Connectionist Models of Memory

JAMES L. MCCLELLAND

The study of memory has been pursued
within many different paradigms, and mem-
ory has been thought of in many different
ways. Often memory has been viewed as a
storehouse of. items. Items are created, and
then filed away as if they were books in a li-
brary. Storage, loss, organization, and retrieval
of memories have all been considered from
this point of view. Other theories (e.g., Ander-
son, 1983) hold that memory is a network of
nodes with associative connections among
them. Typically such theories propose some
primitive or elemental nodes, and additional
nodes that serve to group or organize collec-
tions of other nodes via associative links. This
approach provides a basis for understanding
how operations at the time of storage (creation
of nodes and links) affect the success of later
operations (e.g. retrieval of memories follow-
ing links from node to node). In all these theo-
ries, memory consists of a set of items, to-
gether with an addressing scheme that allows
them to be accessed.

The view we will consider in the present
chapter begins with a completely different
way of thinking about memory. This view ad-
dresses phenomena that have motivated the
sorts of theories mentioned above, but in do-
ing so it lets go of the idea that items are
stored in memory as such. Instead the funda-
mental idea is that what is stored in memory

is a set of changes in the instructions neurons
send to each other, affecting what patterns of
activity can be constructed from given inputs.
When an event is experienced, on this view, it
creates a pattern of activity over a set of pro-
cessing units. This pattern of activity is con-
sidered to be the representation of the event.
The formation of this pattern of activity pro-
vides the trigger for the creation of the instruc-
tions. The set of instructions is then stored in
the connections among the units, where it is
available for use in the construction of subse-
quent patterns of activity. Under some circum-
stances—for example, when the constructive
process takes place in response to a recall
cue—the cue may result in the construction of
a pattern of activation that can be viewed as
an attempted reconstruction of the pattern that
represented the previously experienced event.
Such a reconstructed representation corre-
sponds to a recollection. The patterns them-
selves are not stored, and hence are not really
«retrieved”: recall amounts not to retrieval but
to reconstruction.

The goal of the present chapter is to help
the reader understand and appreciate the con-
nectionist modeling framework, which em-
bodies this view of memory. There are other
modeling frameworks that take a very similar
perspective, including the matrix model of
Humphreys, Bain, and Pike (1989); the convo-
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lutional model (TODAM) of Murdock (1982);
and the composite holographic model of Met-
calfe (1990). What sets the connectionist
model apart from the others is the explicit use
of the idea that the knowledge used in infor-
mation processing—the instructions to which
we referred just above—consists of the values,
or weights on the connections among simple,
neuronlike processing units. The approach
thus taps into a vast neuroscience literature on
the synaptic basis of learning and memory
(see, e.g., McNaughton, 1993, for a review) as
well as a complementary literature on the
computational analysis of artificial neural net-
works (see the handbook by Arbib, 1995).

On the whole, the connectionist models
have been motivated by robust and general
patterns in data and by basic observations
about the nature of human memory, and the
-focus has been on exploring general principles
and understanding basic model characteris-
tics. As the general principles become clearer,
more detailed models of the quantitative as-
pects of experimental findings are likely soon
to follow.

Local and Distributed
Representation in
Connectipnist Networks

Some early connectionist models of memory
(e.g., McClelland, 1981) made use of local rep-
resentations, in which a single unit is used for
each item. Typically the features of the item
are represented by other units, to which the
item unit is connected. Often these models
can appear similar to symbolic associative
models like Anderson’s (1983), in that com-
plex items are represented by units with con-
nections to other, more elemental units. What
differs is that in the connectionist model sev-
eral items can contribute to the activation of
elements, thus producing such phenomena as
blend errors (Loftus, 1991; Nystrom & McClel-
land, 1992) and prototype effects (Posner &
Keele, 1968).

A key question is whether the representa-
tion of knowledge in the brain is local in this
way. The alternative—one that can be traced
from Lashley (1950) through Willshaw (1981),
Anderson (1973; Anderson, Silverstein, Ritz, &
Jones, 1977) and Hinton (1981)—is an idea
called distributed representation. This is the
idea that the representation of an item is not
associated with the activation of a single unit,
but with the pattern of activation over a set of
units; and the further idea that the knowledge
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underlying the ability to activate a particular
pattern is not associated with the weights
coming in and out of a single unit, but is su-
perimposed in the same set of connection
weights that encode the knowledge underly-
ing other patterns.

A simple illustration of this idea at work
(McClelland, Rumelhart, & Hinton, 1986) con-
siders knowledge that allows one pattern to be
associated with another. One pattern might
represent the aroma of something, perhaps a
rose, and the other its appearance. Figure
36.1A shows a network that allows the input
pattern—the smell of the rose—to produce the
corresponding output pattern. We imagine
that this association is learned by experienc-
ing the aroma and the visual appearance of the
rose at the same time, producing the indicated
patterns of activation on a group of units rep-
resenting the aroma and on other units repre-
senting the appearance. Learning occurs by in-
crementing the weight to appearance unit i
from arema unit j in proportion to the product
of the activations of the two units. This rule is
often called a “Hebbian” learning rule, but to
avoid confusion with a later discussion of
Hebb’s actual proposals, we will here describe
this rule as a “coincident activation” learning
rule. In the example, the weights all started at
0 and were incremented by the product of the
unit activations times a rate constant & (here
set to 0.25):

Aw; = eaq; (1)

Now that we have stored the association,
we can reconstruct the appearance from the
aroma by presenting the pattern representing
the aroma, and then setting the activations of
the appearance units based on these activa-
tions and the learned weights. For simplicity
in this case the activation is set to the net or
summed input to the unit,

net; = Law; (2)

The reader can check that the resulting activa-
tions exactly match the appearance pattern
present at the time the increments to the con-
nection weights were computed.

One can follow the same procedure to store
a second association, perhaps between the
aroma and the appearance of a steak, in the
same set of weights. The same learning rule is
used, and the increments for the steak are
added to the weights for the rose. The second



CONNECTIONIST MODELS OF MEMORY

From Vision

585

+
+

4

+ +

+
+

+

+

From
—A Olfaction
+
AN
B Units
- ¢ ==
2 - ++
+ = — ++
- 4 —--

Figure 36.1 The simple associative network model used to illus-
trate how knowledge of two associations can be stored in the same
set of weights. (A) The network with weights storing the single as-
sociation between the given input and output patterns. (B) On the
left, a schematic representation of the weight matrix appropriate
for the same association shown in (A) and a second matrix appro-
priate for a second association between a different input pattern
and a different output pattern. These two can be summed, creating
the matrix shown on the right. Here + represents a value of +.25
and each — represents a value of —.25; ++ represents +.50, and - rep-

resents —.50. Adapted from McClelland et al. (1986),

and 14, permission pending.

set of increments and the resulting summed
values of the weights are shown in figures
36.1B and 36.1C. The reader can check that if
one presents the rose aroma to the input, the
output is the appearance of the rose, and if
one presents the steak aroma, the output is the
appearance of the steak.

A Distributed Auto-Associator
Model of Memory

The above example demonstrates that the
“memory trace” for something need not main-
tain a separate identity. Rather, the memory

figures 12, 13,

trace may be nothing more than a set of adjust-
ments or increments to a large ensemble of
widely distributed elements, the connection
weights. The distributed memory model of
McClelland and Rumelhart (1985) incorpo-
rates this idea. The model draws heavily on
the work of James Anderson (1973; Anderson
et al., 1977; Knapp & Anderson, 1984), and is
a member of a class of models known as auto-
associator or attractor network models (see
figure 36.2). Instead of associating a pattern
with another pattern, such models associate
each pattern with itself. The network allows
external inputs to all of the units and provides
connections to each unit from every other
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unit. The activation of a unit is determined by
the net input, which consists of the external in-
put plus the input coming to each unit from
each of the other units via the weighted con-
nections. The model uses an error correcting
learning rule. The change in the weight to a
particular unit i from another unit j is equal to:

Au"l = e(eXt; - inti)aj (3)
This is often called the delta rule; learning is
driven by the difference between one signal
and another signal arriving at the receiving
unit. The other factor in the rule, aj, is just the
activation of the sending unit. As long as ¢ is
small, this rule will tend to move connection
weights toward values that bring the internal
input to the unit into alignment with the ex-
ternal input. For example, if the internal input
is smaller than the external input, and the ac-
tivation of the sending unit is positive, the
weight between them will be increased; this
will increase the internal input, reducing
delta.

McClelland and Rumelhart (1985) used this
model to illustrate several key points about
auto-associators. One is that they can act as
content-addressable memories. For example,
different subsets of the units might represent
different aspects of a particular object. Some
might represent the sight of a rose, some its
aroma, some its name, some what it feels like
to touch, and so on. Presentation of some as-
pects of the pattern will tend to lead to recon-
struction of other aspects, filling them in on
the other units. Another is that the network
tends to clean up noisy versions of patterns on
which it has been trained. Any pattern that is
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similar to one of the stored patterns will tend
to be modified so that it is more like the stored
pattern. In networks of this type, the stored
patterns are often called “attractors” because
patterns that are near them tend to change
over time, in the direction of becoming more
similar to the stored patterns. Each attractor
has a basin of attraction around it, represent-
ing the set of patterns that gets attracted to it.
Both pattern completion and pattern cleanup
occur in settling toward an attractor state.
Because the learning that occurs for one
pattern affects the same set of weights that are
used by all other patterns, there is an auto-
matic tendency for similarity-based general-
ization and blending of similar patterns to oc-
cur. Thus models of this type address blend
errors and prototype effects seen in memory
experiments. Some authors have suggested
that blend errors and prototype effects are best
accounted for by models in which each study
item is stored separately. In models of this
type (e.g., Hintzman, 1988), presentation of a
test item results in activation of all similar
studied items, and the resulting activations
are then summed together (this idea can be
implemented in localist connectionist models
such as McClelland, 1981). This makes it pos-
sible to account for the fact that, in addition
to an advantage for the prototype of a category
over particular studied items, there is gener-
ally also an advantage for studied items over
other nonprototypical items in the category.
However, McClelland and Rumelhart (1985)
showed that both prototype and item effects
occurred in their distributed model as well.
Indeed, the connection weights in superposi-
tional, distributed models can capture proto-
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type and instance characteristics of several
different categories at the same time, thus ob-
viating the need to suppose that memory con-
tains separate stored representations of every
item ever experienced.

The ideas and models described above
arose within the context of models that made
use of either a coincident activation learning
rule or an error-correcting learning rule. In the
application of these ideas to models of mem-
ory and related phenomena, modelers stipu-
Jated the activations of input and output units,
and used these rules to adjust the strengths of
direct connections from the input units to the
output units (in auto-associator models, the
input and output units may be the same
units). It was known from the beginning of
this work that such models faced a serious
computational limitation. In essence, when
two input patterns activate many units in
common, the patterns will tend to produce the
same output, since both patterns will be using
the same set of connection weights. If the out-
puts must be different, the few units that differ
between the patterns will be left to do all of
the work. If the units in question must do dif-
ferent work in different cases, a situation can
arise in which there is no set of weights that
will address all cases at once.

One way to solve this problem is to provide
a mechanism for expanding the representation
of an input, by pre-specifying units to repre-
sent possible conjunctions or combinations of
inputs. This approach has been used success-
fully in some models (e.g., Gluck & Bower,
1988). However, the set of all possible con-
junctions grows exponentially with the num-
ber of inputs, so that even with only 40 indi-
vidual elements, the number of conjunctions
exceeds the number of neurons in the brain
(thought to be about 10", or 100 billion). This
problem can be addressed to a degree. In one
sort of solution (e.g., O'Reilly & McClelland,
1994), each of a number of conjunctive units
receives inputs from a random subset of the
input units, and the conjunctive units with
the largest number of active inputs are chosen
to represent the current input. Another ap-
proach is to create a large number of initially
uncommitted units with random weights to all
elements of the input. When an input is pre-
sented, the unit that it activates most strongly
based on the random initial weights is se-
lected, and its weights are tuned to match the
input. This approach was taken by Grossberg
(1976, 1978) and Kruschke (1992, 1996), both
of whom have applied it to aspects of human
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memory. A Very different approach to the
problem arose from the use of a sophisticated
version of the error-correcting learning rule to
discover useful internal representations of in-
puts. We will consider this approach in the
context of a model of the representation and
use of knowledge in semantic memory.

Connectionist vs. Symbolic
Models of Semantic Memory

The classical, symbolic approach to semantic
memory was proposed by Quillian (1968). It
involved supposing that such information
consists of a set of propositions organized into
a taxonomic hierarchy. In the example shown
in figure 36.3, knowledge of various kinds of
plants and animals is represented hierarchi-
cally under the common superordinate “Liv-
ing Thing.” All propositions include a concept
name, one of four relations, and another con-
cept or property, as in the examples “canary is
a bird,” “canary is yellow,” “bird has feath-
ers,” and “animal can move.” Note that the
ISA propositions encode the backbone struc-
ture of the hierarchy. According to Quillian’s
proposal, propositions that are true of all the
concepts within a certain branch of the tree
would be stored at the top of the branch; thus,
since all animals can move, that proposition is
stored with animal, but since only the birds
can fly, that proposition is stored with bird.
The result is that information is stored eco-
nomically, and many inferences can easily be
derived from the stored information. Thus if
we simply add the proposition “sparrow isa
bird,” we can then infer that it can fly, that it
has feathers, that it can move, etc., by follow-
ing ISA propositions up the tree and reading
out what is stored there.

Quillian’s proposals sparked a great deal of
interest in the 1970s. However, the approach
is somewhat brittle in the face of exceptions
and doesn’t provide a very patural way of
dealing with typicality effects (Rosch, 1975).
Also, experiments showed that general prop-
erties did not take longer to access than spe-
cific ones, and Rips, Shoben, and Smith
(1973) showed that sometimes general cate-
gory membership could be verified more eas-
ily than more specific category membership.
An alternative, connectionist approach that
captures many of the desirable properties of
Quillian’s proposal and does not suffer from
these difficulties was provided by Rumelhart
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(1990; Rumelhart & Todd, 1993). They used
the sophisticated error-correcting learning al-
gorithm mentioned Previously to train a net.

can properties). Note there are two other pools
of internal or “hidden” units, between the in-
put and the output. Ope pool, called concept
Fepresentation units, sits between the concept
units and the other Pool, called genera] hid-
den units, which receives input from the cop-
Cept representation units and the relation
units. This network is initialized with smal]
random weights on a]] the connections, Test-
ing of the network takes place by activating a

the input. Activation Propagates forward: net
inputs are calculated ag in equation 2, with
the activation of the unit a monotonic, S-
shaped function of the net input.
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Figure 36.4 A depiction of the connectionist network used by Rumelhart to learn proposi-
tions about the concepts shown in figure 36.3. The entire set of units used in the actual
network is shown. Inputs are presented on the left, and activation propagates from left to
right. Where connections are indicated, every unit in the pool on the left (sending) side
projects to every unit in the right (receiving) side. An input consists of a concept-relation
pair; the input robin can is illustrated here by darkening the active input units. The net-
work is trained to turn on all those output units that represent correct completions of the
input pattern. In this case, the correct units to activate are grow, move and fly; the units
for these outputs are darkened as well. Subsequent analysis focuses on the concept repre-
sentation units, the group of eight units to the right of the concept input units. Reprinted
from McClelland et al. (1995), figure 5, p. 430, based on the network depicted in Rumel-

hart and Todd (1993), figure 1.9, page 15.

Training the Network with
Back Propagation

At first, owing to the small random weights,
the activations of the hidden and output units
take on values that hover around the neutral
value of 0.5. The network must learn the con-
tent of the domain through training. The train-
ing procedure, called back propagation, was
developed independently by Rumelhart, Hin-
ton, and Williams (1986) and other groups.
'Training occurs in a series of epochs; in each
epoch, each input pattern is presented (i.e.,
each combination of a concept and a relation),
and the output is generated as described

above. The output is compared to the correct,
target output, and weights are adjusted ac-
cording to the back propagation learning algo-
rithm, which adjusts each weight a very small
amount to reduce the difference between the
desired and the obtained activation. For the
weights projecting from the general hidden
layer to the output units, a procedure very
similar to the error-correcting learning rule
presented in equation 3 is used. For each unit,
a quantity called delta,, representing the ex-
tent to which changing the net input to the
unit would reduce the network’s overall error,
is calculated. For output units, this quantity is
equal to the difference between the target
value t, and the obtained activation a;, times a
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scaling factor depending on the activation of
the unit

8 = (t - al)s(ar). 4)

The important innovation in the learning pro-
cedure is that it provides a way to adjust the
connection weights coming into hidden units
from units lower down in the processing
stream. Essentially, a delta term is assigned to
each such unit by considering how a change
in its input would affect the error at each of
the units to which it projects, and then adding
up these separate effects (with a scaling factor
as before):

3 = Tiwdis(a;). (5)

Here X, runs over all the units to which hid-
den unit i has a forward connection; wy, is the
weight on one such connection, and delta, is
the delta term for the unit at the end of that
connection. Thus the delta of each hidden
unit is essentially a weighted sum of the del-
tas of all the units to which that hidden unit
projects. The algorithm is called back propaga-
tion because each hidden unit’s delta is calcu-
lated by “propagating” the delta terms associ-
ated with downstream units “backward”
across the connection weights. Once deltas
have been calculated for all of the hidden

units (and this process must proceed back- .

ward by layers from the output units), all the
forward-going weights to each hidden unit
from all the units below it can now be ad-
justed according to equation 5, where i is un-
derstood to indicate the unit at the forward or
receiving end of the connection and j indi-
cates the unit at the sending end.

Back-propagation has often been criticized
because, taken literally as a procedure for
training connections in the brain, it appears
biologically implausible. While this criticism
may have some merit, it is far from clear ex-
actly what takes place biologically. Further-
more, back propagation and other similar
learning algorithms open up vast new possi-
bilities for understanding human cognition
and its development as an adaptive learning
process. This is illustrated by an analysis of
the outcome and time course of learning in
Rumelhart’s semantic network.

Cognitive and
Developmental Implications

The first thing to notice about the network is
that it learns by a process that might be called
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progressive differentiation. This process af-
fects both the output of the network and also
its internal representations of concepts, as can
be seen in figure 36.5 from a subsequent study
of this network by McClelland, McNaughton,
and O'Reilly (1995). The figure shows the pat-
terns of activation assigned by the network to
each of the lowest-level concepts in the hierar-
chy, at three stages of learning: (1) very early
in learning, where the representations are de-
termined primarily by the initial random val-
ues of the connection weights from the con-
cept input to the concept representation units;
(2) midway through learning; and (3) at the
end of learning. For each concept at each
point in learning, the activations of the eight
concept representation units that are pro-
duced by activation of the corresponding con-
cept unit are shown. Early in learning, the pat-
terns or activation the network assigns to the
different concepts are all very similar, with
none of the units either strongly on or strongly
off in any of the patterns. Midway through
learning, the network has differentiated the
plants from the animals, but within the plants
and the animals, there are only very slight dif-
ferences. At the end of training, the network
has differentiated the birds from the fish and
the flowers from the trees, and there are also
subtle but important differences in the repre-
sentations that the network assigns to the in-
dividual birds, fish, trees, and flowers. This
process appears to be consistent with a corre-
sponding process of progressive differentia-
tion seen in child development (see McClel-
land et al., 1995, for discussion).

‘The second thing to note about the network
is that it uses a parsimonious approach to
representation of semantic information. By as-
signing very similar representations to con-
cepts for which very similar sets of proposi-
tions are true, it can use the same set of
connection weights forward of these represen-
tations to answer these questions. This use of

similar representations for concepts that share

propositions also allows the network to gener-
alize what it has learned about one concept to
other similar concepts. Indeed, what is com-
mon across similar concepts is more robustly
represented than what is idiosyncratic. This
allows the network to account naturally for
the pattern of semantic loss seen in patients
with a progressive deterioration of semantic
memory (Warrington, 1975; Hodges, Gra-
ham, & Patterson, 1995). These patients show
deterioration of knowledge of details of con-
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Figure 36.5 Representations discovered in our replication of Rumel-
hart’s learning experiment, using the network shown in figure 36.4.
The figure presents a vertical bar indicating the activation of each of
the eight concept representation units produced by activating the in-
put unit for each of the eight specific concepts. The height of each
vertical bar indicates the activation of the corresponding unit on a
scale from 0 to 1. One can see that initially all the concepts have
fairly similar representations. After 200 epochs, there is a clear dif-
ferentiation of the representations of the plants and animals, but the
trees and flowers are still quite similar as are the birds and the fish.
After 500 epochs, the further differentiation of the plants into trees
and flowers and of the animals into fish and birds is apparent. Re-

printed from McClelland et al. (1995), figure 36.6, p. 431.

cepts, while still retaining their general char-
acteristics. The same pattern is observed when
progressive damage is simulated by the addi-
tion of increasing amounts of noise into the
representations used in the network (McClel-
land & Rogers, 1997).

Catastrophic Interference
and Complementary
Systems in Memory

Connectionist learning procedures like back
propagation that train hidden units offer new
ways of thinking about semantic memory
quite different from those provided by tradi-
tional semantic network accounts that trace
their heritage back to Quillian (1968). It was,
therefore, something of a disappointment when
McCloskey and Cohen (1989) applied back

propagation to a classic memory paradigm—
paired associate learning—and discovered
that the algorithm appeared to suffer from a
problem that they labeled “catastrophic inter-
ference.” They trained a connectionist net-
work on a list of eight paired-associate pat-
terns, then looked to see the effect on these
learned associations of subsequent training on
a second list of eight new associations involv-
ing the same input patterns but different re-
sponses. The experiment is analogous to many
classical memory experiments of retroactive
interference. Human subjects do show some
interference from learning a second list of as-
sociations on recall of a first list, but in the
network the interference was far more pro-
found. In fact, before the network correctly
produced any of the new associations its abil-
ity to reproduce all of the old associations cor-
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rectly was completely wiped out. The only
way to avoid the catastrophic interference
problem was to interleave learning of one set
of associations with learning of the other set.
In this way, the learning procedure could find
a set of connection weights consistent with
correct performance on both sets of associa-
tions.

This finding of catastrophic interference
might seem to suggest that the back propaga-
tion model might be fatally flawed as a model
of human learning and memory. However, an-
other approach—the one taken by McClelland
et al. (1995)—was to suggest that the cata-
strophic interference effect found by McClos-
key and Cohen {1989) might be avoided in the
human brain by using a back-propagation-like
learning system for semantic and procedural
learning, while using a different kind of learn-
ing system for the initial learning of arbitrary
associations. They suggested that the areas of
the neocortex of the brain in which semantic
knowledge is stored may learn very slowly, so
that learning of any one item can be inter-
leaved with ongoing learning of other items.
As we saw in the consideration of the learning
of semantic information about plants and ani-
mals, this results in discovery of efficient rep-
resentations that support generalization and
robustly represent information that is shared
by many things. They further suggested that

other areas of the brain—particularly the me-

dial temporal lobes, where the hippocampus

and related brain structures are found—may

be specialized for the rapid storage of arbitrary
new information, such as paired associates.
Considerable neuropsychological evidence
supports the idea that the medial temporal re-
gions of the brain plays this role; for example,
individuals with extensive damage to this re-
gion are profoundly deficient in the initial ac-
quisition of arbitrary new factual information,
including episodic memory (memory for the
particular contents of particular events and
experiences) and paired-associate learning.
What McClelland et al. (1995) proposed is that
the learning system in the medial temporal
lobes makes use of a conjunctive scheme like
that of O'Reilly and McClelland (1994) to
minimize overlap of distinct memories. Such
coding schemes have been used by several
investigators to model paired-associate learn-
ing without catastrophic interference (French,
1991, 1992; Sloman & Rumelhart, 1992; Kortge,
1993). Evidence from single-neuron recording
studies in animals supports the idea that the
hippocampus uses very sparse, conjunctive
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representations (e.g., Barnes, McNaughton,
Mizumori, Leonard, & Lin, 1990).

Given that the catastrophic interference
problem can be avoided by the use of sparse
conjunctive coding, why would this approach
not be used for semantic as well as episodic
memory? The answer to this is key to under-
standing why there must be different types of
learning systems in the brain. While sparse
random conjunctive coding allows rapid
learning of new memories, it does so in a very
simple way. It assigns a distinct representa-
tion, minimizing overlap with other memo-
ries. Back propagation, on the other hand, and
other learning algorithms that exploit gradual,
interleaved learning, find patterns of connec-
tion weights that capture the overall structure
of entire ensembles of events and experiences,
and that assign representations to individual
concepts that capture the position of the con-
cept in that structure. In this regard it is inter-
esting that the input to the medial temporal
lobe systems appears to come from the neocor-
tical regions responsible for semantic and
other relatively abstract forms of representa-
tion. The arrangement suggests gradual, inter-
leaved learning may be used to develop the
representations that are then made available
for storage, so that what is stored in episodic
memory is not a raw copy of sensory input,
but the results of sophisticated representa-
tional processes acquired throughout develop-
ment in the neocortical cognitive system.

In summary, this section has reviewed dif-
ferent kinds of connectionist approaches to
overcoming the limitations of networks con-
taining a single layer of modifiable weights.
Two kinds of solutions to these problems were
considered. One of these involved some vari-
ant of a sparse random, conjunctive coding
scheme, and the other involved the use of in-
terleaved learning via back propagation to dis-
cover the structure of a domain and assign ap-
propriate representations to concepts within
it. There are strengths and weaknesses of each
approach, but it appears that the brain solves
the dilemma posed by this situation by mak-
ing use of both solutions. Thus research on
connectionist models provides a basis for un-
derstanding what might otherwise appear to
be a relatively arbitrary aspect of brain or-
ganization—namely, that there appear to be
separate systems in the brain subserving the
initial acquisition of arbitrary information on
the one hand and the systematic representa-
tion of knowledge in semantic memory on the
other.
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Current Directions in
Connectionist Models of
Memory

Attentional and Strategic
Aspects of Memory

Several connectionist models now take note of
the fact that encoding and retrieval of informa-
tion is subject to strategic manipulation (see
Cohen & O'Reilly, 1996, for a general consid-
eration of such effects). Kruschke (1992)
showed how a connectionist network could
provide a mechanism implementing the distri-
bution of attention to dimensions of input
stimuli. In this earlier work and in much of
his later work these ideas have been applied
to learning in categorization tasks, but Dennis
and Kruschke (1998) have now shown that
some findings that justify the claim that atten-
tion to stimulus cues adjusts adaptively in cat-
egorization experiments are also obtained in
cued-recall memory experiments. In particu-
lar, subjects appear to reduce attention to cues
that they discover are ambiguous. .Kruschke
(1996) provides a connectionist model that
captures these effects in categorization experi-
ments and the model is extended to attention
effects in memory in Dennis and Kruschke
{(1998). The authors suggest that such atten-
tional effects influence the pattern of activa-
tion that arises in the neocortex when an input
is experienced, affecting what is available for
storage in the medial temporal lobe memory
system and ultimately what is available for in-
tegration into the knowledge base stored in
connections among neurons in the neocortex.

Relation of Connectionist
Models to Bayesian and
Other Optimal Approaches

A recent issue in memory research concerns
whether it is useful to construe human mem-
ory as optimal. This question has been posed
forcefully by Anderson (1990; Anderson &
Milson, 1989), who has suggested that, in-
deed, several aspects of memory can be con-
strued to reflect the use of optimal policies for
storage, retrieval, and so on. Interestingly,
there are several ways in which connectionist
models may be seen as optimal or quasi-opti-
mal (McClelland, 1998). Perhaps most funda-
mentally, there is a very strong connection be-
tween connectionist learning procedures and
procedures for deriving optimal estimates of
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parameters for complex nonlinear estimation
procedures (White, 1989; MacKay, 1992). Indi-
vidual connectionist units and indeed whole
connectionist networks can be construed as
optimal Bayesian estimators of conditional
probabilities of hypotheses given evidence,
and several connectionist learning rules can
be viewed as procedures for deriving esti-
mates of necessary probability relations be-
tween hypotheses and evidence in connection
weights. Also, a Bayesian, probability-estima-
tion approach has recently been applied to
modeling recognition memory (Shiffrin &
Steyvers, 1997; McClelland & Chappell, 1998),
and McClelland and Chappell (1998) have in-
dicated how such models might be imple-
mented in connectionist networks.

Hebbian vs. Error-Correcting
Learning Rules

The final current research direction we will
consider in this article tends to undercut the
idea that human learning and memory are in
any general sense optimal, however. This is
the idea that, perhaps, certain aspects of hu-
man learning may reflect Hebbian as opposed
to error-correcting synaptic adjustment rules.
Hebb’s original idea was that synaptic modifi-
cation works to strengthen the connection
from one neuron to another, when the first ap-
pears to persistently or repeatedly take part in
firing the second (the coincident activation
learning rule is one example of a Hebbian-type
learning rule). This rule may sometimes be
counterproductive: If a stimulus activates a set
of input units, and these in turn activate a pat-
tern on some other set of units, then Hebbian
learning will tend to reinforce whatever that
pattern. turns out to be, whether or not it is
the desired response in a memory experiment.
This may have the effect of reinforcing preex-
isting, incorrect response tendencies, and thus
of actually impeding rather than enhancing
progress in memory experiments.

If this is correct, the human memory sys-
tem can behave far from optimally in many
cases. Indeed, the idea that the mechanisms of
synaptic plasticity operate according to the
Hebbian principle leads to the observation
that these mechanisms might be instrumental
in the maintenance of maladaptive and highly
nonoptimal behavior in many cases. This
serves to reinforce the observation that ration-
ality or optimality is generally conditional on
the accuracy of certain (explicit or implicit)
assumptions. Error-correcting learning with
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an exponentially decreasing learning rate can
be optimal when learning in an environment
when the training examples are sampled from
a distribution that remains invariant over
time, but is highly nonoptimal if, after consid-
erable experience, the distribution of training
examples changes. Hebbian learning may be
optimal or approximately so, as long as condi-
tions are arranged so that the activations pro-
duced by an input are predominantly desir-
able, but can be completely counterproductive
in cases where activations produced by inputs
are not the ones that are desired.

Conclusion

Connectionist models have been developed to
capture what their originator’s suggest may be
fundamental aspects of human learning and
memory systems. In most cases, these models
bear strong similarities to nonconnectionist
models. This observation is consistent with
the idea that there may be many different
frameworks within which some ideas can be
captured. The connectionist framework has
been fertile in allowing a range of different
principles to be explored—so fertile that the
framework itself is often criticized as unhelp-
fully general or open-ended (Massaro, 1988).
While this open-endedness does have its
downsides, it also has several benefits, one of
which is that it has allowed the exploration of
a wide range of different ideas about the na-
ture of learning and memory. Another benefit
is the naturalness with which it may be ap-
plied to addressing neuropsychological phe-
nomena, and the ease with which it can be
used to adopt specific proposals from neuro-
science, including the idea that synaptic mod-
ification follows the principles of Hebbian
learning, or that sparse, conjunctive represen-
tations appear to be used in the hippocampus.
The approach appears to provide a useful
complement to other more constrained mod-
els, many of which appear to be highly appli-
cable to data obtained within certain classes of
paradigms, but which often have little to say
outside their range of applicability and which
may not immediately suggest ways of incorpo-
rating findings from neuroscience. It thus ap-
pears that connectionist models play a useful
role in our efforts to understand the nature of
human memory, complementing other ap-
proaches.
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