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he scientific perspective I will be considering in this article shares several things

with Freud’s Project for a Scientific Psychology. One of these is the effort to build
a strong bridge between physiology and cognition. This is clearly a major theme in
Freud’s scientific program, and it relates very closely to the current emphasis in cogni-
tive neuroscience on building connections between the cognitive and the physiological
levels. This article will illustrate one contemporary approach to making such connec-
tions. Another thing I myself share with Freud is a primary commitment to the psy-
chological issues. The physiology is very important because it offers a chance to become
explicit about the mechanistic basis of psychological processes, but the psychological
level—experience, behavior, and cognition—remains the main focus. The big advantage
we have today is the opportunity to implement our ideas as explicit models and test
their ability to actually affect behavior. If Freud had had this opportunity, I believe that
he would have embraced it avidly.

A third point of similarity is that Freud’s ideas were very important in making ex-
plicit a separation between conscious thought processes and other kinds of aftereffects
of experience that influence behavior. His goal was to understand how past experience
could influence behavior without explicit, conscious reference to that particular expe-
rience. The work that T will be describing relates very closely to this theme.

Finally, the work I will present provides a way of thinking about the nature and
function of aspects of sleep processes, including dreaming. The view of the role of
sleep is very different from Freud’s view, and a little closer to other views expressed in
this volume, but there is a degree of common ground in the idea that dreaming provides
an opportunity to replay aspects of experience.

The plan of this article is to introduce the concept of complementary learning sys-
tems in the brain. We will see that one of these learning systems is really closely tied with
what we think of as our explicit memory—our specific ability to remember particular
episodes in advance and to relate our current experiences to previous experiences that
we and others might have had. The other learning system (or set of learning systems)
is one that has much more to do with what we now call implicit learning—learning that
influences behavior but without that influence being explicitly noted by us at a time that
the behavior occurs.

I will present the neuropsychological evidence that suggests there is a very, very
strong dissociation between these two kinds of learning and I will also provide one sort
of putative account of how brain systems might be organized so as to implement these
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two very different kinds of learning in the brain. Then I will suggest why the system
might be organized in this way. The goal here will be to indicate why there might be a
need to have a separation between explicit recollective memory and more implicit learn-
ing mechanisms. The article will conclude with a few words about the relationships be-
tween ideas and some issues that may be of some clinical relevance, such as how expe-
rience becomes ingrained in our immediate psychological reactions to events and
experiences, and in our behavioral responses to these experiences.

THE AMNESIC SYNDROME

The starting point for our consideration of the idea of complementary learning
systems is the striking neuropsychological dissociation between explicit and implicit
learning that is found in patients like HM (Scoville & Milner, 1957). As is widely
known, HM underwent a bilateral removal of the hippocampus and related areas on
both sides of the brain, after which he totally lost the ability to form new explicit mem-
ories. He was unable to remember events and experiences that occurred after the surgery
or to explicitly remember having seen a particular individual before or learn the name
of someone whom he had met subsequent to the surgery. Within psychological exper-
imental research, the deficit manifests itself quite clearly in tasks such as paired asso-
ciate learning. Normal subjects can learn to associate randomly paired words with
each other, such as LocOMOTIVE-DISHTOWEL, if they are given several exposures to this
pair along with several others in a list. After several exposures, subjects can typically
report the second member of each pair, then give the first word of the pair as a cue. In
the case of HM, many repetitions of even a short list of paired associates left him vir-
tually unable to recall any of the associated items. Thus, his is a very striking and dra-
matic deficit.

At the same time, the ability to acquire new cognitive skills, and to show implicit af-
tereffects of specific experiences remains completely intact. One of the first demon-
strations of this was HM’s ability to learn how to trace a figure while looking at his own
hand doing the tracing through a mirror. These sorts of skills are learned slowly by nor-
mals and by amnesics; there is apparently no difference in the rate of learning between
normal and amnesic groups (Cohen & Squire, 1980). One of the most striking things
about these tasks is that when one brings the patient back, day after day, he or she, de-
spite getting better and better just like normals, cannot remember doing the task, see-
ing the apparatus before, or knowing what we are going to do with it. Amnesic patients
are completely unaware of any prior experience and cannot answer these questions, but
they immediately show the effects of prior experience as soon as they begin to perform.
Similarly striking is a finding called spared repetition priming. In this case, the subject
is first shown a list of items to read aloud, e.g., words such as winpow (Graf, Squire,
& Mandler, 1984). Later, at test, the subject is given a fragment of the word (e.g.,
wIN__) and asked to complete it with the first word that comes to mind. In this task
normals and amnesics complete the fragment with the word previously seen, even
though, once again, the amnesics have no recollection of previously reading any words.
So, both with skills and item-specific aftereffects, we see a very striking dissociation of
implicit learning from explicit memory.

Finally, I want to touch on a third aspect of the neuropsychology that will be very
important in our theory of complementary learning systems, namely the phenomenon
of a temporally graded retrograde amnesia. This phenomenon was known to Ribot
(1882) in the nineteenth century, and has now been replicated in several studies in an-
imals. Basically, the phenomenon is this: If a human or animal has an experience on a
given day, and then the hippocampus is removed bilaterally immediately thereafter,
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there is a nearly total loss of the memory for that experience. But if the hippocampus
is left intact for a period of time after the initial experience and then is removed, the
subjects will show gradual increases in the degree of retention. Several studies illus-
trating this effect are shown in FIGURE 1; one study involves placing the animals in an
environment they have never seen before, and subjecting them to pairings of tones
with shocks. Experimental animals had the hippocampus lesioned bilaterally, one day,
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FIGURE 1. Panels (a—) show behavioral responses of animals receiving extensive hippocampal
system lesions (solid circles) or control lesions (solid squares) as a function of the numbers of days
elapsing between exposure to the relevant experiences and the occurrence of the lesion. Bars sur-
rounding each data point indicate the standard error. (a) Percent choice of a specific sample food
(out of two alternatives) by rats exposed to a conspecific who had eaten the sample food. (b) Fear
(freezing) behavior shown by rats when returned to an environment in which they had experienced
paired presentations of tones with foot shock. (c) Choices of reinforced objects by monkeys ex-
posed to 14 training trials with each of 20 object pairs. (d) Recall by depressed human subjects of
details of television shows aired different numbers of years prior to the time of test, after electro-
convulsive treatment ('circles) or just prior to treatment (squares). Here we have translated years
into days to allow comparison with the results from the animal studies. NotE: Data in (a) are from
Figure 2 in Winocur (1990). Data in (b) are from Figure 2 in Kim & Fanselow (1992, p. 676). Data
in (c) are from Figure 2 in Zola-Morgan and L. R. Squire (1990, p. 289). Data in (d) are from Fig-
ure 1 in Squire & N. Cohen in (1979). Adapted with permission from Figure 1 in McClelland, Mc-
Naughton & O’Reilly (1995). Copyright 1995 by the American Psychological Association.
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one week, two weeks, or four weeks after the experience. Control animals had sham
surgery at the same time points after the experience. After recovery from surgery, ani-
mals were placed back in the apparatus and the extent to which they exhibited fear was
assessed by how much time they spent freezing. The animals who had the lesion one day
after the experience showed almost no evidence of freezing, whereas those at later pe-
riods showed a greater and greater evidence of retention through the freezing measure.
The control groups showed strong retention throughout. So, there is some sort of
process that goes on in the brain that takes experiences that are initially quite suscep-
tible to lesions of the hippocampal system and then makes them insusceptible. That
process has been called consolidation, but that is really just a label.

A MECHANISTIC ACCOUNT

The next step in our analysis is to provide a mechanistic characterization of the
processes that give rise to the pattern of findings just discussed. The account is not the
only one that is possible. It is a theory in the sense that it is an interpretation of the facts.
There are a lot of aspects of it that have to be considered hypothetical, but it appears
to be consistent with what we know physiologically. There are many who would argue
for other interpretations, but this one provides one way of making sense of the data,
and will serve as the basis of the rest of what I will have to say. The idea is best described
in relation to the schematic diagram shown in FIGURE 2.

The starting point of the account is the idea that information processing takes place
via the propagation of activation among neurons in what I called the neocortical sys-
tem, which includes relatively peripheral input and output systems, as well as more cen-
tral, highly interconnected brain regions, as illustrated in the figure. Whenever a stim-
ulus is presented to our sensory system, say a visually presented word, it produces a
pattern of activity in the appropriate input pathway, in this case the visual one. This ac-
tivity gives rise to activity in the more central parts of the cortical system, including
those perhaps representing the visual appearance, the meaning, and the sound of the
word; and this in turn may give rise to an overt response, such as reading the word
aloud. In general, any given event or experience produces a rather distributed pattern
of activity in many parts of the cognitive system, and the information processing that
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FIGURE 2. A schematic diagram of the information processing and learning systems in the
mammalian brain and their interconnections with the hippocampus and related structures in the
medial temporal lobes.
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we do when confronted with this stimulus occurs through the propagation of this ac-
tivation.

Now, in this context we think about implicit learning as being the result of small
changes that occur to the synapses among the neurons that participate in the process-
ing event itself. In connectionist models, as I would suggest in the brain, these small
changes tend to facilitate the processing of the item if it is presented again at a later
time. Correspondingly, in the case of mirror reading where the subject is reading one
word after another reflected in a mirror, each of those acts of reading a word would
produce small changes in the connections that would accumulate gradually, leading to
the build-up of the skill of reading mirror-reflected text. A key aspect of the account
of the neuropsychological data is the suggestion that the changes that are made on any
given processing episode or event are very subtle, and as such they are insufficient to
serve as the basis forming adequate associative links between arbitrarily paired items
that have never been paired together before.

The pairing of words like LOCOMOTIVE and DISHTOWEL or a particular individual’s
name with the corresponding face is such a completely arbitrary one, and the notion
is that although the kinds of changes that underlie skill-learning are formed with
such items as well, those are not sufficient in and of themselves to provide a basis for
the rapid formation of an arbitrary association linking these previously unrelated el-
ements. My account proposes that these links rely on the hippocampus and the related
structures in the medial temporal lobes of the brain. The notion is that the pattern
of activity that is present over the neocortex at the time when a particular experience
occurs, such the joint presentation of LocOMOTIVE and DISHTOWEL by a particular per-
son at a particular time and place, gives rise to a corresponding representation, over
a smaller number of neurons, within the hippocampal region. Large plastic changes
among the activated neurons within the hippocampal region then serve to store the
associations between the particular unrelated elements conjoined within the event.
The changes are assumed to occur within the hippocampal system itself. Later on
when the word LocoMOTIVE is presented and the subject is asked to recall the word
that had been paired with it earlier in training, the instructions lead to the reinstate-
ment in the cortex of a representation of the training context together with the word
LocoMOTIVE. These in turn lead to a reinstatement of the corresponding aspects of
the pattern for the entire event within the hippocampal system. The account assumes
that the plastic changes among the neurons there that occurred during learning will
allow the rest of the pattern that was present at the time of study to be filled in. This
is the crucial step in the recall of the paired-associate DiISHTOWEL. The return con-
nections are assumed to play back the results to the cortical system. Recall will not
in general be a full reinstatement of the exact details of the original event, but the as-
sumption is that it can be sufficient to provide the basis for an explicit report of the
associate.

It should be obvious how these ideas predict that the removal of the hippocampus
and related structures would lead to the inability to form new arbitrary associations or
to recall arbitrary associations formed shortly before removal of the hippocampal sys-
tem. At the same time it should be clear why this would not disrupt the subtle item-
specific aftereffects seen in repetition priming studies or the gradual development of
skills. What remains is to account for temporally graded retrograde amnesia. The sug-
gestion is that there must be some sort of off-line process that reinstates patterns of ac-
tivity that arose within the hippocampal system during the initial experience, and plays
them back to the cortical system. In the case of the Kim and Fanselow (1992) experi-
ment with rats who experienced tones paired with shock in a novel environment, the
suggestion is that while the animal is sitting quietly in its home cage or perhaps during
sleep, patterns representing the association of tone and shock with the novel environ-
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ment are reactivated in the hippocampus and played back to the cortex, and each time
the pattern is played back it serves as a kind of training trial for the cortical system.
Gradually over repeated reinstatements the cortex learns the associative relationship in
the same way it would learn a cognitive skill: by this gradual build-up of small con-
nection changes.

EVIDENCE FROM NEUROPHYSIOLOGY AND ANATOMY

As previously noted, the account I have just given is clearly provisional; it is not the
only one consistent with the behavioral data, and there are various other proposals dif-
fering in some ways from what I have just described. In what follows, however, I will
adopt it as the basis for raising further points of discussion. Before doing this, it is per-
haps worthwhile to call attention to some of the exciting physiological data that sup-
port several key aspects of the account. For a more detailed presentation of this evi-
dence, see McClelland, McNaughton, and O’Reilly (1995).

Long-term Potentiation

First, it is worth noting that the phenomenon of long-term potentiation was first de-
scribed (Bliss & Gardner-Medwin, 1973; Bliss & Lemo, 1973) in the hippocampus,
and its associative character was established through further research on plasticity in
hippocampal pathways (McNaughton, Douglas, & Goddard, 1978; Levy & Steward,
1979; Barrionuevo & Brown, 1983). This form of synaptic modification may be the
neural basis of hippocampal-system—dependent memory trace formation. Long-term
potentiation (LTP) is extremely easy to induce in several parts of the hippocampus and
there are huge number of NMDA receptors there, which are thought to be critical for
synaptic plasticity, suggesting as the theory requires, that is a major locus of associa-
tive learning in the brain.

Input and Output Pathways

The necessary input and output pathways to carry information into and out of the
hippocampal system clearly exist. Squire, Shimamura, and Amaral (1989) document
the fact that there are extensive bidirectional projections between nearly all of the neo-
cortical association areas and many other forebrain areas on the one hand and the re-
gions surrounding the hippocampus itself on the other. These para-hippocampal
regions (including the entorhinal cortex) in turn project to the hippocampus proper.

Reinstatement of Neural Activity during Sleep

A growing body of data from studies in rats show that patterns of neural activity
that arise as the rat locomotes through a spatial environment are re-instated during sub-
sequent sleep (Wilson & McNaughton, 1994). Much more research needs to be done,
but the most recent data (Skaggs & McNaughton, 1996) clearly suggest that the
location-dependent, sequential patterns of firing seen in the hippocampus during be-
havior recur while the animals are sleeping after the behavioral session, but not when
they are sleeping before the behavioral session starts.
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QUESTIONS ARISING FROM THE MECHANISTIC ACCOUNT

Given all of this evidence consistent with our provisional account, we can ask the
question, why might the brain be organized in this way? In particular, two questions
arise:

* Why do we need this special system in the hippocampus at all, if ultimately all
kinds of things are going to be consolidated into the cortex anyway? Why shouldn’t
the brain have been designed so as to just go ahead and store everything directly
in the cortex in the first place?

Why does consolidation take such a long time? In the rodent, the process can take
as much as a month; in humans the evidence suggests that the consolidation
process can go on over a period of many years, at least a decade or more. The ef-
fects of hippocampal lesions can produce retrograde amnesia gradients that extend
over a 10- or 15-year period in humans. So, it looks as though there is a very, very
gradual process of consolidating new information initially stored in the hip-
pocampal system into the neocortex.

In the rest of this article I would like to summarize some of the results arising from con-
nectionist models of learning and memory that suggest one set of possible answer to
these questions. Connectionist systems are artificial neural networks that abstract away
from many of the details of the underlying physiology, but they are neural networks in
the sense that they represent currently active mental contents as patterns of activity over
a set of simple processing units, and incorporate knowledge and memory in the con-
nections that exist between the units. Connectionist models then allow us to simulate
the process of learning in such systems and to explore what happens as we try to teach
various things to such systems.

INSIGHTS FROM CONNECTIONIST MODELS

One of the key observations that have come out of connectionist models over the
last several years is the fact that they can learn to extract the general structure that is
present in ensembles of events in experiences, thereby allowing them to generalize to
novel inputs. Chomsky was one of the first to point out that such generalization is cru-
cial. He stressed its importance for language, while others have stressed the impor-
tance of generalization for many other domains. The key point for us is that in order
for a connectionist model to learn how to generalize properly, it must learn slowly, ac-
cording to a procedure that I call interleaved learning. Basically, the idea is that the sys-
tem has to learn, not so much the individual cases that make up the examples of a do-
main, but the general structure of the domain that is exemplified by the individual
cases. In order for the direction of change of the connection weights to be governed by
the whole ensemble, learning about any case has to proceed very slowly, interleaved with
learning about other cases, so that the direction of change is governed by the average
over the entire ensemble experiences.

The Domain of Living Things

As an example, let us consider a particular domain in which the idea that knowledge
must be structured to support generalization has often been discussed, namely the do-
main of living things. Quillian (1968) considered living things as an example of the im-
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portance of structure in conceptual knowledge. He suggested that there would be great
advantages if the knowledge of living things was organized into a hierarchy, with a
major subdivision into the plants and the animals and further subdivisions into sub-
types such as flowers, trees, birds and fish (note that we speak of a hierarchy based on
ordinary experience, rather than biological research in this context). Quillian’s pro-
posal is illustrated in FIGURE 3.

The motivation for thinking knowledge is organized as shown in the figure is that
this organization allows economical storage of particular factual information at par-
ticular points in the hierarchy, and this information can then be used in an inference
process to figure out what conclusions apply to particular cases. The hierarchical or-
ganization is useful because there are facts that are generally true of everything below
a particular node in the hierarchy that will not be true of anything at an alternative node
at the same level, so that we can store information economically by organizing our
knowledge in this kind of a way. For example, animals move but plants do not, so we
can store that at the level of animals. Similarly, birds fly and fish do not, while fish swim
and birds do not. We can store those things here and if we wanted to find out whether
a robin can fly, we could just follow the links in the diagram: Note that each link rep-
resents a proposition, either about a class-inclusion relation (“an X isa Y”) or about a
specific property or capability (“An X has P” or “An X can C” where P is a property

living thing
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FIGURE 3. A semantic network of the type formerly used in models of the organization of
knowledge in memory. All of the propositions used in training the network are based on the in-
formation actually encoded in this figure. For example the network indicates that living things can
grow; that a tree is a plant; and that a plant is a living thing. Therefore it follows that a tree can
grow. All of these propositions are contained in the training set. NoTE: Reprinted with permission
from McClelland, McNaughton & O’Reilly (1995). Copyright 1995 by the American Psycholog-
ical Association.
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and C is a capability). A robin is a bird and a bird can fly, so therefore, a robin can fly.
Thus, structuring our knowledge provides us with a useful way of storing information
efficiently and then using inferences to derive new results. Generalization comes about
very simply. If we are told that a new animal is a bird, for example, we can simply store

. it by connecting it to the bird node via an “isa” link; we can then infer that it can fly
just as we could for the case of the robin already considered.

Now, Quillian’s particular proposals have fallen from favor for a variety of reasons,
and in fact it is not my intention to suggest that connectionist models are ways of cap-
turing Quillian’s ideas in exactly the same form. In fact, they capture his ideas in a very
different form—one which, I suggest, will eventually be able to overcome most of the
difficulties that the original Quillian proposal failed to resolve. Space prevents a detailed
presentation of this alternative way of capturing the taxonomic hierarchy, but should
be sufficient to provide a general sense of what is involved. The crucial point for us will
be to see how in the connectionist system the structuring of the knowledge is captured
in the representations that the system learns to assign to various concepts through in-
terleaved learning. '

A Connectionist Model that Learns about Living Things

FIGURE 4 shows a connectionist network that can learn the structure that is present
in domain of living things as illustrated in FiGURE 3. I should note here that the ex-
ample, and indeed the choice of this domain to illustrate points related to those I will
be making, comes from the work of Rumelhart (1990; Rumelhart & Todd, 1993). The
first set of results are based on a replication of simulations reported in these other
sources.

The network seen in FIGURE 4 consists of several layers of units. On the left are
input units, on the right are output units, and in between are two sets of what are
called “hidden units” in connectionist terminology, in that their states are not dictated
directly, but are determined by the learning process. The task the network is given is to
take inputs in the form of partial propositions consisting of a concept-relation pair,
such as, let us say, “robin can,” aind then produce an output that indicates what a robin
can do, by activating the units corresponding to the actual capabilities of a robin. So,
in this case the output should be “grow”, “move” and “fly”—this correct or desired out-
put is illustrated by darkening the corresponding units in the figure.

Learning in such a network occurs by presenting an input, propagating activation
forward through the network to produce an output, comparing the results to the desired
output, and then adjusting each connection weight in the network to reduce the dis-
crepancy between the obtained and the desired result. Propagation of activation de-
pends on the connection weights in the network: Each unit simply adds up the inputs
it receives from each unit that projects to it, with each input multiplied by the value of
the weight on the connection. If the summed input is positive, the unit tends to take on
an activation close to 1; if negative, the activation will be close to 0. The exact value of
the activation is a smooth, monotonically increasing function of the summed input,
bounded below by 0 and above by 1.0.

The network is initialized with random connection weights, so that at first its out-
put is very weak and completely random with respect to the correct response. Gradu-
ally, however, as the learning procedure is applied repeatedly for each training case (in
this example, the inputs consist of all of the possible concept—relation pairs; in each
case the network is trained to activate all of the valid completions of the pair), the net-
work comes not only to be able to produce the correct answer, but also to capture the
structure of the domain.
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FIGURE 4. Our depiction of the connectionist network used by Rumelhart to learn propositions
about the concepts shown in FIGURE 3. The entire set of units used in the actual network is
shown. Inputs are presented on the left, and activation propagates from lef? to right. Where con-
nections are indicated, every unit in the pool on the lef? (sending) side projects to every unit in the
right (receiving) side. An input consists of a concept-relation pair; the input robin can is illustrated
here by darkening the active input units. The network is trained to turn on all those output units
that represent correct completions of the input pattern. In this case, the correct units to activate
are grow, move and fly; the units for these outputs are darkened as well. Subsequent analysis fo-
cuses on the concept representation units, the group of eight units to the right of the concept input
units. NoTE: This figure is based on the network depicted in Rumelhart and Todd (1993, Figure
1.9, p. 15). Reprinted with permission from McClelland, McNaughton & O’Reilly (1995). Copy-
right 1995 by the American Psychological Association.

Discovery of Structure

The crucial point to note is that it is always possible in such networks to train them
to produce any given output in a single trial. If we do that, however, the knowledge will
not be structured, and as the network learns each new thing, the changes to the weights
will tend to interfere with what it has learned already. On the other hand if the learn-
ing is very gradual, so that after each presentation of a particular item the weights are
changed just a tiny bit, moving them just slightly in the direction of producing the cor-
rect answer, what happens is that the connection weight changes start to build up ways
that capture the structure of the domain, so that the network gradually learns to treat
as similar those concepts for which the answers are similar. It gradually learns, in short,
to assign internal representations inside the network that capture the similarities and
differences that exist in the propositions that are true of the concepts.

We can see these points illustrated if we look at the patterns of activation that the
network learns to form of the the first (leftmost) set of hidden units, as a result of the
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FIGURE 5. Representations discovered in our replication of Rumelhart’s learning experiment,
using the network shown in FIGURE 4. The figure presents a vertical bar indicating the activation
of each of the eight concept representation units produced by activating the input unit for each
of the eight specific concepts. The height of each vertical bar indicates the activation of the cor-
responding unit on a scale from 0 to 1. One can see that initially all the concepts have fairly sim-
ilar representations. After 200 epochs, there is a clear differentiation of the representations of the
plants and animals, but the trees and flowers are still quite similar as are the birds and the fish.
After 500 epochs, the further differentiation of the plants into trees and flowers and of the ani-
mals into fish and birds is apparent. Reprinted with permission from McClelland, B. L. Mc-
Naughton & O’Reilly (1995). Copyright 1995 by the American Psychological Association.

interleaved learning process. These patterns are shown in FIGURE 5 at three different
points in learning, one very early in training before the network has learned very much,
one at the end of training where it has learned all the facts in this domain, and one at
an intermediate point in training. For each concept, at each point in training, eight ver-
tical bars are shown, each of which indicates the activations of one of the hidden units
when that concept is presented as the input. What one can see is that early in training
all the patterns look very similar. All the units have sort of weak, intermediate states
of activation. At the end of training on the other hand, the concepts that are very sim-
ilar have acquired very similar representations, so the “oak” and the “pine” have very
similar patterns of activity as do the “rose” and the “daisy”, the “canary” and the
“robin” and the “salmon” and the “sunfish.” FIGURE 6 shows the same results again,
this time in terms of a clustering analysis which essentially recovers, albeit in a differ-
ent way, the hierarchical structure that Quillian suggested underlies our knowledge of
living things. The clustering analysis shows two points that were not as apparent before.
First of all, at the end of training, the network has captured the structure of the entire
hierarchy, in that the representations of the individual concepts are not only grouped
into fish, birds, trees, and flowers, but the fish cluster with the birds and the trees clus-
ter with the flowers. This all occurs because many of the things that are true of fish are
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FIGURE 6. Similarity structure discovered in our replication of Rumelhart’s learning experi-
ment, using the representations shown in FIGURE 5. These analyses make the similarity relation-
ships among the patterns shown in the preceding figure explicit. The clustering algorithm recur-
sively links a pattern or a previously-linked group of patterns to another pattern or previously
formed group. The process begins the pair that is most similar, the elements combined are then re-
placed by the resulting group, and the process continues until everything has been joined into a
single superordinate group. Similarity is measured by the Euclidian distance metric (sum of the
squared differences between the activations of the corresponding elements in the two patterns).
The height of the point where a subtree branches indicates the Euclidian distance of the elements
joined at that branch point. Reprinted with permission from McClelland, McNaughton &
O’Reilly (1995). Copyright 1995 by the American Psychological Association.

also true of birds but not flowers and trees, while many of the things that are true of
trees are also true of flowers but not birds or fish.

It is worth noting that, while the picture is similar to the one that comes from Quil-
lian’s work, the actual representations and processes are quite different. In the present
case, the hierarchy is implicit in the similarity relations among the concepts, not ex-
plicitly maintained by the use of “isa” links. Although the network can answer “isa”
questions, it does not do so by traversing links, but by pattern completion. Category-
general properties and capabilities (such as can-fly and has-wings) are not derived by
propagating activation up the hierarchy and reading out from a higher node; they are
associated with patterns representing each concept. The category-general properties are
in general easier to retrieve than concept-specific properties, because they are robustly
associated with all of the similar patterns of activation corresponding to all the mem-
bers of a category, rather than being associated only with those minor aspects of the
patterns that differentiate one concept from another. Thus, the connectionist model bet-
ter captures the fact that category-general properties are usually easier to retrieve than
concept-specific ones, as Quillian’s model incorrectly predicted.

The second thing that the cluster analysis shows is that the hierarchy emerges from
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the top down. Thus, part way through learning, the network has learned to separate
the plants from the animals, but has not yet sorted out very well the structure within
each category. Within the plants, in fact, the grouping still reflects the random initial
weights, rather than the correct, learned similarity relationships. Space prevents de-
tailed discussion, but this property of the network is strikingly similar to the pattern
of acquisition seen in development (Keil, 1979). Furthermore, the result of deteriora-
tion of semantic knowledge in semantic dementia (Hodges, N., & Patterson, 1995) is
consistent with the network’s highly robust representation of very coarse-grained dis-
tinctions, since such patients quite generally exhibit initial loss of information that
differentiates individual concepts and subordinate category membership with a preser-
vation of information that distinguishes concepts in different superordinate categories.
Space also prevents illustration of the fact that this sort of learning supports general-
ization of what is known about some animals of a given type to other similar animals.
See Rumelhart (1990; Rumelhart & Todd, 1993) and McClelland et al. (1995) for fur-
ther discussion.

To summarize, then, I have tried to illustrate how the use of a very gradual, inter-
leaved learning strategy allows connectionist networks to learn to represent concepts in
a way that captures the structure of the domain in which they are embedded, and that
they do so in a way that captures several key aspects of human conceptual knowledge,
as well as the development and dissolution of that knowledge.

Catastrophic Interference

While learning structured domains of knowledge is important, humans and other
animals do have to be able to learn new information quickly. We can ask, then, what
would happen to the structured system of knowledge built up by interleaved learning
if we tried to add new information to it, without interleaving. To examine this matter,
we considered the case of the penguin, precisely because the penguin is only partially
consistent with the knowledge already in the network. While penguins are birds, and
have many bird-like properties, they differ from birds in that they swim, and do not fly.
In fact I believe that in general novel information tends to be partially consistent with
what we already know and to have some arbitrary aspects. The case of the penguin,
therefore, exemplifies this general characteristic.

To address this issue, we considered what would happen if knowledge of the pen-
guin were added to the network built up through 500 epochs of gradual, interleaved
learning. By means of a focused learning strategy, the network only receives exposure
to two training cases: “penguin-isa-bird” and “penguin-can-grow-move-swim.” In this
case, illustrated in FIGURE 7, the network learns the new information very quickly, but
at considerable cost: The training has interfered with what the network already knows
about other animals. It now “thinks” that all of the birds can swim but not fly, and that
all of the things that can swim but not fly are called birds. This phenomenon, called cat-
astrophic interference, was first illustrated for connectionist models in simulations of
paired associate learning (McCloskey & Cohen, 1989) (for related observations, see Rat-
cliff, 1990). While humans do show some interference in such tasks, it was far less than
these networks showed. The results served to call into question the relevance of con-
nectionist models for capturing human learning and memory.

I suggest, on the contrary, that the phenomenon helps to bring out the relevance of
these models for our understanding of learning and memory, and in particular for our
understanding of the organization of learning systems in the brain. The finding that in-
terleaved learning is crucial for capturing the structure present in a domain of knowl-
edge, and that this sort of learning process appears to capture aspects of conceptual de-
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velopment, is consistent with the idea that this gradual, interleaved learning strategy is
the one that is used by the neocortex, and with the idea that the cortex makes use of a
very gradual learning strategy, allowing only very subtle changes on the basis of a
given experience, precisely to support the gradual learning of the structure of entire do-
mains. The finding that attempts to add new information quickly to a system that has
gradually learned the structure of a domain through interleaved learning suggests why
we need to have a separate learning system, like the one provided by the hippocampus,
to allow us to acquire arbitrary new information. Such a system would not only facil-
itate the initial acquisition of the new information, but, if new memories initially
formed in the hippocampus could later be reinstated, this would provide a vehicle that
would allow the new information to be gradually integrated into the structured knowl-
edge system in the neocortex.

To illustrate the benefits that would arise from this, we will consider what would hap-
pen if the new information about the penguin is interleaved with ongoing exposure to
other information about the domain of living things. In this case, the acquisition of the
new information takes quite a number of exposures to it, far more than are necessary
for focused learning. But this acquisition does eventually occur, and the benefit is that
it occurs with only the slightest ripple of interference with the network’s existing knowl-
edge of other, more typical birds and fish.

Answers to the Questions

In conclusion, we can come back to the questions raised previously, and see how
what has been learned from the study of connectionist models might provide us with
answers to the questions.

Why do we need this special system in the hippocampus at all, if ultimately all kinds
of things are going to be consolidated into the cortex anyway?

We need a hippocampus to allow the rapid acquisition of new information, without
catastrophically disrupting the structured system of knowledge gradually built up
through experience.

Why does consolidation take such a long time?

Consolidation is slow to allow the new information to be interleaved with ongoing
exposure to other information about the domain so that the new information can be in-
tegrated into the neocortical representation. Any attempt at rapid consolidation would
produce the very catastrophic interference that the hippocampal system allows us to
avoid in the first place.

CONCLUDING REMARKS

The ideas sketched in this article provide both a mechanistic account of the orga-
nization of the human memory system and a functional account of the reasons for this
organization. A great deal more research is necessary, however, to establish to what de-
gree the arguments presented here are valid. For one thing, considerable controversy re-
mains about the very phenomenon of temporally graded retrograde amnesia. Attempts
to replicate the findings have not always been successful, leading to a range of hy-
potheses about the reasons why there appears to be a temporal gradient in some cases.
For another thing, there is considerable ongoing controversy about the mechanistic ac-
count itself. Does the learning of new information really take place within the hip-
pocampal region, or, as others have argued, does the hippocampal region serve only to
bind together the bits of memories that are actually formed elsewhere? Third, the analy-
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sis of the computational models is really in its infancy. The actual learning procedures
used in the brain are quite different from those used in the networks discussed here, and
though there is reason to think the arguments that have been given here are general to
other learning algorithms, it will certainly be necessary to examine in detail just to
what extent the arguments carry over to other kinds of networks. Even if the general
framework holds up, the detailed workings of the mechanisms that allow memories to
be propagated to, stored in, and retrieved from the hippocampus remain to be worked
out, as do the details of the circumstances of reinstatement and the resulting neocor-
tical learning. These issues will all need to be resolved before we will have a full under-
standing of the mechanisms underlying explicit and implicit learning in the brain.

In the meanwhile, I hope this article illustrates two points. The first is the ongoing
relevance of some of the themes of Freud’s research, especially his insight that cogni-
tion is not always governed by explicit knowledge, and his interest in the physiological
mechanisms underlying psychological phenomena. The second is that among the tech-
nical advances that have increased our ability to address some of these issues is the ad-
vent of computational models. These models allow the detailed exploration of the im-
plications of particular mechanistic ideas about the neural basis of cognition in ways
that simply were not possible a century ago. It is far from clear where computational
models will ultimately lead us, it seems very likely that they will continue to play a role
in efforts to make explicit, as Freud tried to do, the mechanistic basis of human be-
havior, experience, and cognition.

SUMMARY

Freud’s ideas about the role of non-conscious processes relates to contemporary
thinking about explicit and implicit memory, and his early efforts to understand cog-
nition and behavior in terms of neural mechanisms share several themes in common
with contemporary connectionist models. The present paper presents a connectionist
perspective of the neural basis of learning and memory and their organization in the
brain. The central claim of the article is that the neocortex and many other forebrain
learning systems learn slowly so as to become sensitive to the overall structure of ex-
perience. Slow learning is crucial for sensitivity to this structure and for organizing
specific information with other information in a structured way. The hippocampus and
related areas in the medial temporal lobes complement these slow learning systems by
providing a mechanism that allows the rapid learning of arbitrary conjunctions of el-
ements that go together to make up an episodic memory.
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