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Abstract

The Parallel Distributed Processing approach to modeling intelligent
information processing grew out of the feeling that conventional computational
. approaches to modeling intelligent information processing were not well suited
to capturing several key aspects of human information processing abilities. In
this paper, we describe these key aspects of human processing abilities, and
we note how they can be captured in parallel-distributed processing models
(otherwise known as connectionist models or neural network models). A key
feature of these models is their ability to make effective use of graded or
continuous-valued information. We then note how the ability to make use of
graded information is exploited in several current connectionist Al research
projects. The final section of the paper illustrates how machines that make
use of graded infromation may increase our taxonomy of basic computational
machine types. We introduce the notion of the graded state machine and argue
that it has characteristics which place its capabilities between finite-state and

recursive computational devices.
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Parallel Distributed Processing:
Bridging the Gap Between Human and Machine Intelligence

James L. McClelland, Axel Cleeremans, and David Servan-Schreiber
Carnegie Mellon University

Every year computers get faster; yet human beings remain so much better
than computers at performing a wide range of basic, natural, cognitive tasks,
such as speech recognition, language understanding, and retrieval of
contextually appropriate information from memory. The reason for this is that
conventional computer architectures are not well suited to these natural
cognitive tasks.

In this article we will point out several characteristics of human cognitive
processes that conventional computer architectures do not capture well. Then
we will note that connectionist models are much better able to capture these
aspects of human processing. After that we will mention three recent
applications in connectionist artificial intelligence which exploit these
characteristics. Thus, we shall see that connectionist models offer hope of
overcoming the limitations of conventional Al. The paper ends with an example
fllustrating how connectionist models can change our basic conceptions of the

nature of intelligent processing.

Characteristics of Human Information Processing

There are three essential characteristics of human intelligence that are not

well captured by conventional computer architectures:

e Use of multiple, graded constraints.
¢ Use of conspiracies of multiple memory traces.
e Sensitivity to soft as well as hard regularities.

There is a lot of psychological evidence for each of these points. Some of this
evidence is described in the following paragraphs.



--- INSERT FIG 1 ABOUT HERE ---

Use of multiple, graded constraints. In perception, we use context as well
as Sﬁmulus information. Thus to identify a letter in a word we use the features
of the letter, together with information from context. Similarly, to identify a
drawing of an object, we use the features from the drawing and contextual
information. For example, Labov (1973) showed human subjects drawings of
objects that vary in several properties. A set of drawings he used is shown in
Figure 1. He found that most people called the one in the middle of the top row
a cup. The probability of calling the object a cup drops as the drawing
becomes tall or wide, and also drops off when the handle is removed, but both
kinds of changes have a graded effect. Furthermore, the probability of calling
an object a cup can be affected by context; if you put a flower in one of the
pictures people are less likely to call it a cup;v if you put it next to a teépot the
probability of calling it a cup goes up. This example illustrates that each
source of information exerts a 'graded influence and many sources operate

together.

Use of conspiracies of mental agents. This point is similar to the last one,
but not exactly the same. When people must categorize stimuli, it appears that
they generally use memory traces of many similar stimuli to do the
categorization. The evidence does not fit theories that say that they extract a
single prototype or general rule; rather, the evidence fits much better to the
theory that they form memory traces of each example seen, and when they are
asked to categorize a new example, all previous examples exert an influence,
proportional to the similarity to the new example. Sometimes, the result of this
is that the prototype, or central tendency of the set of examples, produces the
strongest response, even though the prototype has not actually been seen.
This occurs when many examples similar to the prototype have been seen. In
any case, though, it can be shown that there is also sensitivity to particular
exaﬁples that have been seen as well (See McClelland and Rumelhart, 1985,



for a discussion).

Exploitation of soft vs. hard regularities. Conventional computer systems
are good at operating by rules, but have difficulty with situations in which
there are "soft" regularities. For example, in English there is a "regular”" past
tense, formed by adding "ed" to the base form of a word (e.g., look -> looked).
Most conventional systems treat all other past tenses as exceptions. However,
there are many groups of words that have a similar way of forming the past
tense. There are many no-change verbs (hit, cut, put ...), for example. The
past tense of these words is the same as the present tense. These words are all
one-syllable, they all end in d or t, and most have a short vowel. However,
some words like this do not fit the rule (sit->sat, rid->ridded). We know frbm
experiments that people can exploit these "partial' or soft regularities; they
seem to treat them in a way that is intermediate between regular and ‘unique -
exception words. In conventional systems these intermediate cases are
difficult: we must choose between writing a rule or not. If we write a rule we
have the danger of making mistakes for some words that do not fit the rule. If
we do not, we are in danger of missing the generalization.

Connectionist Models

Connectionist models are well suited to capturing these characteristics of
human processing capabilities. In connectionist models, processing takes
place through the propagation of graded activation signals among a set of
simple processing units through connections of graded strength. Considering
the three points raised above:

e Multiple graded influences can be captured simply by the
convergence of multiple inputs on a single processing unit or set of
units. Since the activations and the weights are all real-valued,
each input exerts a graded influence on the outcome of
processing.

» Conspiracies of memory traces are similarly very easy to capture;
each "memory trace" can be represented by a single unit that is
activated by an input by an amount that increases with its



similarity to the input, and contributes to the output in proportion
to its activation.

e The exploitation of soft as well as hard regularities occurs in
several ways in connectionist models. It can occur through the
conspiracy mechanism just described, or through the influence
that each example of a regularity has on the values of the
connection weights in a system that is trained on a set of
examples.

The framework for building connectionist models is laid out in detail in
Rumelhart, McClelland and the PDP Group (1986), and many examples of
models constructed in that framework are described.

Two examples of connectionist models of human processing abilities that
capture these characteristics are the interactive activation model of visual word
recognition from McClelland and Rumelhart (1981), and the model of past
tense learning from Rumelhart and McClelland (1986). These models were
motivated by psychological experiments, and were constructed to capture the
data found in these studies. We describe them here to illustrate some of the
roots of the connectionist approach in an attempt to understand detailed

aspects of human cognition.

--- INSERT FIG 2 ABOUT HERE ---

The Model of Word Recognition

The model of visual word recognition, shown in Figure 2, made use of units
at visual feature, letter, and word levels to process strings of letters.
Connections ran bottom-up, from the feature to the letter level, and then from
the letter to the word level; and top-down, from the word to the letter level and
from the letter to the feature level. The connections allow the word and feature
levels to simultaneously constrain the activation of units at the letter level.
There are also mutually inhibitory connections within levels, to allow the unit
or units receiving the strongest activation to suppress others which might
otherwise become activated. When an input is presented that contains an
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ambiguous letter as in Figure 3a, the bottom-up information alone is not
sufficient to determine the identity of the letter. In this case all the possibilities
become gradually activated. But at the same time, the information about the
other letters is propagating forward. If (as in the example illustrated in Figure
3a) the letters the the other positions go together with only one of the
alternatives in the position containing the ambiguity to form a word, the unit
for this word will become most active. The top-down connections will then
cause the letter that fit together to make this active word to become more
active that the other letters in the ensemble. The model reaches this result as
. a result of gradually adjusting activations to settle into a "good" state, in which
the activations at all levels are maximally consistent. In other simulations, it is
shown that this graded constraint satisfaction process can account for a wide
range of experimental findings on the combination of graded sources of

information such as those illustrated in Figure 1 above.

--- INSERT FIG 3 ABOUT HERE ---

The model also exhibits the "conspiracy" of multiple units at the same level.
Thus, when a non-word such as Y?AT is shown (Figure 3b), the input in the
second position is consistent with E, C, or F in the particular type font used in
the simulation. In this case there is no single word that matches one letter
from each position; but many words are partially activated. Some are
illustrated in Figure 3b. Another word that is partially activated is the word
YEAR, for example. As it happens, there are many words that have an E in the
second position that are partially activated since they match two of the three
unambiguous letters as well as the E in the second position; but there are none
that have either a C or F in the second position that become partially activated.
All of the partially activated words feed back activation to the letter level,
thereby causing the unit for E to receive more activation and win out in the
competition with other units.
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--- INSERT FIG 4 ABOUT HERE ---

The Model of Past-tense Formation

The word perception model just reviewed suggested that a simple
connectionist network could behave as though it knew the rules that govern
what makes a sequence of letters count as a legal letter string in English. This
kind of characteristic is also seen in connectionist models that learn from a set
of training examples. One such network is the model of past-tense learning
studied by Rumelhart and McClelland (1986), shown in Figure 4. The network
was trained by showing it input patterns representing the present tenses of
words. At first the connections in the network were all 0's, so that output was
uninteresting. However, an error correction learning rule was used to adjust
the connections from input units to output units so as to reduce the difference
between the network’s actual output and the correct output. Gradually, the
network came to be able to produce the past tenses, not dnly of words that it
actually was trained on, but also of novel words. for most novel words, the
model produced the correct past tense, according to the standard past teﬁse
rules of English. However, for novel words that were similar to known
exceptions, it tended to transform the input in a way that was similar to the
handling of the exception. This tendency was particularly strong for words
that belonged to clusters of exceptions. Thus, the model exhibited a sensitivity
to the "soft" or partial regularities present in the training set as well as to the

"hard" or general rule of English past tense formation.!

1The Rumelhart and McClelland paper has been criticized by Pinker and Prince (1988) for
failing to capture the general rule strongly enough and for other shortcomings. However, most
of these shortcomings have been addressed and overcome in a recent improvement on the
original model by Plunkett and Marchman (1989). ‘



Connectionist models in Artificial Intelligence

The models just reviewed capture important aspects of data from
psychological experiments, and illustrate how the characteristics of human
processing capabilities enumerated above can be captured in an explicit
comptutational framework. Recently connectionist models that capture these
same characteristics have begun to give rise to a new kind of Artificial
Intelligence, which we will call connectionist Al. Connectionist Al is beginning
to address several topics that have not been easily solved using other
approaches. We will consider three cases of this. In each case we will describe
recent progress that illustrates the ability of connectionist networks to capture

the characteristics of human performance mentioned above.

All of the examples in connectionist Al rely on a procedure known as back-
propagation to adjust the strengths of the connections among units so as to
reduce the error between the output of a network and the correct or target
output. Interestingly, back-propagation works only in networks consisting of
‘units that take on graded activation values. This is because back propagation
requires the existence of a smooth derivative of the activation of each unit with
respect to its input from other units. Only in this way can one calculate
connection changes that adjust weights in the network in the direction of
reducing the error. A detailed description of the back-propagation learning
procedure is described in Rumelhart, Hinton and Williams (1986).

Phoneme recognition. The problem of phoneme recognition has been a
notoriously difficult problem since researchers first tried to identify features of
speech that contributed to phoneme identification. Though various features
may be present in the sound-spectrograph, tokens of phonemes are highly
context sensitive; features may be distorted or absent, depending on context,
rate of speech, etc. Many systems that use graded information have been
developed in the last few years; some are fully connectionist and some are not.
Right now it appears that one of the most successful systems is a connectionist
system, the Time-Delay Neural Network (TDNN) (Lang, 1987; Waibel, 1989).



The TDNN is a conventional connectionist network, consisting of input units,
output units, and intermediate or "hidden" units between input and output.
The network has one special characteristic: Units at the hidden layers are
replicated in many banks of units so that useful input patterns can be detected
where ever they occuf in the speech input (See Figure 5). The network is
trained with a corpus of examples of human phonemes, and learns to recognize
new examples with great accuracy. It does this, in spite of the fact that
superficially, examples of different phoneme classes often seem more similar

than examples from the same class.

--- INSERT FIG 5 ABOUT HERE ---

Researchers who have attempted to hand-craft detectors for properties of -
speech signals that signal identity-relevant properties have been hindered by
the subtle trade-offs of cues and complex contingent relations between parts of
the input that carry the important identity information. The connectionist
learning rule solves this kind of problem by allowing the assignment of graded
weights to graded, non-linear combinations of inputs. The gradual nature of
the learning process means that those characteristics of the input that do the
most work in discnnnnating the classes of inputs are learned first; gradually,
with continued training, the subtler interdependencies are also acquired.

It is important to note in this and other applications that careful engineering
is required to produce a system that works. The basic principles of
Connectionist Al -- graded adjustment of graded connection strengths -- are
supplemented in this system with several principles that are specific to the
problem. The TDNN is explicitly designed to capture the shift-invariance of

speech, for example, and this is largely responsible for its success.

Efficient programm:lng of motor sequences. Motor control is an excellent
example of a constraint satisfaction problem. In reaching for an object we

must set the joint angles appropriately to achieve the target. In general, there



may be a very large number of solutions to this problem. Additional
constraints come from efficiency criteria. If we wish to carry out a sequencer of .
actions, reaching for a number of targets in succession, it would be giesirable to
minimize the motion of each joint as we move from one target to the next. But
this constraint cannot be so strong as to prevent us from solving the initial
problem of reaching the intended targets. A recent model by Jordan (1989)
shows how connectionist learning schemes can discover solutions to motor-
control problems of this type. Jordan’s network adjusts connection strengths
to reduce the error in positioning the tip of a moving articulator. The network
also adjusts connection strengths to reduce the amount of movement of each
joint angle in moving from one position in space to the next. Each constraint is
graded; they work together to cause the articulator to follow a simple and near-
minimal trajectory through joint-angle-space in moving from point to point on
the x-y plane.

Language understanding. Language understanding is an excellent example
of a constraint satisfaction problem. . Though: it is customary to assume that
syntactic knowledge can be captured by a small number of rules, in fact it
turns out that these rules generally exert graded influences on interpretation,
and these influences can be overridden by semantic factors. St. John and
McClelland (in press) have shown that connectionist networks can be trained
to interpret sentences embodying these graded constraints in a way which
converges toward a kind of probabilistic optimality, in the following sense. The
outputs of the network are interpreted as probabilities associated with various
interpretative decisions about the input sentence. Through learning, the
network adjusts connection strengths to find a set of values which effectively
encode the relative strengths of these different constraints.

It must be emphasized that in all of these cases it is highly unlikely that the
required values of the graded constraints could be dérived a priori. While there
may be predispositions to perform certain kinds of transformations or to take
certain types of constraints into account that are built into the processing
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mechanisms, their ability to adjust connection strengths so as to find just the

right balance of influences is crucial to the success of the models in all cases.

New Conceptions as Well as New Solutions

One of the themes of connectionist research is that it can change the way we
think about certain kinds of issues in theories of intelligent information
processing. There are many examples of this. Let us take the simple problem
of learning something like the past tense of English. In the old way of thinking,

. the following basic assumptions were unquestioned:

e The knowledge that underlies our ability to form past tenses of
novel words is stored in the form of rules.

e Knowledge of how to form the past tense of exceptions is stored in
a mental "lexicon” or word-list.

e Acquisition of the past tense amounts to formulating, testing, and
refining, rules and adding exceptions to the list.

Now we see that different assumptions are possible:

¢ The knowledge that underlies performance on novel items may be
in a set of connections;

¢ The knowledge that allows us to deal with exceptions may be in
the same set of connections;

e The acquisition process may simply be a process of connection
strength adjustment.

As an illustration of this theme, we now consider how connectionist models
may bégi.n to suggest an elaboration of the classical types of automata
enumerated by Chomsky. Specifically, we will describe a model in which the
classical finite-state automaton is a special case of a broader class of what
might be called "Graded State Machines". These machines capture some of the
characteristics that Chomsky noted were lacking in finite state machines, and
which caused him to reject such machines as candidates for representing
human knowledge of natural language. In this case, we see that connectionist

models hold out the hope of increasing our taxonomy of basic mechanism
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types, and possibly of changing some of the conclusions that we reach about

what type of mechanism is required to perform a certain type of processing.2

--- INSERT FIG 6 ABOUT HERE ---

The network. In this research we used a network introduced by Elman
(1988). This network has the potential to master an infinite corpus of
sequences with the limited means of a learning procedure that is completely
local in time. We call this network a "Simple recurrent network” or SRN. In
the SRN (Figure 6) the pattern of activation on the hidden units at time step
t-1, together with the new input pattern, is allowed to influence the patterh of
activation at time step t. This is achieved by copying the pattern of activation
-on the hidden layer at time step t-1 to a set of input units -- called the ’context
units’ -- at time step t. All the forward connections in the network are subject
to training via back-propagation.

First, we show that the SRN can learn tb mimic closely a finite state
automaton (FSA), both in its behavior and in its state representations. In
particular, we show that it can learn to process an infinite corpus of strings
based on experience with a finite set of training exemplars. We then show how
the architecture can eﬁcploit the fact that it uses graded information to do
things that FSA’s cannot do.

--- INSERT FIG 7 ABOUT HERE ---

Discovering a finite-state grammar. In our first experiment, we asked
whether the network could learn the contingencies implied by a small finite
state grammar (Figure 7). The network was presented with strings derived from

?The text and figures used in this portion of this paper is adapted from Cleeremans, Servan-
Schreiber, and McClelland, 1989, with Permission [Permission needed].
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this grammar, and required to try to predict the next letter at every step. These
predictions are context dependent since each letter appears twice in the

grammar and is followed in each case by different successors.

A single unit on the input layer represented a given letter (six input units in
total; five for the letters and one for a begin symbol 'B’). Similar local
representations were used on the output layer (with the 'begin’ symbol being
replaced by an end symbol 'E’). There were three hidden units.

On each of 60,000 training trials, a string was generated from the grammar,
starting with the 'B’. Successive arcs were selected randomly from the two
possible continuations with a probability of 0.5. Each letter was then presented
sequentially to the network. The activations of the context units were reset to
0.5 at the beginning of each string. After each letter, the error between the
network’s prediction and the actual successor specified by the string was
computed and back-propagated. The 60,000 randomly generated strings
ranged from 3 to 30 letters. o

Three tests were conducted. First, we examined the network’s predictions on
a set of 70,000 random strings. During this test, the network is first presented
with the 'B’, and one of the five letters or 'E’ is then selected at random as a
successor. If that letter is predicted by the network as a legal successor (i.e,
activation is above 0.3 for the corrésponding unit), it is then presented to the
input layer on the next time step, and another letter is drawn at random as its
successor. This procedure is repeated as long as each letter is predicted as a
legal successor until 'E’ is selected as the next letter. The procedure is
interrupted as soon as the actual successor generated by the random
procedure is not predicted by the network, and the string of letters is then
considered 'rejected’. A string is considered 'accepted’ if all its letters have been
predicted as possible continuations up to 'E'. Of the 70,000 random strings,
0.3 % happened to be grammatical, and 99.7 % were ungrammatical. The
network performed flawlessly, accepting all the grammatical strings and
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rejecting all the others.

In a second test, we presented the network with 20,000 strings generated at
random from the grammar, i.e, all these strings were grammatical. Using the

same criterion as above, all of these strings were correctly 'accepted’.

Finally, we constructed a set of very long grammatical strings -- more than
100 letters long -- and verified that at each step the network correctly predicted
all the possible successors (activations above 0.3) and none of the other letters

in the grammar.

--- INSERT FIG 8 ABOUT HERE ---

Analysis of internal representations. What kind of internal -
representations have developed over the set of hidden units that allow the
network to associate the proper predictions to intrinsically ambiguous letters?
We recorded the hidden units’ activation patterns generated in response to the
presentation of individual letters in different contexts. These activation vectors
were then used as input to a cluster analysis program, that groups them
according to their similarity. Figure 8 shows the results of such an analysis
conducted on a small random set of grammatical strings. The patterns of
activation are grouped according to the nodes of the grammar: all the patterns
that are used to predict the successors of a given node are grouped tog
independently of the current letter. This observation sheds some light on the
behavior of the network: at each point in a sequence, the pattern of activation
stored over the context units provides information about the current node in
the grammar. Together with information about the current letter (represented
on the input layer), this contextual information is used to produce a new
pattern of activation over the hidden layer, that uniquely speciﬁes the next
node. In that sense, the network closely approximates the FSA that would
encode the grammar from which the training exemplars were derived. However,

a closer look at the cluster analysis reveals that within a cluster correéponding
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to a particular node, patterns are further divided according to the path
traversed before the node is reached. For example, looking at the bottom -
cluster -- node #5 -- patterns produced by a 'VV’, 'PS’, XS’ or 'SXS" ending are
grouped separately by the analysis: they are more similar to each other than to
other examples of paths leading to node #5. This tendency to preserve
information about the path is not a characteristic of traditional finite-state

automata.

Encoding path information. In the experiments described above, we used
strings generated from a finite-state automaton. With these strings as inputs,
we were able to train the network to imitate, very closely, the finite-state
automaton that generated the training examples. But the network is not
inherently a finite-state automaton of the usual kind; rather, it makes use of
Graded state information. For this reason, we tend to call the SRN a Graded
State Machine. In this section, we show how the SRN can make use of this
graded state information to encode information about the path leading to a
node in the grammar when it is relevant to predicting the identity of the next
element of a string.

When strings generated from the small finite-state grammar may only have a
maximum of eight letters, the prediction following the presentation of the same
letter in position number six or seven may be different. For example, following
the sequence 'TSSSXXV'", 'V is the seventh letter and only another 'V’ would be
a legal successor. In contrast, following the sequence 'TSSXXV’, both 'V’ and P’
are legal successors. A network with 15 hidden units was trained on 21 of the
43 legal strings of length 3 to 8. It was able to use the small activation
differences present over the context units - and due to the slightly different
sequences presented - to master contingencies such as those illustrated above.
Thus, after TSSXXV’, the network predicted 'V’ or 'P’; but after "'TSSSXXV’, it
only predicted 'V’ as a legal successor.

Learning progresses through three phases. During the first phase, the
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context information tends to be ignored because the patterns of activation on
the hidden layer - of which the former are a copy - are changing continually as
a result of the learning algorithm. In contrast, the network is able to pick up
the stable association between each letter and all its possible successors. At
the end of this phase, the network thus predicts all the successors of each
letter in the grammar, independently of the arc to which each letter
corresponds. In the second phase, patterns copied on the context layér now
provide a unique code designating which letter preceded the current letter, and
the network can exploit this stability of the context information to start
. distinguishing between different occurrences of the same letter -- different arcs
in the grammar. Finally, in a third phase, small differences in the context
information that reflect the occurrence of previous elements can be used to
differentiate position-dependent predictions resulting from length constraints

(see Servan-Schreiber, Cleeremans and McClelland, 1988, for more detalils).

This progression through three stages is, as a matter of fact, an entirely
continuous process. It occurs gradually, as connection strengths are adjusted
by the back propagation learning procedure. Depending on the inputs used in
training, the network may end up mimicking a finite state automaton;
alternatively, it may use the graded nature of the states of the network as the
basis for making prediction relevant distinctions that reflect the prior elements
in the string.

Processing embedded sequences. We have seen that the simple recurrent
network is a traditional finite-state automaton only as a special case.
Otherwise, it exploits the graded states of the network in ways which allow it to
preserve information about early parts of a string until it is relevant later. This
ability to make use of long-distance dependencies is, of course, an important
15art of human language processing abilities; a part that cannot be efficiently
captured by traditional finite state machines. |

--- INSERT FIG 9 ABOUT HERE ---



16

To test the SRN’s ability to handle long-distance dependencies, we presented
examples generated from the grammar shown in Figure 9. Although there are
circumstances in which the network can fail to learn to be able to traverse the
embedding, we have been able to show that in fact it can be trained to make
correct predictions when exiting from the embedded grammar (although in
most cases this ability degrades with the length of the embedding). For present
purposes what is interesting is to discover what kind of a machine the simple
recurrent network has become when it has learned successfully. It has some
interesting characteristics which set it apart from classical finite state
automata. A classic automaton, such as the one shown in Figure 9 itself, is
only able to process the strings successfully by having two copies of the states
between the initial letter in the string and the final letter. One copy is used
after an initial P, the other is used after the initial T. This' is inefficient, since
the embedded material is the same in both cases. To capture this similarity in
a simple and elegant way, it is necessary to use a more powerful machine, such
as a recursive transition network. In this case, the embedding is treated as a
subroutine which can be "called" from different places. A return from the call
ensures that the grammar can correctly predict whether a T or P will follow.
This ability to handle Iong-distance dependencies without duplication of the
representation of intervening material lies at the heart of the arguments that
have lead to the use of recursive formalisms to represent knowledge of

language.

But the graded characteristics of the SRN allows the processing of embedded
material as well as the material that comes after the embedding, without
duplicating the representation of intervening material and without actually
making a subroutine call. The states of the SRN can be used
SIMULTANEOUSLY to indicate where the network is inside the embedding-and
to indicate the prior history of processing. The identity of the initial letter
simply shades the representation of states inside the embedding, so that
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corresponding nodes have similar representations, and are processed using
overlapping portions of the knowledge encoded in the connection weights. Yet
the shading that the initial letter provides allows the network to carry
information about the early part of the string through the embedding, thereby
allowing the network to exploit long-distance dependencies.

The ability to exploit long-distance dependencies is an inherent and basic
aspect of human language processing capabilities, and it lies at the heart of the
general belief that a recursive computational machine is necessary for
processing natural language. The experiments we have done with SRN's
suggest another possibility: It may be that long-distance depéndencies can be
processed by machines that are simpler than fully recursive machines, as long
as they make use of graded state information. Of course, true natural
language is far more complex that the simple strings that can be generated by
the machine shown in Figure 9, so we cannot .say for sure at this time whether
Graded state machines will be able to process all aspects of natural language.
.HoWever, our experiments indicate already that they are more powerful in
interesting ways than traditional finite state automata. Certainly, the SRN
should be seen as a new entry into the taxonomy of computational machines.
Whether it (or some other example of the broader class of Graded State
machines, of which the SRN is one of the simplest) will ultimately turn out to
prove sufficient for natural languagé processing, remains to be established in
further research.

Conclusion

This paper began with the idea that humans exploit graded information, and
that computational mechanisms that aim to emulate the natural processing
capabilities of humans should exploit this kind of information as well.
Connectionist models do exploit graded information, and this gives them many
of their attraétive characteristics. It not only accounts for their ability to
perform natural cognitive tasks, but also lies at the heart of their ability to
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learn to perform these tasks. Through the gradual adjustment of connection
strengths, networks can learn to emulate, and even surpass, the capabilities of

conventional computational machines.
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Figure Captions

Figure 1. Various objects used in studies of people’s concept of a cup. From
Labov (1973).

Figure 2. The interactive activation model of word perception of McClelland
and Rumelhart (1981).

Figure 3. Processing of ambiguous inputs in the interactive activation model.
Shadows are used to make portions of one of one letter ambiguous in each
display. Activations of selected letter- and word- level units are shown for two
displays containing ambiguous letters. On the left, the middle panel shows
letter-level activations for letters in the fourth letter position; on the right, the
middle panel shows activations of units for letters in the second letter position.
From McClelland, Rumelhart, and Hinton (1986). |

Figure 4. The model of past-tense learning from Rumelﬁaﬁ and McClelland
(1986). A pattern representing the present tense of a word is presented at left;
activation propagates ﬁom left to right through the network. The output
represents the network’s interpretation of the past tense of the word.

Figure 5. The Time Delay Neural Network (TDNN). At the bottom level,
spectral coefficients 'rep'resenting a 150 msec portion of speech containing a
token of the syllable BA is shown. These spectral coefficients are represented
as activations of connectionist processing units. Units at upper levels receive
inputs from subsets of units at lower levels. These subsets correspond to
temporal windows of a small fixed size. The network is called a time-delay
network because the input that each hidden unit sees can be thought of as
representing the input at a particular time, together with delayed copies of the
input from a few previous time steps. From Waibel (1989).

Figure 6. A simple recurrent network of the type introduced by Elman (1988)
used in the experiments on learning artificial grammars. From Servan-
Schreiber et al (1988).
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Figure 7. The simple finite state automaton used to generate strings that
were presented to the FSA in Figure 6. Strings were generated by starting at
the left with B, and proceeding to the first node, then successively choosing
with equal probability among the arcs emanating from the current node,
concatenating the lettér on the arc onto the end of the string, and proceeding
to the node at the end of the arc. From Servan-Schreiber et al (1988).

Figure 8. Hierarchical cluster analysis of states (patterns of activation on the
hidden units) at different points in processing each of several randomly
selected sequences. The diagram shows that the internal representations in
this case represent the node in the grammar that has been reached, not the
path that lead to the node. From Servan-Schreiber et al (1988). |

Figure 9. A complex finite state automaton containing two identical
embedded sub-automata. Adapted from Servan-Schreiber et al (1988). .
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