems from a valid model for departures
from IIA.

These “model based” tests are scant

— the models themselves are often uninterpreble, inferentially in-
tractable, or both

Recent work proposes the CDM (Seshadri et al.)

— Capable of modelling departures from ITA
— Exhibiting ease of optimization (convexity), tractable finite sam-

ple uniform convergence guarantees, and parametric efficiency

Natural limitation: that departures in the blindspots of the model
will remain untested.



CONCLUSIONS

First formal results on the complexity of testing IlIA, resolving an decades-old
question

We are left to wonder: exactly when has IIA been rejected with veracity?

Lays the groundwork for a rigorous rethinking of the IIA testing problem

Relationships between the comparison structure and testing complexity open
several new directions for experimental design

Exciting Future Direction: An optimal procedure

Simultaneously brings both:
Machine Learning rigor to Econometrics models (finite sample minimax rates)

Econometrics models (IIA composite nulls) into Machine Learning research






PRESENT WORK: DEFINING THE PROBLEM

X - universe set of n items

C - collection of comparison sets, i.e. unique subsets of X; m = |C|; d = ) . |C].

P.c € Aj¢|, where P, ¢ is probability that item z is chosen from C

w € A,,, where w(C') > 0 is the probability of seeing choice set C € C

q € A4, where g, c) = w(C) P, c, is the choice system (defined differently from Falmagne)

ITA constraints g only by restricting P so that P, ¢ = 5~ = for some v € A,; w remains
yeC 'Y

arbitrary.

Pe - the space of all possible g; PéIA C Pe - the space of all ¢ satisfying the ITA condition.

Crucial assumption: C are of even size, and every item appears an even number of times over C



MAIN RESULT: REFRAMING FOR LEVEL-c TESTS

e Define P o = {¢: sup,ep, " (¢(Dn) = 1) < a} as the set of all level o tests.

e Since the type I error is always controlled, the risk of interest is now only the type II
error. Thus, the minimax risk is:

Rysa(Pe™)= inf  sup ¢"(¢(Dy)=0).
Qbe(bN,a Q’EMS,C

e The minimax risk Ry 5.4(Po) is lower bounded as

1 (exp (clu(a)4a(J)N254 B 1)%

- = <
1 — 5 ¥ < Rns.a(Po),

1

o When Su(o) a(e)N7e"

is small, the power is just «

— test is simply a coin with probability « in the worst case



0

BOUNDING SEPARATION

We have perturbations in terms of €, but for what € does ¢y € M2

Easy to show HQb,e — pol|Tv = 5

— But, this is not the closest point in P4

€lo] €

2d 2u(o)

Can show that infpepém qu’E — pHTV >

— where u(o) is the average cycle length, which is at most 2n

Thus, setting € = 2u(o) guarentees membership in M ¢ for a o, and € = 4nu(o)
guarentees membership for any o.

Proof follows partitioning the indices into cycles, and showing that each cycle has a
lower bound on its contribution to the TV distance



LECAM'S METHOD: A LOWER BOUND
Hy : (x,C) ~ Py = po™

“* We have reduced the problem into a binary hypothesis test:
Hl : (QC‘,C) ~ Pl = (jév

e Using v(IPy,P1) to denote the average of type I and type II errors of the best possible

test, we have,

[Pg — Py||Tv

DO | =
DO |

’.}/(POa Pl) 2

e Consequently,

|Po — P1||Tv.

DO | =

Ry s(PE™) > 4(Po,Py) >

DO | =

e We have a lower bound!



BOUNDING TV

“* All that remains is bounding the TV in a useful manner
e Consider that

P = gll7v < 1X X*(p,q)
e Then, we have,
Lemma. 3,4
1 Ne? NZ2et
x*(P1,Py) + ﬁ Z exp( 7 bTb’) SGXP( 2d 04(0)),
b,b'eB¢

where Be 1s a set of arbitrary perturbatz’ons b of size |Be| = M satisfying b € {—1,1}4
> cecbec = 0,Yz, and Y o by.c =0,VC.

Csz
e Important is a(o) = %Zaieg ;]

— gerves as a normalized measure of the “energy” of the cycle decomposition o



