
A Submodular Framework for Graph Comparison

Pinar Yanardag
Department of Computer Science

Purdue University
West Lafayette, IN, 47906, USA

ypinar@purdue.edu

S.V.N. Vishwanathan
Department of Computer Science

University of California
Santa Cruz, CA, 95064, USA

vishy@ucsc.edu

Abstract

In this paper, we present a submodular framework for graph comparison. Our
framework is inspired by latest state-of-the-art submodular document summariza-
tion models and extends the graphlet kernel to encourage diversity while avoiding
redundancy. Our experiments on several benchmark datasets show that our frame-
work outperforms the graphlet kernel in terms of classification accuracy by using
50% less samples.

1 Introduction

In many real-world domains such as bioinformatics, chemoinformatics [16] and social networks
[18], we are often interested in comparing graphs. For instance, one might aim to classify chemical
compounds by predicting whether a compound is active in an anti-cancer screen or not [17] (see
Figure 1). A popular approach to solve this problem is to represent each chemical compound as a
graph, and to use a graph kernel to compute a kernel matrix K where each entry Kij represents how
similar graph i to graph j. The computed kernel matrix is then simply plugged into a kernelized
learning algorithm such as Support Vector Machines (SVM) [13] in order to classify graphs.

Figure 1: Sample graphs from NCI1 dataset [17] where each graph represents a chemical compound
and labeled as +1 (active in an anti-cancer screen) or -1 (non-active in an anti-cancer screen). Graphs
are created using Gephi [1].

A commonly used paradigm for representing graphs is to use a vector that contains normalized
frequencies of occurrence of certain motifs or sub-graphs. The graphlet kernel of Shervashidze et al.
[14] uses induced sub-graphs of k nodes (christened as graphlets by Przulj [11]) as motifs in the
vector representation, and computes the kernel via a dot product between these vectors. However,
existing sampling methods for graphlets suffer from a few drawbacks. Next, we first introduce a
brief background on the graphlet kernel, and then motivate our solution to propose a novel strategy
to address these drawbacks.

1

2 Background and Motivation

A graph is a pair G = (V,E) where V =
{
v1, v2, . . . , v|V |

}
is an ordered set of vertices or nodes

and E ⊆ V ×V is a set of edges. Given G = (V,E) and H = (VH , EH), H is a sub-graph of G iff
there is an injective mapping α : VH → V such that (v, w) ∈ EH iff (α(v), α(w)) ∈ E. Two graphs
G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a bijective mapping g : V → V ′ such
that (vi, vj) ∈ E iff (g(vi), g(vj)) ∈ E′. Graphlets are small, non-isomorphic sub-graphs of a large
network, introduced by Przulj [11] to design a new measure of local structural similarity between
biological networks. Graphlets up to size five are shown in Figure 2.

Figure 2: Graphlets of size k ≤ 5. Plots are generated with networkX library [6].

2.1 Graphlet Sampling

Let Gk = {G1, G2, . . . , Gnk
} be the set of size-k graphlets where nk denotes the number of unique

graphlets of size k. Given a graph G, we define fG as a normalized vector of length nk whose i-th
component corresponds to the frequency of occurrence of Gi in G:

fG = (
c1∑nk

j cj
, · · · , cnk∑nk

j cj
)T . (1)

where ci denotes number of times Gi occurs as a sub-graph of G. Given two graphs G and G′, the
graphlet kernel [14] kg is defined as:

kg(G,G′) := f>G fG′ , (2)

which is simply the dot product between the normalized graphlet-frequency vectors.

2.2 Graphlet Sampling

Given two graphs G and G′, determining whether G contains a subgraph isomorphic to G′ is NP-
complete1. However, the subgraph isomorphism can be tested in polynomial timeO(nG′ !.n2G′ .

(
nG
nG′

)
)

if graph G on nodes nG is input and graph G′ on nG′ is fixed [12]. This requires an exhaustive search
by iterating over all subsets of nG′ nodes of G and prohibitively expensive even for moderate sized
graphs. Thus, [14] proposed a sampling scheme that randomly searches graphlets in a given graph.
However, this random sampling scheme does not take several important observations into account
as follows.

• Redundancy: The graphlet frequency distribution exhibits a power-law behavior, that is,
the frequency of certain graphlets grows as a power of others. This becomes a significant
problem when the frequency of informative graphlets are overwhelmed by graphlets that
do not carry any discriminating power across graphs. Figure 3 illustrates such an example
where graphlet G20 occurs significantly higher than more informative graphlets such as
G32 and G34. An ideal framework should take this observation into account and avoid
selecting redundant graphlets.

1It can be shown that this problem includes Hamilton path/cycle and maximum clique as special cases [5].

2

Figure 3: A sample graph from MUTAG [3] dataset that illustrates the decomposed graphlets where
size of each graphlet is positively correlated with its frequency in the graph.

• Diversity: It can be observed that graphlets of a given size k are related to each other [18].
For instance, graphletsG36, G37 andG40 only differ by one node and one edge. Therefore,
a sampling scheme that does not take the inherent similarity between graphlets does not
respect the diversity among the samples. An ideal framework should encourage diverse
graphlets when performing sampling.

Our Solution: Our algorithm takes advantage of the inherent similarity between graphlets of size
≤ k and k+1. The key observation of our proposal is that, one can use this relationship to represent
a graphlet of size k + 1 as a probability distribution over size ≤ k graphlets. Let Gi represent a
graphlet of size k + 1, Gj represent a graphlet of size k and nij denote the number of times Gj
occurs as a sub-graph of Gi. Computation of nij is done by deleting a node of Gi and counting how
many times graphlet Gj is produced as a result [19]. Repeating the same process for all graphlets of
size 1 ≤ l ≤ k and normalizing the frequencies, we obtain a distribution for graphlet Gi by means
of smaller-sized graphlets (see Figure 4 for an example decomposition).

An alternate way to interpret this probability distribution is as follows: each graphlet Gi of size
k + 1 covers graphlets of size ≤ k with a certain amount. Thus, whenever we sample a graphlet
Gi, we also cover some portion of other graphlets. For instance, whenever we pick graphlet G41,
we cover the following graphlets with associated probabilities: G41 = {G2 : 0.21, G3 : 0.49, G5 :
0.07, G6 : 0.07, G7 : 0.09, G11 : 0.01, G15 : 0.03, G18 : 0.01}. Therefore, one can view this
as a maximum coverage problem where our main objective is to select m subsets from a collection
S = {S1, S2, . . . , Sn} of n subsets such that the union of the selected sets

⋃m
i=1 Si has the maximum

coverage. In other words, we would like to maximize the following objective function:

A∗ = argmax
A⊆S:|A|≤m

f(A)

This problem is well-known to be NP-hard [4]. However, it can be formulated in terms of submod-
ular functions where a greedy algorithm is guaranteed to approximate the optimum solution within
a factor of (1 − 1/e) ≈ 0.63 [10]. Submodular functions exhibits a natural diminishing returns
property which is suitable for our task, that is, whenever we cover a graphlet, we want its gain to
diminish over time. Next, we introduce some background on submodularity.

3 Methodology

In this section, we first introduce a brief background on submodularity, and then we propose our
framework.

3.1 Submodularity

Submodularity is a discrete optimization method that shares similar characteristics with concavity,
while resembling convexity. Submodularity appears in a wide range of application areas including
social networks, viral marketing [8] and document summarization [9]. Submodular functions exhibit

3

Figure 4: An example for graphlets G35 and G41 that shows the decomposed graphlets of size
≤ k, associated with normalized frequencies. As can be seen from the table, both graphlets cover
graphlets G2, G3, G5, G6, G7, G15 with different weights.

Algorithm 1 Greedy submodular function maximization with budget constraint

Require: V ,k
Ensure: Selected set of neighborhoods

1: Initialize S ← ∅
2: while |S| ≤ k do
3: v ← argmaxz∈V \S(f(S ∪ {z})− f(S))
4: S ← S ∪ {v}
5: end while
6: return S

a natural diminishing returns property, that is, given two sets S and T , where S ⊆ T ⊆ V \ v, the
incremental value of an item v decreases as the context in which v is considered grows from S to T .

More formally, submodularity is a property of set functions, i.e., the class of functions f : 2V → R
that maps subsets S ⊆ V to a value f(S) where V is a finite ground set. The function f maps any
given subset to a real number. The function f is called normalized if f(∅) = 0, and it is monotone
if f(S) ≤ f(T), whenever S ⊆ T . The function f is called submodular if the following equation
holds for any S, T ⊆ V :

f(S ∪ T) + f(S ∩ T) ≤ f(S) + f(T) (3)

Another equivalent definition of the submodularity property is given as follows:

f(S ∪ {v})− f(S) ≤ f(R ∪ {v})− f(R) (4)

where f is submodular if R ⊆ S ⊆ V and v ∈ V \ S. This form of submodularity directly satisfies
the property of diminishing returns; the value of v never increases when the context gets larger.

It has been shown that submodular function minimization can be solved in polynomial time [7],
while submodular function maximization is an NP-complete optimization problem and intractable.
However, it has been shown by [10] that the maximization of a monotone submodular function
under a cardinality constraint can be solved near-optimally using a greedy algorithm. In submodular
function maximization, we are interested in solving the following optimization problem:

A∗ = argmax
A⊆V :|A|≤k

f(A)

subject to a cardinality constraint k. If a function f is submodular, takes only non-negative values,
and is monotone, then even though the maximization is still NP complete, we can use a greedy
algorithm (see Algorithm 1) to approximate the optimum solution within a factor of (1 − 1/e)
≈ 0.63 [10].

4

3.2 Framework

We formulate our task as a submodular optimization problem and adapt our framework from doc-
ument summarization task of [9]. In order to apply our framework, we changed the random sam-
pling approach slightly as follows: whenever we sample a graphlet, we also sample its immediate
neighbors. Thus, our sampling procedure is still random, but we also have a chance to capture the
graphlets within similar neighborhoods. Let S represent a set of neighborhoods of size k graphlets,
P<k represent the set of unique graphlet types of size< k, p represent an arbitrary graphlet in P<k, i
represent an arbitrary neighborhood and j represent a graphlet in that neighborhood. We then define
our submodular objective function as follows:

F (S) =
∑
p∈P<k

∑
i∈S

∑
j∈i

rpj

α

(5)

where rpj is the weight of graphlet p in j and α is curvature parameter that determines the rate
that reward diminishes over time. Interpretation of this framework is as follows: we measure the
diversity of the selected set S in terms of graphlets of size < k. For each graphlet p in the set
of unique graphlets of size < k, we quantify the amount that is already covered by the selected
neighborhoods in S. Thus, for each selected neighborhood i in the set S, we sum how much we
already covered the < k-sized graphlet p.

3.3 Proof

In order to show that F (S) is submodular, we will use the composition property of submodular
functions with concave functions:

Theorem 1 Given functions F : 2V → R and f : R → R, the composition F ′ = foF : 2V → R
is non-decreasing submodular if f is non-decreasing concave and F is non-decreasing submodular.

Proof Equation 5 is submodular. (x)α is a non-decreasing concave function. Inside of (x)α, we
have a modular function with non-negative weights, thus monotone. Applying (x)α to such a
monotone submodular function yields a submodular function, and summing submodular functions
retains submodularity property. Therefore, F (S) is submodular.

4 Experiments

In this section, we first introduce the datasets used for our experiments. Then, we discuss our
experimental setup and introduce our results.

4.1 Datasets

We applied our framework to benchmark graph kernel datasets, namely, MUTAG, PTC and EN-
ZYMES and NCI1. MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic nitro com-
pounds [3] with 7 discrete labels. PTC [15] is a dataset of 344 chemical compounds that reports
the carcinogenicity for male and female rats and it has 19 discrete labels. ENZYMES is a balanced
dataset of 600 protein tertiary structures obtained from [2] and has 3 discrete labels. NCI109 [17]
dataset has 4127 nodes, made publicly available 2 by the National Cancer Institute (NCI), is a bal-
anced data sets of chemical compounds screened for ability to suppress or inhibit the growth of a
panel of human tumor cell lines, having 38 discrete labels. See Table 1 for detailed statistics of the
datasets.

2http://pubchem.ncbi.nlm.nih.gov

5

http://pubchem.ncbi.nlm.nih.gov

Table 1: Properties of datasets used in graph kernel experiments.

Dataset # of graphs # of classes # of nodes (avg) # of labels
MUTAG 188 2 (125 vs 63) 17.9 7
PTC 344 2 (152 vs 192) 25.5 19
ENZYMES 600 6 (100 each) 32.6 3
NCI109 4127 2 (2079 vs 2048) 29.6 38

5 Experimental Setup

We compare our framework against graphlet kernel. Both kernels are coded in Python and normal-
ized to have a unit length in the feature space. Moreover, we use 10-fold cross validation with a
binary C-Support Vector Machine (SVM) where the C value for each fold is independently tuned
using training data from that fold. In order to exclude random effects of the fold assignments, this
experiment is repeated 10 times and average prediction accuracy of 10 experiments with their stan-
dard deviations are reported.

In order to achieve a fair comparison, we first sampled 100 neighborhoods of graphlets from a given
dataset. Then, we feed exactly the same set of graphlets into our framework and submodularly
selected 50 of them. Thus, our framework uses 50% less information than the graphlet kernel in the
following experiments.

6 Results

We compare graphlet kernel with our method (see Table 2). As can be seen from the results, our
framework is able to outperform base kernel with statistically significant improvements (shown in
bold) while achieving a smaller standard error on most of the datasets.

Table 2: Comparison of classification accuracy for the graphlet kernel with our method where STD
standard deviation, and SE represents standard error.

DATA SET GRAPHLET KERNEL SUBMODULAR GRAPHLET KERNEL
MUTAG 77.11 (STD: 1.54, SE: 0.48) 80.22 (STD: 1.08, SE: 0.34)
PTC 55.82 (STD: 1.10, SE: 0.35) 57.14 (STD: 1.35, SE: 0.42)
ENZYMES 23.35 (STD: 1.30, SE: 0.41) 25.10 (STD: 0.92, SE: 0.29)
NCI109 62.15 (STD: 0.28, SE: 0.09) 62.28 (STD: 0.22, SE: 0.07)

7 Conclusion

In this paper, we propose a novel framework to incorporate diversity when performing graph com-
parison. Even though we restricted ourselves to graph kernel literature in this paper, our framework
introduces a new perspective to graph sampling and summarization. For instance, our framework can
be easily adoptable to summarize diverse aspects of a given graph for exploration or visualization
purposes.

As a future work, we consider modifying our framework to a setting where we dynamically explore
the graph in the direction that maximizes our objective function.

8 Acknowledgments

This work is supported by the National Science Foundation under grant No. #1219015.

6

References
[1] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an open source software for exploring and

manipulating networks. In ICWSM, pages 361–362, 2009.
[2] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola, and H.-P.

Kriegel. Protein function prediction via graph kernels. In Proceedings of Intelligent Systems
in Molecular Biology (ISMB), Detroit, USA, 2005. http://www.stat.purdue.edu/
˜vishy/papers/BorOngSchVisetal05.pdf.

[3] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch.
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. J Med Chem, 34:786–797,
1991.

[4] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):
634–652, 1998.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Series of Books in Mathematical Sciences. W. H. Freeman, 1979.

[6] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Laboratory (LANL), 2008.

[7] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for
minimizing submodular functions. JACM, 2001.

[8] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social
network. In SIGKDD, pages 137–146. ACM, 2003.

[9] H. Lin and J. Bilmes. A class of submodular functions for document summarization. In HLT,
2011.

[10] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing
submodular set functions. Mathematical Programming, 14:265–294, 1978.

[11] N. Przulj. Biological network comparison using graphlet degree distribution. In 2006 European
Conference on Computational Biology (ECCB), September 2006.

[12] N. Przulj. Biological network comparison using graphlet degree distribution. Bioinformatics,
23(2):e177–e183, Jan 2007.

[13] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
[14] N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient

graphlet kernels for large graph comparison. In M. Welling and D. van Dyk, editors, Proc.
Intl. Conference on Artificial Intelligence and Statistics. Society for Artificial Intelligence and
Statistics, 2009.

[15] H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma. Statistical evaluation of the
predictive toxicology challenge 2000-2001. Bioinformatics, 19(10):1183–1193, July 2003.

[16] S. V. N. Vishwanathan, N. N. Schraudolph, I. R. Kondor, and K. M. Borgwardt. Graph kernels.
Journal of Machine Learning Research, 2010. URL http://www.stat.purdue.edu/
˜vishy/papers/VisSchKonBor10.pdf. In press.

[17] N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for chemical com-
pound retrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008.

[18] P. Yanardag and S. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1365–
1374. ACM, 2015.

[19] P. Yanardag and S. Vishwanathan. A structural smoothing framework for robust graph com-
parison. NIPS, 2015.

7

http://www.stat.purdue.edu/~vishy/papers/BorOngSchVisetal05.pdf
http://www.stat.purdue.edu/~vishy/papers/BorOngSchVisetal05.pdf
http://www.stat.purdue.edu/~vishy/papers/VisSchKonBor10.pdf
http://www.stat.purdue.edu/~vishy/papers/VisSchKonBor10.pdf

	Introduction
	Background and Motivation
	Graphlet Sampling
	Graphlet Sampling

	Methodology
	Submodularity
	Framework
	Proof

	Experiments
	Datasets

	Experimental Setup
	Results
	Conclusion
	Acknowledgments

