20

Role of the Hippocampus in Learning and Memory:
A Computational Analysis

J. L. McClelland
Center for the Neural Basis of Cognition and Carnegie Mellon University
Department of Psychology
115 Mellon Institute
4400 Fifth Avenue
Pittsburgh, PA 15213

Human amnesia

A striking finding in the literature on human memory is the profound but selective deficit
seen after damage to the hippocampus and related structures in the temporal lobes of the human
brain. This pattern of deficits was first seen in patient H.M. (Scoville and Milner, 1957), and has
now been replicated in the data of a large number of other patients with similar lesions. These
patients show a dramatic deficit in the ability to acquire new explicit memories for the contents of
specific episodes and events. For example, the ability to learn arbitrary word-pairs such as
“LOCOMOTIVEDISHTOWEL” s drastically impaired. Normal subjects will learn such lists after
a few presentations, so that whenever the first word of a pair is presented they will he able to recall
the second word of each pair. But, H.M. and other similar amnesics may tail to learn even one pair
after repeated presentations. There is also profound impairment in everyday memory abilities, such
as the ability to learn names of new people, or the ability to remember important personal events
and experiences.

At the same time these amnesics are completely normal in the use of their existing semantic
and procedural knowledge, and in fact their acquisition of new skills appears to be completely
intact. They also show after-effects from processing particular items that are identical to the after-
effects seen in normal people, in a wide range of tasks. Ex, if amnesic subjects read a word such
as “WINDOW” on a list, they show a normal amount of perceptual facilitation in the identification
of visually presented words due to a prior presentation of the word. Amnesics also show a severe
temporally graded retrograde amnesia for episodic information. Figure 1. shows data from four

1996.In T.Ono, B.L. McNaughton, S. Molotchnikoff, E. T. Rolls, and H. Nichijo (Eds.),

Perception, Memory and Emotion: Frontier in Neuroscience. Oxford: Elsevier Science, Ltd. 601-
613. ‘

535



a) Winocur, 1990 b) Kim & Faneslow, 1992
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FiG. 1. Panels (a)-(c) show behavioral responses of animals lesioned different numbers of days alter
exposure to relevant experiences, while panel (d) shows a comparable pattern from an experiment
with human subjects. (a) Food preferences exhibited by rats exposed to a conspecific (Winocur, 1990).
(b) Fear behavior shown by rats exposed to a contingency between tone and foot shock in a novel
environment (Kim and Fanselow, 1992). (c) Choices of reinforced objects by monkeys exposed to 14
training trials with each of 20 object pairs (Zola-Morgan and Squire, 1990). Panel (d) shows recall by
depressed human subjects of details of television shows aired different numbers of years prior to the
time of test, either before of after ECT (Squire and Cohen, 1979). Note that we have translated years
into days to allow comparison with the results from the animal studies. Reprinted from McClelland
et al. (1995).

studies of retrograde amnesia in rats, primates, and humans. In all cases we see that
there is a selective loss of memory for material occurring shortly before the lesion,
relative to more remote time periods. In humans, the period of selective loss can
extend over several years, though it is much shorter in rats and monkeys.

Organization of the human memory system

One view of the organization of mammalian memory that is consistent with these facts
is illustrated in Fig. 2. According to this view (McClelland er al., 1995), all kinds of
knowledge can ultimately be stored in the connections among neurons in the cortex
and other nonhippocampal structures such as the basal ganglia (for brevity I will refer
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Fii. 2. Conceptual sketch of the neocortical system and its connections with the hippocampal
system.

to this as the cortical system). We imagine that this cortical system learns gradually,
with each experience producing very small changes to connection weights. These small
changes, we assume, are the basis of repetition priming effects, and they gradually give
rise to cognitive skills. However, in addition to this cortical system, we assume that
there is also rapid storage of traces of specific episodes within the hippocampus. On
this view, when an event or experience produces a pattern of activation in the neo-
cortex, it produces at the same time a pattern of activation at the input to the
hippocampus. So for example, if | am introduced to someone, 1 form a pattern of
activation including the appearance of the person, the name, and other aspects of the
situation. Synaptic modifications within the hippocampus itself then autoassociate the
parts of the pattern. Later, when a retrieval cue is presented (let us say the person
reappears and I wish to recall his name), this then produces a partial reinstatement
on the hippocampal input pattern. This is then completed with the aid of the modified
synapses in the hippocampus, and then reinstated in the neocortex via return
projections. The assumption is that these changes are large enough so that with one
or a few trials they may sustain accurate recall, while the changes that take place in
the cortex are initially too small for that. Gradually, though, through repeated re-
instatement of the same trace, the cortex may receive enough trials with the same
association to learn it in the neocortical connections: This reinstatement can occur,
we suggest, either through repetition of the association over many different events;
or through repeated reinstatement from the hippocampus. Thus on this view the

hippocampus can serve both as the initial cite of storage and also as teacher to the
neocortex.

Why is the system organized this way?

The above description provides an account of the data, and although not everyone
accepts it, it is not really totally new. Many investigators have suggested some or most
of these same points. What I do not know of, however, is any clear explanation of why
the system might be organized in this way. We can phrase the questions as follows:
First, why is it that we need a special system for rapid storage of memories, if know-
ledge of all typgs is eventually stored in connectionist within the neocortex? Second,



why is consolidation of information into the neocortex so slow? Why does it require
many repeated reinstatements apparently spanning years in some cases?

The answers to these questions require us to consider the acquisition of both
procedural and semantic representations in connectionist networks. In such networks,
the effective discovery of the shared structure that underlies an entire domain—either
a procedural domain such as learning a skill or a semantic domain—requires gradual
learning, in which the learning of any one association is interleaved with learning about
other associations. ‘

First we consider procedural learning. The network—a fairly standard feedforward
network trained with backpropagation—was developed by Plaut and McClelland
(1993) to learn to translate alphabetic patterns representing the spellings of words into
phonological patterns representing their sounds. The training corpus consisted of a
set of 3000 monosyllabic words. Training proceeded very gradually, capturing the
gradual nature of the acquisition of reading skill; in fact the network was exposed to
the entire corpus of training examples several hundred times, with presentations of
more-frequent words given greater weight than presentations of less-frequent words.
After training, the network could read 99.7% of the words in the corpus correctly,
missing only ten words that were low in frequency and very exceptional either in their
spelling or in their pronunciation given the spelling—two examples are the French
words “sioux” and “bas”, which are very rare and completely inconsistent with English
pronunciation. For the vast majority of words, including exceptions such as “HAVE”,
“GIVE” and “PINT™, the network was correct. The network was also tested with many
pronounceable nonwords, and scored as well as normals in providing plausible
pronunciations—as high as 98% correct on some sets of items. Based on comparisons
of the networks performance with typical adult English speakers, we can say that the
network has gradually learned both the regular mapping between spelling and sound,
and the commonly occurring exceptions to it in a way that corresponds to native
English speakers’ capabilities in this regard. It has mastered, in short, the procedural
skill of translating from spelling to sound—through gradual, incremental learning,

Let us now consider a model that learns semantic information. This model was
constructed by Rumelhart (1990) to demonstrate how structured semantic represen-
tations can arise in PDP systems from experience with propositions about objects and
their properties. The network was trained to capture the information standardly stored
in old-fashioned semantic networks of the kind illustrated in the Fig. 3. The goal is to
allow the network to store information about concepts in such a way as to permit it
to generalize from what it has learned about some concepts to other related concepts.
In the old approach, this was done by storing information true of a class or subclass
of concepts at the highest possible level of the tree. In the new approach, this is done
by gradually learning to assign each concept a distributed representation, capturing
its similarity relations to other concepts.

Rumelhart’s network is shown in Fig. 4. It consists of a set of input units, one for
each concept and one for each of several relations: “ISA”, “HAS”, “IS”, and
“CAN". At the output it consists of a set of units for various completions of simple
propositions, such as “ROBIN ISA BIRD”, “ROBIN CAN FLY”, etc. In between
there are two layers of hidden units, one to represent the semantic relations of the
concepts and another o combine them with the relations to activate the correct
outpults.
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Fic. 3. A semantic network of the type formerly used in modcls of the organization of knowledge in
memory. After Rumelhart and Todd (1993). Reprinted from McClelland e al. (1995).

Rumelhart trained this network with a set of propositions involving the concepts
shown in the previous figure. There was one input pattern for each concept-relation
pair, and the task was to turn on all the output units representing correct completions
of the proposition. For example, when the input is “ROBIN ISA” the correct output
is “BIRD”, “ANIMAL”, “LIVING THING”. The entire set of patterns was presented
to the network many times, making small adjustments to the strengths of the con-
nections after the presentation of each pattern.

After the network has mastered the training set, it is possible to examine the
representations that the network has learned to assign to the words in the concepts.
We can look either at the patterns themselves, as well as their similarity relations.
McClelland et al. (1995) repeated this simulation, and the results arc shown in
Fig. 5. The figure demonstrates that the network has assigned similar patterns to
similar concepts—so for example, the pattern for oak is similar to the pattern for pine,
the pattern for daisy is similar to the pattern for rose, etc.

Now we may consider how we may achieve generalization in this network. We may
do so if we can assign to a new pattern a representation that is similar to the
representation of other similar concepts. To illustrate this, Rumelhart trained the
network to produce the correct class inclusion output for the concept sparrow. He
simply presented “Sparrow isa” as input, trained the network to produce the correct
response = “BIRD, ANIMAL, LIVING THING”. This caused the network to assign
a pattern to sparrow very close to the patterns for robin and canary. As a result the
network was able to answer reasonably when probed with other propositions involving
sparrows. It ggid the sparrow can grow and can fly, it has wings, features and skin, and
it is small. It was unsure about whether the sparrow could sing and about its color.
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Fii. 4. The connectionist network used by Rumelhart to learn propasitions about the concepts shown
in the Fig. 3. The entire set of units used in the actual network is shown. Inputs are presented on the
left, and activation propagates from left (o right. Where connections are indicated, every unit in the
pool on the left (sending) side projects to every unit in the right (receiving) side. An input consists of
a concept-relation pair; the input robin can is illustrated here by darkening the active input units. The
network is trained to turn on all those output units that represent correct completions of the input
pattern. In this case, the correct units to activate are grow, move and fly; the units for these outputs
are darkened as well. Subsequent analysis focuses on the concept representation units, the group of
eight units to the right of the concept input units. Reprinted from McClelland et al. (1995).

Thus the network learned to inherit knowledge from what it had learned about other
birds without direct instruction.

The point here is that PDP models, trained slowly via interleaved presentation on
a representative sample of an entire domain of knowledge, can gradually acquire
knowledge of structured procedures such as spelling-sound correspondence and
structured semantic domains such as the domain of living things.

To make the point even more clear, let us consider what happens in Rumelhart’s
semantic network if we try to teach it some new information in either of two different
ways. The first way, which we call focused learning, involves teaching the network the
new information all at once, without interleaving it with ongoing exposure to the
structure of the entire domain. The second way, which we call interleaved learning,
involves simply introducing the new information into the mix of experiences that
characterize the entire domain. As our example, we will consider the case of the
penguin. Now as we all know, the penguin is a bird, but it can swim, and it cannot fly.
We therefore took Rumelhart's semantic network and taught it these two things in the
two different ways just described. The focused case involved simply presenting the two
items repeatedly and watching the network learn. The interleaved case involved adding
the two new items to the same training set used previously and continuing training as
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Fia. 5. Similarity structure discovered in our replication of Rumelhart’s learning experiment. Initially,
the patterns are all quite similar, and the weak similarity structure that exists is random. The concepts
become progressively differentiated as learning progresses. Reprinted from McClelland er al. (1995).

before. The results of these experiments, for the case of “penguin can grow-swim-
fly”, are shown in Fig. 6. Here if we look at the number of presentations required for
acquisition, in the left panel of the figure, we see that focused learning is better, since
acquisition is considerably faster with focused learning than it is with interleaved
learning. But it turns out that this slight advantage has been purchased at a consider-
able cost. For it turns out that with focused learning, the training on the case of the
penguin has strongly corrupted the models understanding of other concepts. Indeed
if we consider the networks knowledge of the concept robin, in the right panel, we see
that focused learning has produced a dramatic interference. In fact, the model now
thinks that all animals can swim, and even some plants. But in the case of interleaved
learning, we see very little interference with what is already known. To be sure there
is a slight effect, but as interleaved learning proceeds this is even reduced gradually
over trials. Thus with focused learning new knowledge corrupts the structured database
in the network; with interleaved learning new knowledge is gradually added with no
disruption.

This demonstration recapitulates a phenomenon that has previously been reported
by researchers who have tried to use networks of the type used in Rumelhart’s semantic
network to model episodic memory (McCloskey and Cohen, 1989). They termed the
phenomenon catastrophic interference, and rejected networks of the type that gradual-
ly discover structure through incremental learning as models of episodic memory, since
storage in episodic memory clearly involves what we have called focused learning.
Backpropagation networks are poor models for this kind of learning. However, the
kind of learning that they are good at is just the kind of learning we think the cortex
is specialized for—gradual discovery of skills from the overall structure of experience.

For the discovery of overall structure, gradual, interleaved learning is necessary, so
that the connéction weights in the network come to reflect influences of all of the
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et al. (1995).
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examples in the domain. In fact, it can be shown mathematically that in order to
converge on a set of connection weights that best captures the structure of a particular
domain, it is necessary in the limit to reduce the learning rate asymptotically to (); the
closer it gets to zero, the better we will approximate correct connection weights. This
point leads to the observation that if the brain is to be able to extract the structure, it
is going to have to learn slowly. '

With these ideas in mind, we can now return to the two questions asked above.

First, why is it that we need a special system for rapid learning of the contents of
specific episodes and events, if knowledge of all types is eventually stored in connec-
tionist within the neocortex?

The answer begins with the idea that the cortical system is specialized for the extrac-
tion of shared structure of events and experiences. In order to do this, and to avoid
catastrophic interference with that structure, it is necessary for the cortical system to
use a very small learning rate. In this context, the role of the hippocampus is to provide
a system in which the contents of specific episodes and events can be stored rapidly,
without at the same time interfering with the structure that has been extracted by the
cortical system.

Second, why is consolidation of information into the neocortex so slow? Why does
it require many repeated reinstatements apparently spanning years in some cases?

Our answer is that consolidation is slow precisely because it would be disruptive if
information stored in the hippocampus were incorporated in the neocortex all at once.
It is only when new information is gradually interleaved in this way that we are able
to incorporate new knowledge into the neocortical system without interfering with
what we already know. '

Simulation of retrograde amnesia

This observation has now lead to simulations of retrograde amnesia. Due to space
limitations I will describe only the simulation of the experiment of Zola-Morgan and
Squire (1990). They taught monkeys a series of conditional discriminations. Each
conditional discrimination involved two junk objects (for example, a blue plastic cup
and a yellow toy dump truck). Under one object the animal could find a reward. The
monkeys received 14 trials with each pair of junk objects. Training was arranged so
that each monkey learned 20 different discriminations at 16 weeks before surgery,
another 20 at 12 weeks before surgery, and 20 each at 8, 4, and 2 weeks before surgery.
Some animals received lesions removing the hippocampus and related structures, and
others were controls with sham surgery. After time for recovery from surgery the
animals were tested and the hippocampal group showed a selective deficit for items
learned 2-4 weeks before surgery compared to items learned 12-16 weeks earlier. To
simulate this, we imagined that the memory system consists of two parts, a slow-
learning cortical network—simulated using a standard backpropagation network—and
a more rapidly learning hippocampal network. We do not actually implement a hippo-
campal network, but instead we treat is at a black box with certain storage, decay, and
retrieval properties, and we imagine that it can serve as a source of training patterns
for the neocortex. The basic idea (illustrated in Fig. 7) is that when an experience
occurs it leaves a trace both in the hippocampus and in the neocortex, but initially the
trace in the hippocampus is much stronger. The trace decays relatively rapidly from
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Fic. 7. A simple two-compartment model that characterizes memory storage and decay in the
hippocampal system, together with consolidation and subsequent decay in the neocortical system.
Arrows are labeled with the parameters of the simple model; Sx(0) and S.(0) refer to the strength of
the hippocampal and neocortical traces due (o the initial exposure to the event, Dy, and D, refer to
the rate of decay from the hippocampal system and the neocortical system respectively, and C refers
to the rate of consolidation. Reprinted from McClelland et al. (1995).

TaBLE |. Parameter values used in fitting the simplified Iwo-memory model to data from four
consolidation experiments

Parameter
Experiment D, C D, A (1)) $.(0)
Winocur (1990) 0.250 0.400 0.075 0.900 0.100
Kim and Fanselow (1992) 0.050 0.040 0.011 0.800 0.030
Zola-Morgan and Squire (1990) 0.035 0.020 0.003 - 1.000 0.100
Squire and Cohen (1979) 0.001 0.001 0.001 ° 0.500 0.000

D, represents the rate of hippocampal decay; C represents rate of consolidation in oine
contexts; D, represents rate of decay from neocortex; Sy(0) represents initial strength of the
hippocampal trace; S,(0) represents initial strength of the neocortical trace.

the hippocampal system, but while it remains it has the chance to be reinstated in the
neocortex. Meanwhile in the neocortex other events and experiences are coming along
and changing the connection weights as well so the learning of the new experience is
interleaved with ongoing exposure to other events and experiences. The simulation
results are shown along with the data from Zola-Morgan and Squire (1990) in Fig. 8.

This simulation has led us to consider the parameters of the consolidation process.
As noted previously there are vast differences between the rate of consolidation in
different studies. Indeed, we were able to fit parameters to the simple consolidation
model shown in Fig. 7—the results are shown in Table 1. The fits indicate that the rate
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of decay from the hippocampal system, the rate of consolidation into the neocortical
system, and the rate of decay from the neocortical system tend to covary across studies.
We consider possible reasons for the differences between species below, Here we
consider the difference between the studies of Winocur (1990) and Kim and Fansclow
(1992). In the former, the rate of hippocampal decay is apparently far greater than in
the latter. The presentation of the shock used by Kim and Fanselow (1992) apparently
led to effects that persist for far longer than the expericnce used by Winocur (1990),
who simply exposed rats to a conspecific who had eaten food flavored with cinnamon
or chocolate. In the latter case the animals acquired a preference for the food eaten
by the conspecific, but even in normals this preference wanes over several days. One
pussible explanation for this may be that highly emotionally charged experiences such
as those involving the kind of intense shock used by Kim and Fanselow ( 1992) produce
much longer lasting hippocampal traces than less emotionally charged experiences like
exposure 1o a conspecific who has caten a particular food. Interestingly there is evi-
dence (Barnes, 1979; Abraham and Otani, 1991) that strong inducing stimulation
produces a longer lasting form of long-term potentiation in hippocampal slices than is
produced by weaker stimulation. The decay constants of the weak and strong forms of
potentiation in the rat hippocampus are remarkably similar to the decay constants found
in our fits to the data from Winocur (1990) and Kim and Fanselow (1992), respectively.

Implications

The ideas presented here have many important implications. I can only mention two
implications briefly here. First, they suggest possible explanations for the large species
differences between rats, primates and humans. It may be that the human neocortex
must learn much more slowly than in less advanced animals, so that humans can take
advantage of the much more complex, culturally transmitted, structure present in their
environment. Also, it may be noted that the optimal procedure for learning structured
environments may be to start with relatively large weight adjustments and then
gradually reduce the size; in this way it is possible to guarantee convergence to the
best possible set of weights (White, 1989; Darken and Moody, 1991). In this case, we
would expect more rapid cortical learning early in life compared to later time periods.
Second, these ideas provide one possible account of the phenomenon of infantile
amnesia—the fact that we forget our early childhood expericnces (Howe and Courage,
1993). According to the present theory, infantile amnesia could be due to the fact that
the neocortical representations are changing relatively rapidly early in life, so that even
if they are consolidated initially into the neocortical system they would tend to be
overwritten by subscquent changes in the representations and connections. Later in
life, as the neocortical representations became relatively stabilized, consolidated
knowledge would tend to become less susceptible to interference.
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