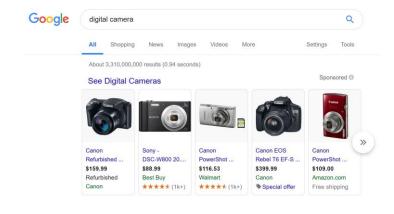


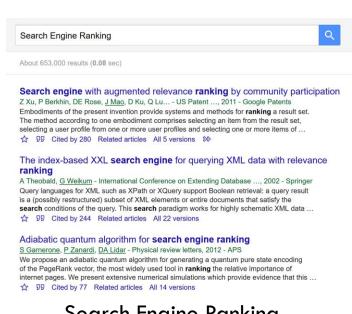
DISCRETE CHOICE

- lacktriangle Data of the form (x,C) where "alternative x is chosen from the set C" and C is a subset of \mathcal{X} , the universe of n alternatives
- Discrete choice settings are ubiquitous



ESSENTIAL IN MACHINE LEARNING

Inverse reinforcement learning



Search Engine Ranking

Virtual Assistants

Recommender Systems

INDEPENDENCE OF IRRELEVANT ALTERNATIVES (IIA)

Fully determines the workhorse Multinomial Logit (MNL) Model

$$\begin{vmatrix} x, y \in A \\ x, y \in B \end{vmatrix} \Rightarrow \frac{\Pr(x \text{ from } A)}{\Pr(y \text{ from } A)} = \frac{\Pr(x \text{ from } B)}{\Pr(y \text{ from } B)} \iff P_{x,C} = \frac{\gamma_x}{\sum_{z \in C} \gamma_z}, \gamma \in \Delta_n$$

IIA

MNL or "Softmax"

- Cannot account for behavioral economics "anomalies" all over the place
 - Compromise Effect
- Search Engine Ads (leong-Mishra-Sheffet '12, Yin et al. '14)
- Google Web Browsing Choices (Benson-Kumar-Tomkins '16)
- Explosion of new online choice domains

Savings

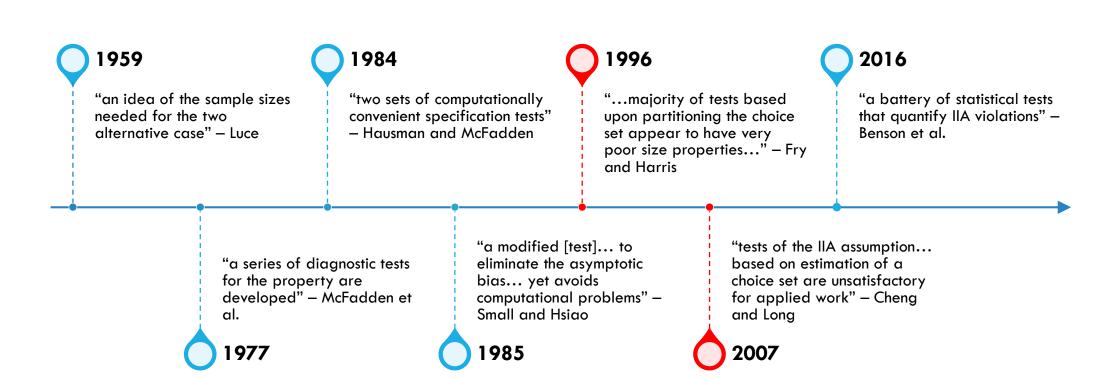
Compromise Effect

Can we test IIA?

BUT FIRST, WHY HYPOTHESIS TESTING?

- Hypothesis tests provide an objective measure of inference (Johari et al, 2015)
 - Interpretable: rejecting at level lpha gives precise false positive control
 - Transparent: can apply personal tolerance of error to a p-value
- Starting point for understanding theoretical behavior of statistical problems
 - e.g. High dimensional models
 - A clean, precise framework
- Recent results in discrete distributions
 - Property tests require far fewer samples than estimates (Acharya et al, 2015; Valiant and Valiant, 2017)

TESTING IIA: AN AGE OLD PROBLEM



FOLKLORE

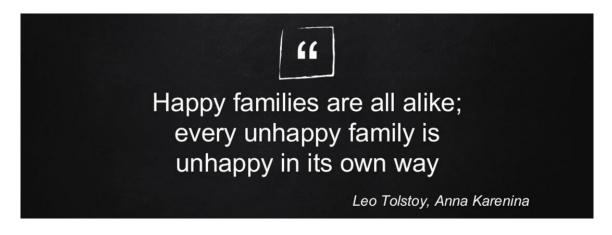
"to have anything like a sensitive test... it is clear that rather large sample sizes are required from each subset" — (Luce, 1959)

"We do not believe tests of IIA are useful...can almost always obtain some tests that...reject the null when using the same model with the same data" — (Long and Freese, 2014)

"It is likely that part of the problem arises through the poor size properties of the asymptotic procedures." — (Fry and Harris, 1998)

"I can't recommend these tests to anyone" — (Paul Allison, 2012)

ANNA KARENINA PRINCIPLE



A few ways to be "rational", many ways to be "irrational"

The MNL model has a low dimensional representation

A model of arbitrary choice can behave arbitrarily on any single subset of alternatives

A combinatorial number of ways to deviate from IIA

APPROACHES TO THE PROBLEM

- Classical Asymptotics (Prior work)
 - "Fixed cells" assumptions: $N o \infty$ while d remains fixed
 - Likelihood Ratio Tests, χ^2 Tests are optimal in the minimax sense
 - But in practice, N is small
- High Dimensional Asymptotics
 - Both N and $d \to \infty$, use relative rate to get problem complexity
 - Unclear how to preserve comparison structure for this problem
- Finite Sample Analysis (Our work)
 - Many recent developments: (Acharya et al, 2015; Valiant and Valiant, 2017; Wei and Wainwright 2016)
 - The good: Comparison structure does not disappear + guidance on large N + 'special dimension dependence'
 - The bad: lower bound is hard, achievable upper bound is unknown

WHAT IS THE RELEVANT DIMENSION?

Independence

- \diamond Let X and Y be two discrete random variables with m and n states respectively.
- \bigstar Model a joint distribution: $\pi_{x_i,y_j}=\Pr(X=x_i\cap Y=y_i)$

$$H_0: \pi_{x_i, y_j} = \pi_{x_i} \pi_{y_j}$$

$$\pi_x \in \Delta_m, \pi_y \in \Delta_n$$

Although the null model has only m+n-2 parameters, the full space of alternatives has mn-1 parameters

WHAT IS THE RELEVANT DIMENSION?

Independence of Irrelevant Alternatives

Model a "choice system":

$$\pi_{i,C_j} = \Pr(C = C_i \cap x = i)$$

$$w(C_1) = \Pr(C = C_1)$$

$$w(C_2) = \Pr(C = C_2)$$

$$w(C_m) = \Pr(C = C_m)$$

$$y_1 \quad y_2 \quad y_3 \quad y_4 \quad y_{n-1} \quad y_n \quad$$

$$H_0: \pi_{i,C_j} = w(C_j) \frac{\gamma_i}{\sum_{k \in C_j} \gamma_k}$$
$$w \in \Delta_m, \gamma \in \Delta_n$$

Although the null model has only m+n-2 parameters, the full space of alternatives has $d = \sum_{C} |C|$ parameters

PRESENT WORK: DEFINING THE PROBLEM

- Choice System: $q \in \Delta_d$, where $q_{(x,C)} = w(C)P_{x,C}$
 - defined differently from (Falmagne, 1978), who did not consider w(C)
- IIA constraints q only by restricting P

$$-P_{x,C} = \frac{\gamma_x}{\sum_{y \in C} \gamma_y}$$

- $\mathcal{P}_{\mathcal{C}}$ the space of all possible q
- $\mathcal{P}_{\mathcal{C}}^{\text{IIA}} \subset \mathcal{P}_{\mathcal{C}}$ the space of all q satisfying the IIA condition.
- Crucial assumptions:
 - -C are of even size
 - every item appears an even number of times over $\mathcal C$

TESTING PROBLEM: SEPARATION

* Might be tempted to write:
$$\begin{cases} H_0: (x,C) \sim p^N & \text{for some unknown } p \in \mathcal{P}_{\mathcal{C}}^{\text{IIA}} \\ H_1: (x,C) \sim q^N & \text{for some unknown } q \in \mathcal{P}_{\mathcal{C}} \setminus \mathcal{P}_{\mathcal{C}}^{\text{IIA}} \end{cases}$$

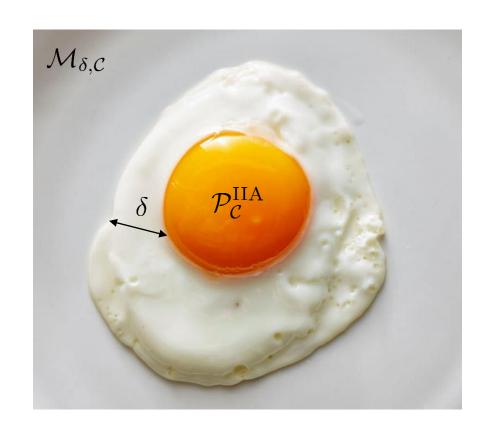
- But tests cannot be analyzed without a notion of **separation**
 - Indifference zone between null and alternative, beyond which false acceptance a serious error
 - Separation makes division of IIA vs non-IIA sharp
- ♦ Why TV?

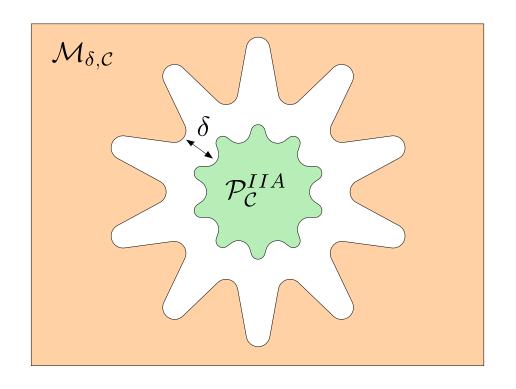
$$\mathcal{M}_{\delta,\mathcal{C}} = \{q : q \in \mathcal{P}_{\mathcal{C}}, \inf_{p \in \mathcal{P}_{\mathcal{C}}^{\text{IIA}}} ||q - p||_{\text{TV}} \ge \delta\}.$$

- Interpretable: all events are δ apart
- Many other measure of separation
- Actual testing problem:

$$\begin{cases} H_0: (x,C) \sim p^N & \text{for some unknown } p \in \mathcal{P}_{\mathcal{C}}^{\text{IIA}} \\ H_1: (x,C) \sim q^N & \text{for some unknown } q \in \mathcal{M}_{\delta,\mathcal{C}}. \end{cases}$$

SEPARATION





"Inside the yolk, or outside the egg"

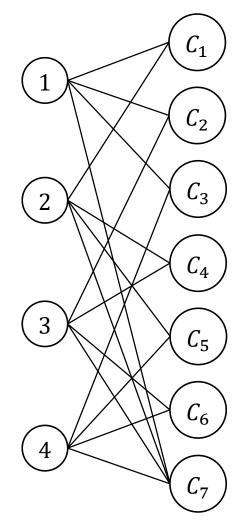
COMPARISON INCIDENCE GRAPH

- $G_{\mathcal{C}} = (\mathcal{X}, \mathcal{C}, E)$ bipartite undirected graph with n nodes for each item, and with m nodes for each set, and d edges denoting membership of item $x \in \mathcal{X}$ in a set $C \in \mathcal{C}$.
- $G_{\mathcal{C}}$ is Eulerian if all $C \in \mathcal{C}$ are of even size, and all $x \in \mathcal{X}$ appears in an even number of sets.

A reoccurring example:

$$C = \{\underbrace{\{1,2\}}_{C_1}, \underbrace{\{1,3\}}_{C_2}, \underbrace{\{1,4\}}_{C_3}, \underbrace{\{2,3\}}_{C_4}, \underbrace{\{2,4\}}_{C_5}, \underbrace{\{3,4\}}_{C_6}, \underbrace{\{1,2,3,4\}}_{C_7}\}$$

$$n = 4; m = 7; d = 16$$



The resulting $G_{\mathcal{C}}$

TESTING PROBLEM: RISK

- Hypothesis test of interest: Given N samples from a q for a known C, determine if $q \in \mathcal{P}_{IIA}$ or $q \in \mathcal{M}_{\delta}$
- $\phi: \underbrace{(x_1,C_1),...,(x_N,C_N)}_{\mathcal{D}_N} \mapsto \{0,1\}$ a tester, i.e. ϕ defined as a map from data to decision: IIA or not
- $R_{N,\delta}(\mathcal{P}_0,\phi) = \sup_{p \in \mathcal{P}_0, q \in \mathcal{M}_\delta} \frac{1}{2} p^N(\phi(\mathcal{D}_N) = 1) + \frac{1}{2} q^N(\phi(\mathcal{D}_N) = 0)$ the "worst case error" of a ϕ
- Objective: Lower bound $R_{N,\delta}(\mathcal{P}_0) = \inf_{\phi} R_{N,\delta}(\mathcal{P}_0,\phi)$, the error of the best possible test.

MAIN RESULT

Theorem. Up to some constant c_1 and problem parameters $\mu(\sigma)$ and $\alpha(\sigma)$ that depend on the Eulerian comparison incidence graph $G_{\mathcal{C}}$, the minimax risk $R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{IIA})$ is lower bounded as

$$\frac{1}{2} - \frac{1}{4} \left(\exp\left(\frac{c_1 \mu(\sigma)^4 \alpha(\sigma) N^2 \delta^4}{d} - 1\right)^{\frac{1}{2}} \le R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{IIA}).$$

The testing radius then scales as $\delta_N(\mathcal{P}_{\mathcal{C}}^{IIA}) \simeq \frac{d^{\frac{1}{4}}}{\mu(\sigma)\alpha(\sigma)^{\frac{1}{4}}\sqrt{N}}$, and the sample complexity as

$$N_{\delta}(\mathcal{P}_{\mathcal{C}}^{IIA}) \asymp \frac{\sqrt{d}}{\sqrt{\mu(\sigma)^4 \alpha(\sigma)} \delta^2}.$$

- $\mu(\sigma)$ and $\alpha(\sigma)$ are structural problem parameters dependent on $G_{\mathcal{C}}$
 - universal constants for dense graphs, at most 2n for any graph
 - leads to weakened universal bound:

$$\frac{1}{2} - \frac{1}{4} \left(\exp\left(\frac{c_1 n^5 N^2 \delta^4}{d} - 1\right)^{\frac{1}{2}} \le R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{\text{IIA}}).$$

CONSEQUENCES (HIGH LEVEL)

• Pessimism: a lower bound for the setting of all subsets:

$$R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{\text{IIA}}) \ge \frac{1}{2} - \frac{1}{4} \left(\exp\left(\frac{c_1 n^4 N^2 \delta^4}{2^{n-2}}\right) - 1 \right)^{\frac{1}{2}}.$$

- best possible test for IIA has worst case error of $\frac{1}{2}$ until the samples are exponentially large in n
- Anna Karenina principle at work
- Optimism: a lower bound for the setting of all pairs:

$$R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{\mathrm{IIA}}) \ge \frac{1}{2} - \frac{1}{4} \left(\exp\left(\frac{c_1 N^2 \delta^4}{n(n-1)}\right) - 1 \right)^{\frac{1}{2}}.$$

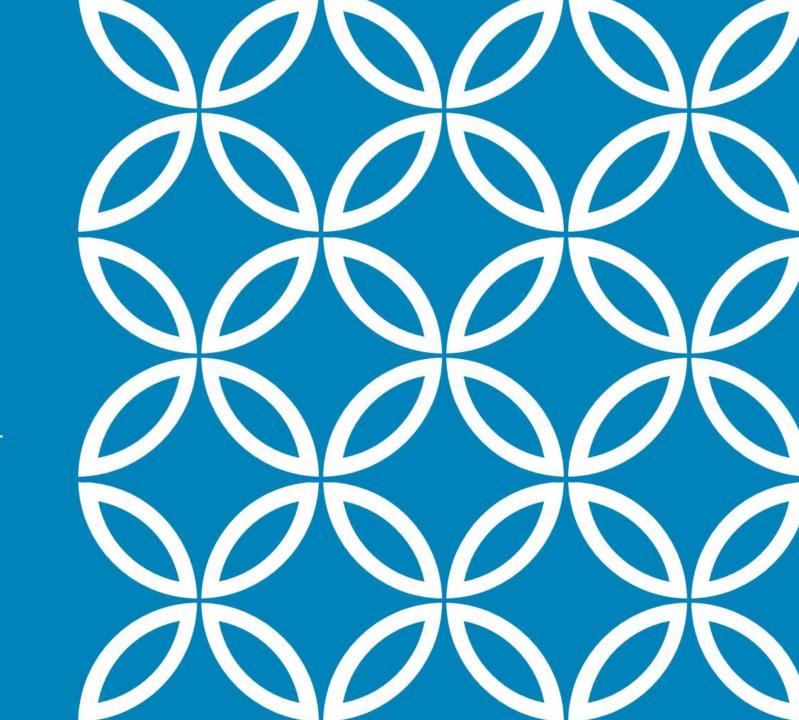
- Packing argument reduces $\alpha(\sigma)$ and $\mu(\sigma)$ to constants
- Rationality is much easier to test if you restrict the number of irrationalities it is tested against

CONSEQUENCES (HIGH LEVEL)

• A simple "cycle" among n items: e.g. $\{i, j\}, \{j, k\}, \{k, l\}, ... \{z, i\}$

$$R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{\text{IIA}}) \ge \frac{1}{2} - \frac{1}{4} \left(\exp\left(c_1 n^4 N^2 \delta^4\right) - 1 \right)^{\frac{1}{2}}.$$

- Lower bound falls away fast, regardless of n "dimension free"
- Researcher priors are valuable in very low data settings



THE DETAILS

REDUCING THE PROBLEM

- Two stages of reductions
 - Reduction 1: $\mathcal{P}_{\mathcal{C}}^{\text{IIA}}$ vs $\mathcal{M}_{\delta,\mathcal{C}}$ uniform (p_0) vs $\mathcal{M}_{\delta,\mathcal{C}}$
 - Reduction 2: uniform (p_0) vs $\mathcal{M}_{\delta,\mathcal{C}} \to p_0$ vs M-mixture of perturbations $\bar{q}_{\epsilon} = \frac{1}{M} \sum_b q_{b,\epsilon}$
 - * where:

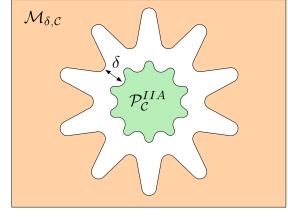
$$q_{b,\epsilon} = p_0 + \frac{\epsilon b}{d}$$

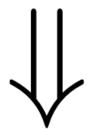
* and $b \in \{-1,1\}^d$ satisfies

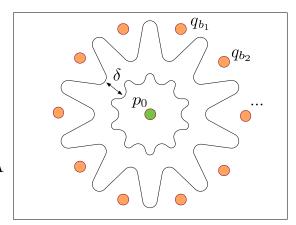
$$\sum_{\substack{C \in \mathcal{C} \\ C \ni x}} b_{x,C} = 0 \quad \forall x \in \mathcal{X},$$

$$\sum_{y \in C} b_{y,C} = 0 \ \forall C \in \mathcal{C}.$$

- * Reduction 2 gives a binary hypothesis test
- Perturbations exit $\mathcal{P}_{\mathcal{C}}^{\text{IIA}}$ for any ϵ
 - IIA allowed to vary uniformly over items and sets $\rightarrow b$ travel "orthogonally" to that
 - Another way to motivate is that the MLE is always uniform to this point
- We use a mixture beacuse it models, in a single distribution, the hardness of both resolving the non-IIA perturbation and distinguishing it from an IIA point







CONSTRUCTING PERTURBATIONS

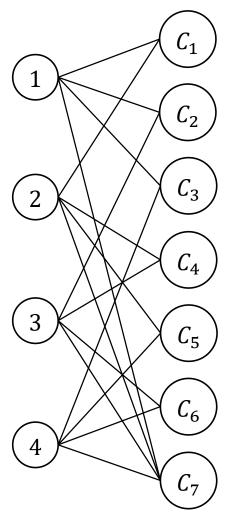
\diamond Are there any such b? How do we construct them?

- Recall: C are of even size, and every item appears an even number of times over C, and so G_C is Eulerian
- Values in vector b can be thought as directing the edges of $G_{\mathcal{C}}$
- The constraints:

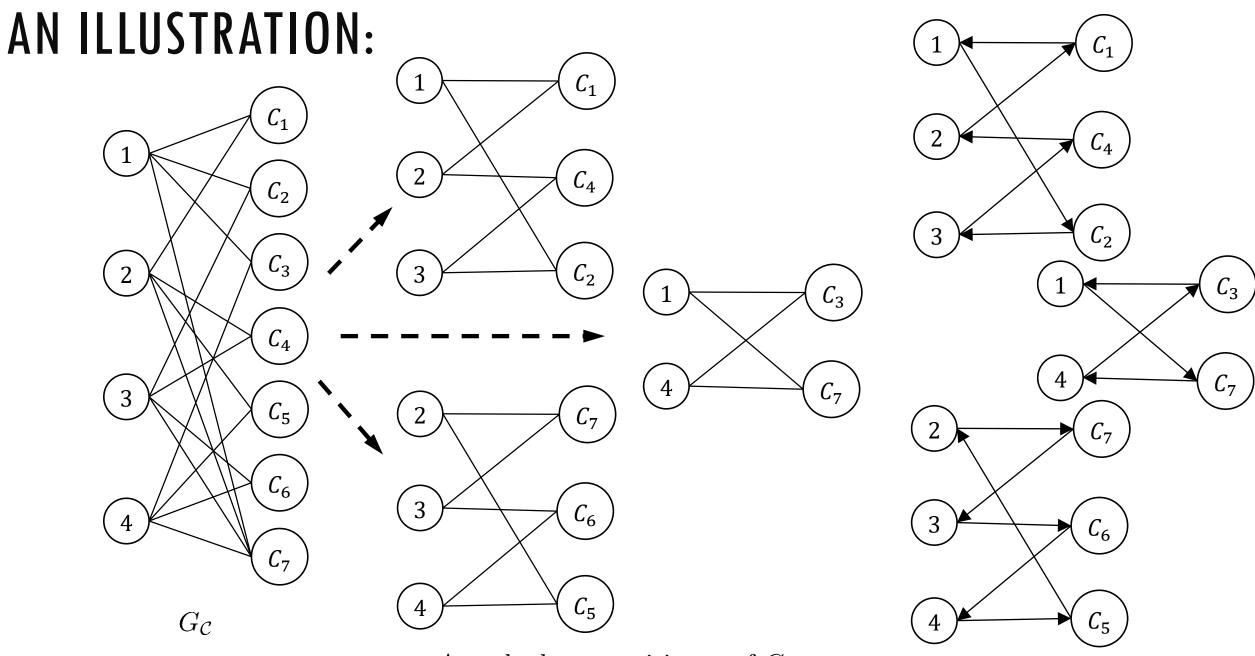
$$\sum_{\substack{C \in \mathcal{C} \\ C \ni x}} b_{x,C} = 0 \quad \forall x \in \mathcal{X},$$

$$\sum_{y \in C} b_{y,C} = 0 \ \forall C \in \mathcal{C}.$$

- Can be thought as ensuring *indegree* of every node equals *outdegree*
- That is, b are **Eulerian Orientations** of $G_{\mathcal{C}}!$
- The process:
 - Find some simple cycle decomposition $\sigma \in \Sigma$, where Σ is the collection of all decompositions of $G_{\mathcal{C}}$ and $|\sigma|$ is the number of cycles in decomposition
 - * Eulerian graphs can always be decomposed into simple cycles
 - · Since $G_{\mathcal{C}}$ bipartite, also bounded size cycles
 - Construct $2^{|\sigma|}$ b's by orienting each cycle clockwise and counter clockwise and toggling

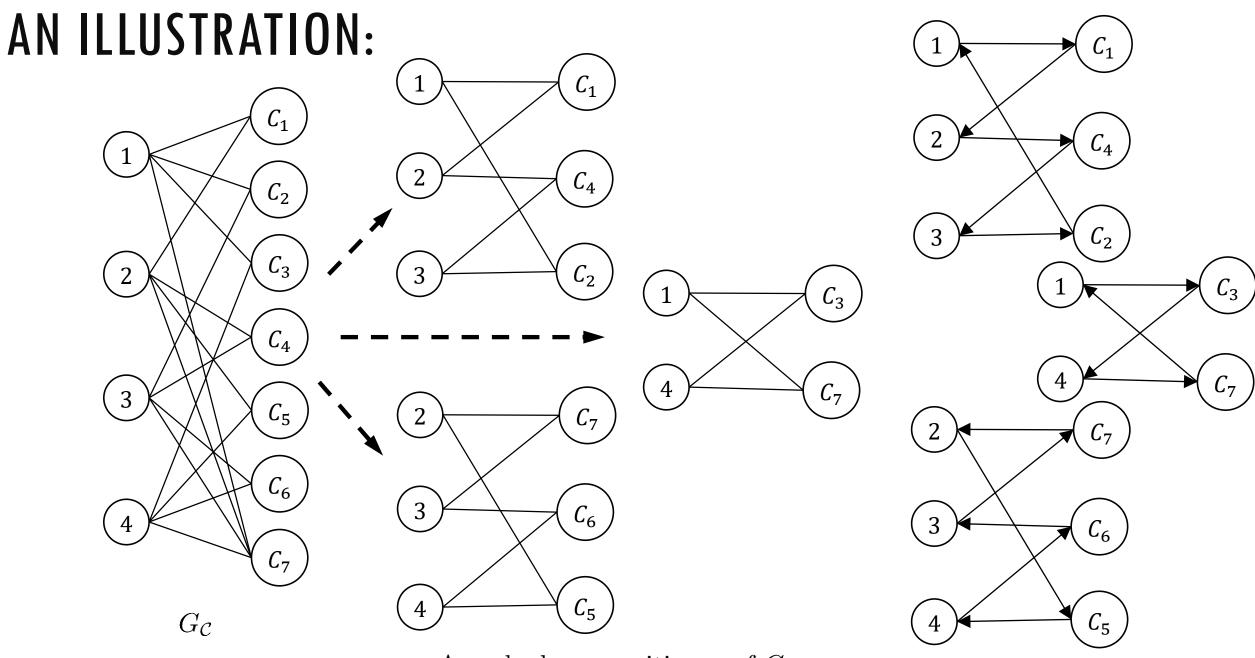


Our example from before



A cycle decomposition σ of $G_{\mathcal{C}}$

Orienting the decomposition



A cycle decomposition σ of $G_{\mathcal{C}}$

Orienting the decomposition

PUTTING IT ALL TOGETHER

- A variation on LeCam's Method for binary hypothesis tests
 - Mild variations on a traditional chain of inequalities
- Two main quantities: $\mu(\sigma)$ (average cycle length) and $\alpha(\sigma)$ (average squared cycle length
- Main intuition: smaller the cycle decomposition, the better the result
 - Can always use worst case n result if all else fails

EXPERIMENTAL INTUITIONS

- The bound, as a function of the cycle decomposition, is revealing for experimental design
- * Tradeoff: want to broaden scope of test, but more sets means the minimum error of any tester goes up; either due to bigger d or due to changes in $\alpha(\sigma)$ and $\mu(\sigma)$ above a threshold
- **Goal:** maximize coverage of choice sets given a fixed number of samples and a risk threshold
- With this in mind,

REVISITING THE CONSEQUENCES

• All subsets:

$$R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{\text{IIA}}) \ge \frac{1}{2} - \frac{1}{4} \left(\exp\left(\frac{c_1 n^4 N^2 \delta^4}{2^{n-2}}\right) - 1 \right)^{\frac{1}{2}}.$$

- Any true test of IIA must encompass all subsets, as it is a property defined of the complete choice system
- Lower bound is constructed by considering all even sized subsets
 - * a simple calculation reveals every item appears an even number of times
- Global "n" lower bound suffices since d exponential in n
- Sample complexity: $N_{\delta}(\mathcal{P}_{\mathcal{C}}^{\text{IIA}}) \simeq \frac{\sqrt{2^{n-2}}}{n^2 \delta^2}$.
- Testing Radius: $\delta_N(\mathcal{P}_{\mathcal{C}}^{\text{IIA}}) \asymp \frac{2^{\frac{n-2}{4}}}{n\sqrt{N}}$

REVISITING THE CONSEQUENCES

• All pairs:

$$R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{\text{IIA}}) \ge \frac{1}{2} - \frac{1}{4} \left(\exp\left(\frac{c_1 N^2 \delta^4}{n(n-1)}\right) - 1 \right)^{\frac{1}{2}}.$$

- $-G_{\mathcal{C}}$ is Eulerian only when n is odd
- An old result by Kirkman: for n = 6x + 1 and n = 6x + 3, any complete graph can be decomposed into triangles
 - * Corollary is that $G_{\mathcal{C}}$ can be decomposed into 6-cycles
 - * $\alpha(\sigma)$ and $\mu(\sigma)$ are both constants
- Feder et al show a similar result for n = 6x + 5: triangles + one 4-cycle
- Sample complexity: $N_{\delta}(\mathcal{P}_{\mathcal{C}}^{\mathrm{IIA}}) \simeq \frac{n}{\delta^2}$; Testing Radius: $\delta_N(\mathcal{P}_{\mathcal{C}}^{\mathrm{IIA}}) \simeq \frac{\sqrt{n}}{\sqrt{N}}$
- In many matchups, pairs are the only relevant sets tests scale linearly with items!

A SPECIAL CASE

• A simple "cycle" among n items: e.g. $\{i,j\},\{j,k\},\{k,l\},...\{z,i\}$

$$R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{\text{IIA}}) \ge \frac{1}{2} - \frac{1}{4} \left(\exp\left(c_1 n^4 N^2 \delta^4\right) - 1\right)^{\frac{1}{2}}.$$

- Upper bound on $\alpha(\gamma)$ is sharp, since only cycle decomposition of $G_{\mathcal{C}}$ is $G_{\mathcal{C}}$ itself
- Lower bound falls away fast, regardless of n "dimension free"
 - * feature reminiscent of property testing for cyclicality
- \bullet In settings of highly limited samples, bound suggests choosing a simple cycle C
 - In choice systems rife with IIA violations, most cycles would contain some
 - The benefit of picking a cycle, over, say, all pairs is a low rate of test error, since pair tests will necessarily have high test error
 - * Trades off a result guarenteed to be errant for a more conservative result likely to be veritable

MODEL BASED TESTS

- Another notion of a prior stems from a valid model for departures from IIA.
- These "model based" tests are scant
 - the models themselves are often uninterpreble, inferentially intractable, or both
- Recent work proposes the CDM (Seshadri et al.)
 - Capable of modelling departures from IIA
 - Exhibiting ease of optimization (convexity), tractable finite sample uniform convergence guarantees, and parametric efficiency
- Natural limitation: that departures in the blindspots of the model will remain untested.

CONCLUSIONS

- First formal results on the complexity of testing IIA, resolving an decades-old question
- * We are left to wonder: exactly when has IIA been rejected with veracity?
 - Lays the groundwork for a rigorous rethinking of the IIA testing problem
- Relationships between the comparison structure and testing complexity open several new directions for experimental design
 - Exciting Future Direction: An optimal procedure
- Simultaneously brings both:
 - Machine Learning rigor to Econometrics models (finite sample minimax rates)
 - Econometrics models (IIA composite nulls) into Machine Learning research

EXTRA SLIDES

PRESENT WORK: DEFINING THE PROBLEM

- \mathcal{X} universe set of n items
- \mathcal{C} collection of comparison sets, i.e. unique subsets of \mathcal{X} ; $m = |\mathcal{C}|$; $d = \sum_{C \in \mathcal{C}} |C|$.
- $P_{\cdot,C} \in \Delta_{|C|}$, where $P_{x,C}$ is probability that item x is chosen from C
- $w \in \Delta_m$, where w(C) > 0 is the probability of seeing choice set $C \in \mathcal{C}$
- $q \in \Delta_d$, where $q_{(x,C)} = w(C)P_{x,C}$, is the choice system (defined differently from Falmagne)
- IIA constraints q only by restricting P so that $P_{x,C} = \frac{\gamma_x}{\sum_{y \in C} \gamma_y}$ for some $\gamma \in \Delta_n$; w remains arbitrary.
- $\mathcal{P}_{\mathcal{C}}$ the space of all possible q; $\mathcal{P}_{\mathcal{C}}^{\text{IIA}} \subset \mathcal{P}_{\mathcal{C}}$ the space of all q satisfying the IIA condition.
- \bullet Crucial assumption: C are of even size, and every item appears an even number of times over $\mathcal C$

MAIN RESULT: REFRAMING FOR LEVEL-lpha TESTS

- Define $\Phi_{N,\alpha} = \{\phi : \sup_{p \in \mathcal{P}_0} p^N(\phi(\mathcal{D}_N) = 1) \leq \alpha\}$ as the set of all level α tests.
- Since the type I error is always controlled, the risk of interest is now only the type II error. Thus, the minimax risk is:

$$R_{N,\delta,\alpha}(\mathcal{P}_{\mathcal{C}}^{\mathrm{IIA}}) = \inf_{\phi \in \Phi_{N,\alpha}} \sup_{q \in \mathcal{M}_{\delta,\mathcal{C}}} q^{N}(\phi(\mathcal{D}_{N}) = 0).$$

• The minimax risk $R_{N,\delta,\alpha}(\mathcal{P}_0)$ is lower bounded as

$$1 - \alpha - \frac{1}{2} \left(\exp\left(\frac{c_1 \mu(\sigma)^4 \alpha(\sigma) N^2 \delta^4}{d} - 1\right)^{\frac{1}{2}} \le R_{N,\delta,\alpha}(\mathcal{P}_0),\right)$$

- When $\frac{c_1\mu(\sigma)^4\alpha(\sigma)N^2\delta^4}{d}$ is small, the power is just α
 - test is simply a coin with probability α in the worst case

BOUNDING SEPARATION

- lacktriangle We have perturbations in terms of ϵ , but for what ϵ does $q_{b,\epsilon} \in \mathcal{M}_{\delta,\mathcal{C}}$?
- Easy to show $||q_{b,\epsilon} p_0||_{\text{TV}} = \frac{\epsilon}{2}$
 - But, this is not the closest point in $\mathcal{P}_{\mathcal{C}}^{\text{IIA}}$
- Can show that $\inf_{p \in \mathcal{P}_{\mathcal{C}}^{\text{IIA}}} ||q_{b,\epsilon} p||_{\text{TV}} \ge \frac{\epsilon |\sigma|}{2d} = \frac{\epsilon}{2\mu(\sigma)}$
 - where $\mu(\sigma)$ is the average cycle length, which is at most 2n
- Thus, setting $\epsilon = 2\mu(\sigma)$ guarentees membership in $\mathcal{M}_{\delta,\mathcal{C}}$ for a σ , and $\epsilon = 4n\mu(\sigma)$ guarentees membership for any σ .
- Proof follows partitioning the indices into cycles, and showing that each cycle has a lower bound on its contribution to the TV distance

LECAM'S METHOD: A LOWER BOUND

- * We have reduced the problem into a binary hypothesis test: $\begin{cases} H_0: (x,C) \sim \mathbb{P}_0 = {p_0}^N \\ H_1: (x,C) \sim \mathbb{P}_1 = \bar{q}_\epsilon^N. \end{cases}$
- Using $\gamma(\mathbb{P}_0, \mathbb{P}_1)$ to denote the average of type I and type II errors of the best possible test, we have,

$$\gamma(\mathbb{P}_0, \mathbb{P}_1) \ge \frac{1}{2} - \frac{1}{2} ||\mathbb{P}_0 - \mathbb{P}_1||_{TV}$$

Consequently,

$$R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{\mathrm{IIA}}) \ge \gamma(\mathbb{P}_0, \mathbb{P}_1) \ge \frac{1}{2} - \frac{1}{2}||\mathbb{P}_0 - \mathbb{P}_1||_{\mathrm{TV}}.$$

• We have a lower bound!

BOUNDING TV

- All that remains is bounding the TV in a useful manner
 - Consider that

$$||p-q||_{TV}^2 \le \frac{1}{4}\chi^2(p,q)$$

• Then, we have,

Lemma. 3,4

$$\chi^2(\mathbb{P}_1, \mathbb{P}_0) + 1 \le \frac{1}{M^2} \sum_{b, b' \in \mathcal{B}_{\mathcal{C}}} \exp\left(\frac{N\epsilon^2}{d} b^T b'\right) \le \exp\left(\frac{N^2 \epsilon^4}{2d} \alpha(\sigma)\right),$$

where $\mathcal{B}_{\mathcal{C}}$ is a set of arbitrary perturbations b of size $|\mathcal{B}_{\mathcal{C}}| = M$ satisfying $b \in \{-1, 1\}^d$, $\sum_{\substack{C \in \mathcal{C} \\ C \ni x}} b_{x,C} = 0, \forall x, \text{ and } \sum_{y \in C} b_{y,C} = 0, \forall C.$

- Important is $\alpha(\sigma) = \frac{1}{d} \sum_{\sigma_i \in \sigma} |\sigma_i|^2$
 - serves as a normalized measure of the "energy" of the cycle decomposition σ