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Abstract

A known failing of many popular random graph models is that the Aldous–Hoover
Theorem guarantees these graphs are dense with probability one; that is, the num-
ber of edges grows quadratically with the number of nodes. This behavior is con-
sidered unrealistic in observed graphs. We define a notion of edge exchangeability
for random graphs in contrast to the established notion of infinite exchangeability
for random graphs—which has traditionally relied on exchangeability of nodes
(rather than edges) in a graph. We show that, unlike node exchangeability, edge
exchangeability encompasses models that are known to provide a projective se-
quence of random graphs that circumvent the Aldous–Hoover Theorem and ex-
hibit sparsity, i.e., sub-quadratic growth of the number of edges with the number
of nodes. We show how edge-exchangeability of graphs relates naturally to exist-
ing notions of exchangeability from clustering (a.k.a. partitions) and other familiar
combinatorial structures.

1 Introduction

As graph, or network, data become more ubiquitous and large-scale—in the form of social networks,
collaboration networks, networks expressing biological interactions, etc.—a number of probabilis-
tic models for graphs have been proposed. However, it has become apparent that many of the most
popular probabilistic models for graphs are fundamentally misspecified in a way that worsens as the
graphs scale to larger numbers of nodes [14]. At the heart of the problem is that generative proba-
bilistic modeling relies on what seems at first to be a very weak assumption, that of exchangeability.
Exchangeability is essentially the idea that seeing our data in a different order does not change its
distribution and is a much weaker assumption than the popular “independent and identical distri-
bution (iid)” assumption. In graphs, this assumption has historically taken the following form: we
assume that if we relabeled our nodes, it would not change the probability of the graph [1, 9, 14].
Exchangeability assumptions are fundamentally tied with probabilistic modeling since they imply
the existence of parameters, likelihoods, and priors by de Finetti’s Theorem. The particular version
of de Finetti’s Theorem for graphs with this form of node-exchangeability is known as the Aldous–
Hoover Theorem [1, 9]. Notably, the Aldous-Hoover Theorem for exchangeable graphs implies that,
if we assume our graph is node-exchangeable, it must be that our graph is dense [14]. That is, the
number of edges in a dense graph grows quadratically with the number of nodes.

But most real-world graphs have been observed to be sparse [13]; that is, the number of edges
grows sub-quadratically in the number of nodes. While there are ad hoc solutions to this mismatch
between model and data, they have other undesirable properties, such as lacking projectivity—a
property that facilitates handling streaming data, performing distributed data analysis, and consistent
hierarchical modeling. Caron and Fox [7] have recently suggested an example model that has some
desirable sparse scaling properties. They consider an alternative form of exchangeability in the
sense of independent increments of subordinators. By contrast, we here consider a new form of
exchangeability for graphs where we consider permuting the edges rather than the nodes. In the
remainder of the current work, we both describe node-exchangeability in more detail and introduce
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our new concept of edge-exchangeability. We show how edge-exchangeability of graphs relates
naturally to existing notions of exchangeability from clustering (a.k.a. partitions), feature allocations
[3, 4], and other combinatorial structures [6, 5]. We describe how the Caron and Fox [7] model fits
into our framework. We outline remaining connections and characterizations to be made in future
work.

2 Edge-exchangeability in graphs

An undirected graph is defined by a set of nodes (i.e., vertices) called V and a set of edges E. In
particular, each element e of E is an unordered set {u, v} of two nodes u, v ∈ V and represents a
link between u and v. We consider V to be a set where each element is unique, but we allow E to be
a multiset; that is, we allow edges to potentially occur multiple times in E. We define active nodes
to be those nodes that appear in some edge, where an edge between a vertex and itself counts for this
purpose. In what follows, we take the approach that we are only interested in active nodes. In this
case, an undirected graph may be characterized by specifying only its edge set E. That is, we can
consider a graph as an unordered set of tuples, which represent the edges of the graph. In this case,
we can obtain the (active) node set by representing all the unique elements of E: V =

⋃
e∈E e.

Example 2.1. Consider the graph (containing only active nodes) defined by E =
{{2, 3}, {1, 4}, {3, 6}, {6, 6}, {3, 6}}. Then the active nodes are V = {1, 2, 3, 4, 6}. It is not im-
portant that “5” does not appear in V since the elements of V are treated as arbitrary labels. �

To consider exchangeability in graphs, it has been traditional to think of a sequence of (random)
graphs E1, E2, . . . such that Em ⊆ En for any m < n and such that En represents the edges
between the vertices with labels in [n] := {1, . . . , n}. One typically thinks of the step of going
from En to En+1 as adding in a new vertex labeled n+ 1 (and all its edges to existing vertices and
itself). Then we say that the graphs are infinitely exchangeable if, for any positive integer n, we have
that permuting the vertex labels in [n] does not change the probability of these graphs. This form
of exchangeability, which we will refer to as node exchangeability implies, via the Aldous–Hoover
Theorem [9, 1], that our graphs must be dense [14]. Thus, if we wish to maintain some notion
of exchangeability while modeling sparse graphs, it behooves us to consider alternative forms of
exchangeability.
Example 2.2. An example realization of a sequence of random graphs when considering infinite
exchangeability in the traditional sense is given by

E1 = ∅, E2 = {{1, 2}}, E3 = {{1, 2}}, E4 = {{1, 2}, {1, 4}, {2, 4}, {3, 4}}, . . . .
Note that it is not necessary to specify the node set V1, V2, V3, . . . here since it is understood that
Vn = [n]. Further note that Vn here represents all the nodes, not only the active ones. �

In the present work, we instead introduce a notion of exchangeability of the edges rather than the
vertices. In particular, consider a new sequence of graphs E1, E2, . . ., where Em ⊆ En for any
m < n. Now we think of En+1 as adding some new edges relative to En, but these new edges need
not be connected to any particular vertex. We can make the step on which we add in edge e explicit
by augmenting the edge set E. In particular, define a step-augmented graph E′ as a collection of
tuples, where the first element is the edge and the second element is the step on which the edge is
added.
Example 2.3. There is exactly one sequence of step-augmented graphs that corresponds to the graph
sequence in Example 2.2. It is

E′
1 = ∅,

E′
2 = {({1, 2}, 2)},

E′
3 = {({1, 2}, 2)},

E′
4 = {({1, 2}, 2), ({1, 4}, 4), ({2, 4}, 4), ({3, 4}, 4)}.

In the traditional exchangeability setup of Example 2.2, the step of an edge is always the maximum
node value in that edge. �
Example 2.4. In our new setup, the step need not be the maximum node value. For instance,
consider a step-augmentation of Example 2.1:

E′
4 = {({2, 3}, 1), ({1, 4}, 4), ({3, 6}, 1), ({6, 6}, 3), ({3, 6}, 3)}.
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This augmentation would be equivalent to the graph sequence

E1 = {{2, 3}, {3, 6}},
E2 = {{2, 3}, {3, 6}},
E3 = {{2, 3}, {3, 6}, {6, 6}}, {3, 6}},
E4 = {{2, 3}, {1, 4}, {3, 6}, {6, 6}, {3, 6}}.

�

Now suppose we treat the edges (rather than the nodes) in this sequence of edge sets as arbitrary
labels; if two edges are the same, they have the same labels, and otherwise they have different labels.
This representation is technically a superclass of the objects defined above since there is additional
structure in the edge labels of graphs; graph edge labels may agree in one element but not the other.

Example 2.5. Using an order of appearance scheme [4] to index the labels, E′
4 in Example 2.4

becomes {(φ1, 1), (φ2, 1), (φ3, 3), (φ1, 3), (φ4, 4)}. �

We note that if we consider only the uniqueness of the labels in E′
n and not their actual values, the

information in this structure can be expressed as a set of subsets of the steps [n]. That is, for each
unique label φ that occurs in any tuple in E′

n, we let Aφ be the collection of steps that co-occur in a
tuple with φ. In Example 2.5, Aφ1 = {1, 3}. Then let Cn be the collection of Aφ for all values of φ.
Thus, Cn is a set of subsets of [n] since E′

n contains only edges added on step n or earlier. We call
the sequence (Cn) the step collection sequence of a sequence of graphs.

Example 2.6. The C4 corresponding to E′
4 in Example 2.5 is {{1, 3}, {1}, {3}, {4}}. �

Finally, now, we recognize the step collection Cn as a familiar combinatorial object: either a parti-
tion (a.k.a. clustering) [15], feature allocation [4], or a trait allocation (defined below and reminis-
cent of [5]); we explain each of these connections below and show how they give a natural notion of
exchangeability in the edges of a graph.

2.1 Partition connection

First consider the connection to partitions. In this case, suppose that each index in [n] appears
exactly once across all of the subsets of Cn. This assumption on Cn is equivalent to assuming that
in the original graph sequence E1, E2, . . ., we have that En+1 always has exactly one more edge
than En. In this case, Cn is exactly a partition of [n]; that is, Cn is a set of mutually exclusive and
exhaustive subsets of [n]. If the edge sequence (En) is random, then (Cn) is random as well.

We say that a partition sequence C1, C2, . . ., where Cn is a (random) partition of [n] and Cm ⊆
Cn for all m ≤ n, is infinitely exchangeable if, for all n, permuting the indices of n does not
change the distribution of the (random) partitions [15]. Permuting the indices [n] in the partition
sequence (Cm) corresponds to permuting the order in which edges are added in our graph sequence
(Em). Contrast this with the traditional form of exchangeability in graphs (node exchangeability)
as described above.

Recall further that the Kingman paintbox theorem [11] tells us that we have an infinitely exchange-
able partition sequence if and only if we can find a sequence of (potentially random) probabilities
p1, p2, . . . such that pk ∈ (0, 1) and

∑∞
k=1 pk = 1 and such that drawing partition elements ac-

cording to these probabilities yields the same partition distribution as our original random partition.
The sequence (pk)

∞
k=1 is called the Kingman paintbox. In the graph domain, we can interpret the

Kingman paintbox probability pk as the probability of a particular edge in the graph.

Example 2.7. We consider a generative model proposed by Caron and Fox [7]. Let W =∑∞
k=1 wkδφk

be a random measure such that the pairs {(wk, φk)}∞k=1 are generated from a Poisson
point process with rate measure ν(dw, dφ) = ν(dw)G(dφ) for some proper distribution G. We
assume that ν is a positive measure with support on R+. In this case, W is a completely random
measure. For n = 1, 2, . . ., we draw whether the graph acquires edge {i, j} at step n according to
the distribution (p{i,j})i,j where

p{i,j} ∝
{

2wiwj i 6= j
w2
i i = j

.
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Defining this distribution requires that the sum over the wiwj be finite, but this finiteness condition
will hold for a wide range of models, including the generalized gamma process [10, 12] with φ ∈
[0, α] for some fixed α > 0, as considered by [7]. In fact, this construction returns exactly the
generative model of Caron and Fox [7] if the total number of edges N is chosen to be Poisson with
appropriate rate parameter.1 �

2.2 Feature allocation connection

Next we notice that it need not be the case that exactly one edge is added at each step of the graph
sequence, e.g. between En and En+1. If we allow multiple unique edges at any step, then the step
collection Cn is just a set of subsets of [n], where each subset has at most one of each index in [n].
Suppose that any m belongs to only finitely many subsets in Cn for any n. That is, we suppose that
only finitely many edges are added to the graph at any step. Then Cn is an example of a feature
allocation [4]. Again, if (En) is random, then (Cn) is random as well.

We say that a (random) feature allocation sequence (Cm) is infinitely exchangeable if, for any n,
permuting the indices of [n] does not change the distribution of the (random) feature allocations
[3, 4]. In this feature allocation case, permuting the indices [n] in the sequence (Cm) corresponds
to permuting the steps when edges are added in the edge sequence (Em).

Similarly to the partition case in Section 2.1, we can apply known results from feature allocations to
characterize edge-exchangeable graph models of this form. For instance, we know that the feature
paintbox [4] characterizes distributions over feature allocations (and therefore this sequence of edge-
exchangeable graphs) just as the Kingman paintbox characterizes distributions over partitions (and
therefore the edge-exchangeable graphs with exactly one new edge per step).

We may also consider feature paintbox distributions with extra structure. For instance, we may
say that an edge-exchangeable graph sequence (with multiple unique edges per step) has an edge-
exchangeable graph probability function (EGPF) if the probability of the graph can be expressed as
a function only of the total number of steps N and the edge multiplicities (and where the probability
is symmetric in the edge multiplicities). This definition directly corresponds to the notion of an
exchangeable feature probability function (EFPF) [4, 3] on the feature allocations (Cn).2

Also, we may define a graph frequency model as built around a random measure B =
∑∞
k=1 Vkδφk

.
In particular, we draw a random graph conditional on B as follows. For each step index n, indepen-
dently make a Bernoulli draw with success probability Vk. If the draw is a success, the edge indexed
by k appears at time n. Otherwise it does not.

Then Theorem 17 (“Equivalence of EFPFs and feature frequency models”) from [4] translates into
a theorem about edge-exchangeable graphs as follows.
Theorem 2.8. Let λ be a non-negative random variable (which may have some arbitrary joint
law with the frequencies in a graph frequency model). We can obtain an edge-exchangeable graph
by generating an edge-exchangeable graph from a graph frequency model and then, for each time
n, including an independent Poisson(λ)-distributed number of unique edges (which are different
from those previously generated and which will never appear again). A graph of this type has an
EGPF. Conversely, every graph with an EGPF has the same distribution as one generated by this
construction for some joint distribution of λ and the edge frequencies.
Example 2.9. We consider a graph frequency model related to the model from Example 2.7. In
particular, let W =

∑∞
k=1 wkδφk

be a completely random measure with rate measure ν(dw, dφ) =
ν(dw)G(dφ) for some proper distribution G. We now assume that ν is a positive measure with
support on [0, 1]. For n = 1, 2, . . ., we draw whether the graph has an edge {i, j} at time step n as

Bern(q{i,j}) where q{i,j} :=

{
2wiwj i 6= j
w2
i i = j

.

Since the graph frequency representation is given explicitly, the EGPF existence follows by Theo-
rem 2.8. �

1This observation makes use of the fact that a gamma process prior paired with a Poisson likelihood pro-
cess yields the same distribution as a Dirichlet process paired with a multinomial likelihood and a Poisson-
distributed number of data points.

2Both functions are related to exchangeable partition probability functions (EPPFs) [15] for partitions.
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2.3 Trait allocation connection

Finally, we may consider the case where at every step, any non-negative (finite) number of edges
may be added and those edges may have non-trivial (finite) multiplicity; that is, the multiplicity of
any edge at any step can be any non-negative integer. By contrast, in Section 2.2, each unique edge
occurred at most once at each step. In this case, the step collection Cn is a set of subsets of [n]. The
subsets need not be unique or exclusive since we assume any number of edges may be added at any
step. And the subsets themselves are multi-sets since an edge may be added with some multiplicity
at step n. We say that Cn is a trait allocation,3 which we define as a generalization of a feature
allocation where the subsets of Cn are multisets. As above, if (En) is random, (Cn) is as well.

We say that a (random) trait allocation sequence (Cm) is infinitely exchangeable if, for any n,
permuting the indices of [n] does not change the distribution of the (random) trait allocation. Here,
permuting the indices of [n] corresponds to permuting the steps when edges are added in the edge
sequence (Em).

Example 2.10. Consider again the construction from Example 2.7. Now suppose that at each step,
we add n{i,j} instances of edge {i, j}, where n{i,j} is drawn from some distribution h(·|θ{i,j}),
where θ{i,j} equals 2wiwj for i 6= j and w2

i for i = j. The case where h(·|θ) is Poisson with mean
parameter θ and we take exactly one step can be seen as another interpretation of the model in Caron
and Fox [7]. �

3 Conclusion

In this work, we have defined a notion of edge exchangeability for random graphs in contrast to the
traditional notion of node exchangeability for random graphs. While the Aldous-Hoover Theorem
guarantees that node-exchangeable random graphs must be dense with probability one, we have
seen in Example 2.7 that edge-exchangeability encompasses models that are known to provide a
projective sequence of random graphs that circumvent this theorem and exhibit sparsity. It remains
to more fully characterize the asymptotic properties of edge-exchangeable random graphs. For one,
we have considered how certain types of structure (e.g., the EGPF in Section 2.2) affect edge-
exchangeable random graphs (Theorem 2.8). But perhaps an even more natural type of structure for
graphs would be the idea that the probability of a graph depends only on the number of times a node
occurs. We believe that this will yield a probability function structure like the EGPF. Moreover,
it remains to consider power laws and other asymptotic behaviors in graphs in the style of [8] for
partitions and [2] for feature allocations.
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