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Cognitive Development
James L. McClelland and Kim Plunkett

Introduction

Research in cognitive development seeks to understand how it
is that the impressive cognitive capacities of the human mind
can develop, and how this process is controlled. A central ques-
tion has always been, Is the main source of control the innate
endowment of the organism? Is it experience that arises from
the interaction of the organism with its environment? Or is it an
intricate interplay between genetic endowment and experience?
These issues have been under consideration by philosophers
and cognitive scientists for centuries. While no one today
would deny the importance of either innate factors or experi-
ence, the exact nature of the mechanisms that exploit these
factors, and the extent to which these mechanisms are pre-
programmed with specific domain content, remains a source of
intense debate within developmental psychology and cognitive
neuroscience. In this article we consider how connectionist
models may contribute to the evolution of thinking about these
crucial matters. .

Many connectionist models of cognitive development have
been driven by two primary considerations:

1. An interest in the role of environmental structure. Develop-
mental connectionists have tended to adopt a minimalist
strategy by employing relatively general learning devices in
specific problem domains in order to determine the extent
to which the inherent structure of a domain constrains the
construction of internal representations and thereby the
developmental process.

2. An attempt to specify the nature of the mechanisms involved
in the developmental process. In particular, connectionist
models have tended to focus on the issue of whether dis-
continuities in behavioral development reflect the matura-
tion of distinct information processors or nonlinear changes
resulting from learning in a more homogeneous system.

Most connectionist models of cognitive development employ
a general learning algorithm (such as backpropagation) that
computes small changes to the connection strengths in a net-
work so as to reduce the output error for any given input pat-
tern. It is, therefore, appropriate to conceive of learning in
these networks as a process of gradient descent on a multi-
dimensional error landscape. Although the device that drives
learning (the learning algorithm) usually only promotes grad-
ual change in the weight matrix, the uneven surface of the error
landscape can result in relatively sudden, dramatic qualitative
shifts in network performance. Conversely, the error surface
may be relatively flat ata particular configuration of the weight
matrix, and the behavioral consequences of weight changes
may be comparatively minor. Learning in networks can easily
result in periods of stable behavior interrupted by sudden
discontinuities, even though the basic mechanism for learning
is one of small, continuous change.

The interpretation of change in a connectionist network as
a process of movement through an even landscape is closely
connected to Waddington’s conception of development as epi-
genesis. Waddington (e.g., 1975) suggested that development
can be viewed as a trajectory through a landscape in which
stable states are achieved by an organism when occupying rela-
tively homogeneous regions of the landscape, whereas change
is observed during periods in which the trajectory crosses a

" downward sloping surface. The trajectory along the epigenetic

landscape is determined by an interaction of the constitution of
the organism itself and the environment in which it is required
to survive. The same can be said of connectionist network
models. What connectionist models add to Waddington’s pic-
ture is a framework for constructing explicit models of the
process of developmental change. Some of the properties of
connectionist models, such as their use of graded parameters
(connection weights) and gradient-based learning rules for
adjusting these weights (such as backpropagation and many
other connectionist learning rules) make them particularly well
suited to the study of these issues. For fuller reviews of connec-
tionist models and their importance for cognitive development,
see Plunkett and Sinha (1992) and McClelland (1994).

It should be noted that connectionist models discussed in
what follows apply to the development of implicit knowledge—
knowledge that can govern behavior without itself being acces-
sible to overt report. Knowledge in connections is implicit
knowledge in just this sense. One key issue in cognitive devel-
opment is the extent to which such implicit knowledge actually
underlies performance in particular tasks. Clearly explicit rules
and explicit reasoning strategies are sometimes used—a case in
point will be suggested below. Developmental connectionists,
however, have tended to stress that the behavior that others
may have accounted for in terms of explicit rules might in fact
be captured implicitly in connection weights.

Rethinking the Need for Innate Knowledge

We now consider the first general issue noted above, namely
the extent to which cognitive processes must rely on innate
domain knowledge. There can be no doubt that there is some
initial structuring of the mervous system before birth that
strongly influences what is experienced and the form this expe-
rience takes, and thus how this experience initiates changes in
the structure of the system. However, there are several argu-
ments that have been given by nativists that lead them to pos-
tulate innate knowledge of specific concepts or principles (see
McClelland, in press, for fuller discussion). Here, we consider
what we take to be the most crucial of these arguments, name-
ly, the argument that a general-purpose learning mechanism
that does not exploit domain-specific constraints is insufficient

to account for the knowledge children acquire. This argument

is based on the false assumption that the general-purpose learn-
ing mechanisms offered by connectionist learning rules adhere
to the same principles as classical associationist models of
learning: that learning occurs by contiguity, and application of
what is learned to new cases depends on a similarity-based
generalization process. Given this assumption, evidence that
generalization depends on anything other than surface similar-
ity is taken as evidence that there must be some domain-specific
knowledge that is brought to bear. While there is considerable
debate about the exact role that input or surface similarity
might play and the sources of input that might count as provid-
ing data relevant to assessing input similarity, it nevertheless
seems reasonably clear that the immediate perceptual charac-
teristics of stimuli do not always determine the basis for correct
generalization (Keil, 1987).

Where this argument goes wrong is in its initial assumption.
Connectionist learning algorithms such as backpropagation
are capable of gradually discovering task-appropriate repre-
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sentations through the learning process. Hinton’s (1989) family
tree model is one of the best examples of this: Before learning,
this network treats all members of each of two “families™ as
approximately equally similar (with random initial variations).
But after learning the kinship relations among these individuals
through training with examples, the acquired internal represen-
tations use one dimension of the representational space to dis-
tinguish the two families, and use other dimensions to position
the individuals within each family so that those individuals
who play structurally analogous roles have similar representa-
tions. In other words, the similarity structure changes over
time, gradually becoming appropriate to the domain through
the course of the learning process. Another example that makes
somewhat closer contact with the developmental literature is
Rumelhart’s model of learning the structure of the semantic
domain of living things (Rumelhart and Todd, 1993). In this
example, the representations of concepts gradually differentiate
to capture a conceptual hierarchy that first distinguishes plants
from animals and then later distinguishes among subclasses of
these major categories (e.g., birds and fish). This process of
conceptual differentiation is reminiscent of the developmental
process of categorical differentiation discussed by Keil (1979).

Stages in Cognitive Development

We now consider the developmental process itself, in particular
the issue of stage-like transitions in cognitive development.
Stage theories of cognitive development characterize distinct
stages of development in terms of qualitatively different under-
lying principles and operations. Transitions between stages are
explained in terms of endogenous factors and/or a complex
interaction between developing internal structures and the
environmental niches which regulate the unfolding of those
structures. In this section, we review a connectionist model of
cognitive development whose behavior develops in a stage-like
fashion. The properties of representation in such a model are
interesting because input does not change over the course of
training, and a single learning algorithm (backpropagation)
with a fixed learning rate is used as the mechanism driving
change throughout the simulation. An important finding from
this simulation work is that a single mechanism can exhibit
stage-like behavioral properties (i.e., there are accelerations
and decelerations in the behavior and indeed in the connection
weights in the system) despite the fact that the representational
changes in the underlying mechanism are governed by a simple
homogeneous process.

The domain of the model is the balance scale problem, intro-
duced by Inhelder and Piaget (1958) and later studied exten-
sively by Siegler (1976, 1981) and others (particularly Ferretti
and Butterfield, 1986). Children are shown a balance scale with
varying weights on either side and at varying distances from
the fulcrum (Figure 1). They are asked to judge which side will
go down when the scale is released. Siegler has shown that
children pass through a series of stages in which their responses
appear to be determined by a succession of procedures that
make differential reference to the dimensions of weight and
distance. Children below the age of 4 respond relatively hap-
hazardly in the task. By 5, nearly all children are in the first
stage, where they focus exclusively on the number of weights
on each side in making a decision. In the second stage, they
incorporate the distance dimension, but only under those
conditions where the weights are equal. In the third stage, their
responses are confused under those conditions where both
weights and distance differ. Finally, some individuals eventu-
ally behave in accordance with a procedure that amounts to
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Figure 1. A balance scale of the type used first by Inhelder and Piaget
and later by Siegler (1976, 1981). (Reprinted by permission from
Siegler, 1976, fig. 1.)

20000 L ‘coeo00

Weight Distance

oooeo R oeo0o0O

H1 A
A

Figure 2. The connectionist network used to simulate acquisition of the
balance scale task by McClelland (1989). Different input units code
the number of weights placed on the Left and Right beams, and the
positions at which they are placed. (Reprinted by permission from
McClelland, 1989, fig. 2.7.)

computing the torque exerted by the weights on each side of the
scale by multiplication of weight times distance. Above the age
of 5, a large proportion (approximately 93%) of children’s re-
sponses to the balance scale task fitted into one of these four
categories (see Siegler, 1976, 1981, for details).

The connectionist model that captured the developmental
progression seen in the balance scale task was presented by
McClelland (1989; Shultz, Mareschal, and Schmidt, 1994, have
a different connectionist model of the same task). The input to
the model (Figure 2) is divided into two channels—in this case,
a channel that represents the weights of the two objects on
either side of the fulcrum and a channel that represents the
distance of two objects from the fulcrum. There are five possi-
ble weight values for each object and five possible distance
positions for each object. Weight and distance values are repre-
sented for each object by a five-place input field, in which there
is a single unit assigned to each integer value of weight or
distance on each side of the scale. However, the weight and
distance units are themselves unstructured—i.e., weight and
distance values are arbitrarily assigned to single input units.
The network is not told explicitly which units correspond to
large weights or distances, nor which units represent the weight
or position of the left or the right object. The network must
discover these correspondences through experiencing outcomes




3

Cognitive Development 195

of balance scale problems—i.e., by discovering connection
weights that allow it to predict which side will go down for
various combinations of object weights and distances.

The network is trained on random samples from the possible

combinations of object weights and distances on the balance

scale. Training proceeds gradually through connection weight
changes made in response to a random sequence of such pro-
blems. On each trial, the network’s output is compared to the
correct output for that problem, and the discrepancy between
the actual output and the desired output is used to generate an
error signal which is used by a backpropagation learning algo-
rithm to adjust the connection strengths in both channels of the
network. The network is tested at regular intervals on both
trained and novel weight/distance combinations.

Two factors are crucial to the performance of the net-
work. First, the network must be structured so as to treat the
dimensions of weight and distance as separate. Second, some
differential treatment of weight and distance is necessary to
reflect the fact that children rely on the weight cue earlier in
development than the distance cue. In McClelland (1989), this
differential treatment amounts to incorporating more examples
involving weight variations than distance variations in the
training set, on the assumption that children may have more
experience with weight than with distance as a factor in deter-
mining balance. In McClelland (in press), it is shown that
differential initial use of weight versus distance can arise if the

Range

Figure 3. Sensitivity of the McClelland (1989) model to varia-
tions in weight and distance as cues to which side should go
down on balance scale problems, as reflected by the input to
hidden weights and by the hidden to output weights in the net-
work (see Figure 2). The figure illustrates the periods of acceler-
ation and deceleration seen in both pathways over the course of
training. The index of sensitivity is based on absolute values of
differences between connection weights from input to hidden
units and from hidden to output units. For example, for sensi-
tivity to object weight in the input to hidden connections, the
graph shows the absolute value of the following difference: (the
connection weight to the left-most hidden unit from the input
unit coding for one weight placed on the left of the scale) minus
(the connection weight to the same hidden unit from the input
unit coding for five weights placed on the left of the scale).
(Reprinted by permission from McClelland, 1989, fig. 2.12.)
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weight on each side is a unary predicate (depending on the
weight alone) while distance is a binary relation (a property
arising from the relation between the weight and the fulcrum of
the scale). Attention here focuses on the simpler case of more
frequent exposure to variations in weight relative to distance.
In both variants, the training sequence is stable over time. Dis-
continuity in development arises from the learning process, not
from changes in the input.

At the beginning of training, the weights in the network are
randomly set. Once training commences, the weight matrix
gradually moves away from its random state, and after a time
systematic behavioral patterns begin to appear. After an initial
period of near-null output, there is a relatively rapid transition
into conformity with the first of four rules developed by Siegler
to characterize the stages of development of performance on
the balance scale task. From this point on, the network’s per-
formance is impressive in that it can can be classified 85%
of the time according to one of the first three of the four rules
outlined by Siegler, and passes through the rules in the same
sequence that characterizes children’s development. The model
does not reliably achieve the final stage of learning on the bal-
ance scale problem, which we take to be based on the use of an
explicit multiplication strategy. (Siegler provides considerable
evidence that performance in stage 4 is qualitatively different
for crucial problems that rely on multiplication of weight times
distance.)

Hidden to Output
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1 Weight
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Three aspects of the model commend the general approach it
exemplifies for accounting for transitions in development in
this and other domains:

1. The model shows periods of stasis followed by relatively
abrupt transitions (Figure 3). Learning on the weight and then
on the distance dimension is initially quite slow, then gradually
accelerates until further changes fail to lead to further improve-
ment in performance. The reason for the acceleration lies in the
fact that the network must learn both how to encode the rele-
vant dimension in the input to hidden weights, and how to use
the results of this encoding to respond correctly (hidden to
output weights). Changes at either level are effectively incoher-
ent until the other level starts to become organized. This illus-
trates a crucial fact about development stressed extensively by
Piaget: that the progress occasioned by a particular experience
is sensitive to the existing state of knowledge, and that there
must be a firm foundation before progress can be made (see
Flavell, 1963, for discussion).

2. The model shows differential readiness to progress from
one stage to the next at different points within the stage. Stage
1 typically lasts for quite a while in children, and the same thing
is observed in the McClelland (1989) model. Both in the model
and in children, exposure to a well-chosen set of problems leads
to a transition to stage 2 or 3 if it occurs toward the end of
stage 1, but either to no change or to regression to random
performance if it occurs near the beginning. This differential
readiness is a reflection of two factors in the model: first, the
simple fact that weight changes accumulate, bringing the model
closer to the point at which its behavior exhibits some sensitiv-
ity to distance; and second, the fact that the transition out of
stage 1 corresponds to a point in development where weight
changes in the distance pathway within the network accumu-
late rapidly. Very small changes build up during the early part
of the time the network spends in a stage, leading to relatively
abrupt transitions between stages.

3. Children’s responses are not in fact exactly in line with
the specific rules enumerated by Siegler, and the network cap-
tures many aspects of these discrepancies. Most interestingly,
Siegler’s rules are discrete, in the sense that they are not sensi-
tive to different degrees of variation of either the weight or
distance cue: The child either uses a cue (weight, distance) or
not, according to Siegler’s procedures. However, Ferretti and
Butterfield (1986) and others have shown that children’s behav-
ior is strongly affected by the actual magnitude of the difference
between the two sides on both the weight and the distance cues.
McClelland (in press) shows that the model accounts quite well
for these effects, whose relevance to the predictions of connec-
tionist models was first pointed out by Shultz, Mareschal, and
Schmidt (1994).

Finally, it may be noted that the model provides fairly clear
Tinks to the earlier work of Piaget (e.g., Piaget, 1952) in that it
provides a simple but precise illustration of how a continuous
developmental process of gradual adaptation can lead to
periods of behavior that can be characterized as stage-like.
The structural assumptions of the model require the assimila-
tion of the input data to separate representations of weight
and distance. The input assumptions of the model require the
accommodation of the network’s weights to sets of combina-
tions of weights and distances which are repeatedly presented
to the network. The interaction between structural and input
assumptions can be seen as an embodiment of what Piaget
would have called an equilibration process, that coordinates the
representations of weight and distance in relation to the net-
work’s performance on the balance scale problem.

Discussion

The previous sections have shown that connectionist models
provide powerful learning mechanisms that are capable of
discovering appropriate internal representations. These mecha-
nisms are more powerful than the learning mechanisms pro-
posed by the classical associationists: in particular, they are
not doomed to rely on raw input similarity as the basis for
generalization. Because of their nonlinear, multilayer structure,
connectionist models that learn are capable of exhibiting stage-
like developmental progressions and other phenomena remi-
niscent of children’s performance and of their developmental
progress, as illustrated by the McClelland (1989) simulation of
development in the balance scale task.

Connectionist models have also been applied to a number
of other aspects of cognitive development. These include the
development of “object permanence” (Munakata et al., 1994),
the ability to order elements sequentially (Mareschal and Shultz,
1993), and the development of visually guided tracking and
reaching (Mareschal and Plunkett, 1994). For a review of
related connectionist-inspired models of language acquisition,
see LANGUAGE AcQuISITION. Taken together, these other models
illustrate the potential breadth of application of the approach,
and lead to the expectation that there will be more such models
in the future.

The main issues that need to be addressed in further work
are as follows:

1. How much prestructuring is actually needed to account
for cognitive development? The McClelland (1989) model
was prestructured to reflect the dimensional distinctions of
weight and distance, and it will be important to consider
whether such prestructuring is necessary and under what
circumstances. It seems certain that we should view the
brain as a developing network of networks, rather than
a single, unstructured homogeneous system, and it seems
likely that this network of networks receives some initial
structuring prior to exposure to inputs from the external
environment.

2. What is the relationship between the acquisition of implicit
knowledge, captured by connectionist models, and explicit
cognitive functions, including the ability to describe the basis
for responses in tasks such as the balance scale task, and the
ability to use this explicit knowledge as the basis for further
processes? Many examples of one-trial learning would seem
to rely on this form of explicit knowledge. (See DEVELOP-
MENTAL DIsORDERS for a discussion of this issue.)

It seems likely that these questions will motivate a great
deal of future work, and that future developments in our
understanding of learning processes in neural networks will
shed considerable light on these issues.

Road Map: Connectionist Psychology

Related Reading: Developmental Disorders; Development and Re-
generation of Eye-Brain Maps; Ocular Dominance and Orientation
Columns
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Cognitive Maps
Nestor A. Schmajuk

Introduction

Cognitive maps store information about the relationships be-
tween contiguous temporal events or proximal spatial locations
and combine this information to determine the relationships
between remote temporal events or distant spatial locations.
For example, during classical conditioning (sce CONDITIONING),
animals learn to predict what temporally contiguous events
might follow other events. By linking several contiguous pre-
dictions, cognitive maps allow organisms to predict what tem-
porally remote events might be expected. Similarly, during
maze learning, animals learn to predict what spatially proximal
locations are connected to other spatial locations. By linking
several proximal predictions, cognitive maps allow organisms
to predict what spatially remote locations are connected to
other locations. This article outlines different formal theories
and neural network models that have been proposed to de-
scribe both temporal and spatial cognitive mapping.
According to Tolman (1932), animals acquire an expectancy
that the performance of response R1 in a situation S1 will be
followed by a change to situation S2 (S1-R1-S2 expectancy).
Tolman hypothesized that a large number of local expectancies
can be combined, through inferences, into a cognitive map.
Tolman proposed that place learning, latent learning, and de-
tour learning illustrate the animals’ capacity for reasoning by
generating inferences. In place learning, animals learn to ap-
proach a given spatial location from multiple initial positions,
independently of any specific set of responses. In latent learn-
ing, animals are exposed to a maze without being rewarded at
the goal box. When a reward is later presented, animals dem-
onstrate knowledge of the spatial arrangement of the maze,
which remains “latent” until reward is introduced. Detour
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problems are maze problems that can be solved by integrating
separately learned pieces of local knowledge into a global de-
piction of the environment.

When seeking reward in a maze, organisms compare the ex-
pectancies evoked by alternative paths. For Tolman, vicarious
trial-and-error behavior, i.e., the active scanning of alternative
pathways at choice points, reflects the animal’s generation and
comparison of different expectancies. At choice points, animals
sample different stimuli before making a decision. For exam-
ple, a rat often looks back and forth between alternative stimuli
before approaching one or the other. According to Tolman’s
stimulus-approach view, organisms learn that a particular stim-
ulus situation is appetitive, and therefore it is approached.
Supporting this assumption, Mackintosh (1974:554) suggested
that, in the presence of numerous intra-maze and extra-maze
cues, animals typically learn to approach a set of stimuli asso-
ciated with reward and to avoid a set of stimuli associated with
punishment. However, in a totally uniform environment, ani-
mals learn to make the correct responses that lead to the goal.

Interestingly, Tolman (1932:177) suggested that the relations
between initial and goal positions can be represented by a di-
rected graph, and he called this graph a means-end field. Many
years later, artificial intelligence theories described problem
solving as the process of finding a path from an initial to
a desired state through a directed graph (see PLANNING,
CONNECTIONIST).

Place Learning

Place learning has been studied in the “water maze,” requiring
rats to escape from a pool filled with opaque water (Morris,





