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CHAPTER 19 :
i

Mechanisms of Sentence Processing:
Assigning Roles to Constituents of Sentences

J. 1. McCLELLAND and A. H. KAWAMOTO

MULTIPLE CONSTRAINTS ON ROLE ASSIGNMENT

Like many natural cognitive processes, the process of sentence
comprehension involves the simultaneous consideration of a large
number of different sources of information. In this chapter, we con-
sider one aspect of sentence comprehension: the assignment of the
constituents of a sentence to the correct thematic case roles. Case role

assignment is not, of. course, all there is to comprehension, but it

reflects one important aspect of the comprehension process, namely,

the specification of who did what to whom.
Case role assignment is not at all a trivial matter either, as we can see

by considering some sentences and the case roles we assign to their
constituents. We begin with several sentences using the verb break:

(1) The boy broke the window.

(2) The rock broke the window.

(3) The window broke.

(4) The boy broke the window with the rock.
(5) The boy broke the window with the curtain.

We can see that the assignment of case roles here is quite complex.
The first noun phrase (NP) of the sentence can be the Agent (Sen-
tences 1, 4, and 5), the Instrument (Sentence 2), or the Patient
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(Sentence 3). The NP in the prepositional phrase (PP) could be the
Instrument (Sentence 4), or it could be a Modifier of the second NP,

as it is in at least one reading of Sentence 5. Another example again
brings out the ambiguity of the role assignment of with-NPs:

(6) The boy ate the pasta with the sauce.
(7) The boy ate the pasta with the fork.

In (6) the with-NP clearly does not specify an Instrument, but in (7) it
clearly does.

Before we go much further, it should be said that there is no univer-
sally accepted set of case roles, nor universal agreement as to the
correct assignment of constituents to roles. We have adopted conven-
tions close to those originally introduced by Filmore (1968) in "The
Case for Case," but we do not think the details are of crucial impor-
tance to the behavior of our modeL. Later we wil suggest ways in

which an extension of our model might circumvent certain of the diff-
culties involved in specifying the correct assignment of cases.

These complications aside, it appears from the examples that the
meaning of the words in these sentences influences the assignment of
arguments to roles. However, the placement of NPs within the sen-
tences is also very important. Consider these two cases:

(8) The vase broke the window.

(9) The window broke the vase.

Here we must rely on word-order constraints. That such constraints are
very strong in English can be seen from sentences like:

(10) The pencil kicked the cow.

Even though semantic constraints clearly would indicate that the cow is
a much more likely Agent and the pencil a much more likely Patient,
Sentence 10 simply is not given this interpretation by adult readers who
are native speakers of English.

Word-order constraints like those ilustrated by (10) are very strong
in English, but it is important to realize that such heavy reliance on

such constraints is not universaL. Bates and MacWhinney (in press;
MacWhinney, Bates, & Kliegl, 1984) have shown that adult speakers of
Italian wil assign roles to sentences like (10) based predominantly on
semantic constraints; 1 word order plays a very limited role and

i We use the phrase "semantic constraints" to refer to the constraints language users
impose on the co-occurrence of constituents in particular roles in case-level representa-
tions. In the model, as we shall see, these constraints arise from the co-occurrences of

constituents in the experiences the model is exposed to.
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determines assignment only when semantics and case-marking inflec-
tions give no information.

As the work of Bates and MacWhinney amply demonstrates, case
role assignment is influenced by at least three different kinds of factors:
word order, semantic constraints, and (when available) inflectional
morphology. Reliance on anyone of these constraints is a matter of
degree, and varies from language to language. In addition to these fac-
tors, there is one more that cannot be ignored, namely, the more global
context in which the sentence is presented. Consider, for example,

Sentence 11:

(11) The boy saw the girl with the binoculars.

We get one reading if prior context tells us "A boy was looking out the
window, trying to see how much he could see with various optical
instruments," We get quite a different one if it says "Two girls were
trying to identify some birds when a boy came along. One girl had a
pair of binoculars and the other did not." Crain and Steedman (1985)
have experimentally demonstrated contextual influences on parsing
decisions.

While the fact that word order and semantic constraints both influ-
ence role assignment has often been acknowledged (Bever, 1970;

Fodor, Bever, & Garrett, 1974), there are few existing models that go
very far toward proposing a mechanism to account for these effects.
However, there are some researchers in language processing who have
tried to find ways of bringing semantic considerations into syntactic pro-
cessing in one way or another. One recent approach has been to rely
on the lexicon to influence both syntactic processing and the construc-

tion of underlying functional representations (Ford, Bresnan, & Kaplan,
1982; Kaplan & Bresnan, 1982; MacWhinney & Sokolov, in press).
Ford et al. (1982) considered cases like the following:

(12) The woman wanted the dress on the rack.
(13) The woman positioned the dress on the rack.

They noted that the preferred reading of the first of these had on the
rack as à modifier of the dress, while the preferred reading of the
second had on the rack as a locative argument of positoned. To account
for this difference in role assignment, they proposed two principles:
(a) lexical preference and (b) final arguments. Basically, lexical prefer-
ence establishes an expected argument structure (e.g., Subject-Verb-
Object in the case of want; Subject-Verb-Object-Prepositional Object in
the case of positoned) by consulting an ordered list of possible argu-
ment structures associated with each verb. If a constituent is
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encountered that could fill a slot in the expected argument structure,
the constituent is treated as an argument of the verb. However, if a
constituent is encountered that appears to satisfy the conditions on the
final argument of the expected argument structure, its attachment is
delayed to allow for the incorporation into the constituent of subse-

quent constituents. Thus, with want, the NP the dress is a candidate for
final argument and is not attached directly as a constituent of the VP;
rather, a superordinate NP structure containing the dress on the rack is
ultimately attached to the VP. With position, however, the dress would

not be the final argument, and so is attached directly to the VP and
closed. On the rack is then available for attachment as.the final argu-
ment to the VP.

While this scheme certainly does some of the work that needs to be
done in allowing the constraints imposed by the words in a sentence to
influence role assignment, we do not think it goes nearly far enough.
For as we saw in Sentences 4-7, the NPs of a sentence also influence
syntacti.c decisions. Oden (1978) has verified that all three NPs in sen-
tences like these influence subjects' role-assignment decisions.

In the literature on sentence processing, no one disputes that various
factors influence the final reading that is assigned to a sentence. How-
ever, there are various views of the way in which these factors are
taken into account on-line. Kurtzman (1985) argues that the parsing
process is directly guided by an ongoing plausibility analysis; Marslen-
Wilson and Tyler (1981) have pioneered this sort of view, and they
stress the immediacy with which syntactic, semantic, and pragmatic
considerations can all be brought to bear on the course of sentence pro-
cessing. On the other hand, Frazier and her colleagues (e.g., Frazier &
Rayner, 1982; Rayner, Carlson, & Frazier, 1983) argue that the syntac-
tic parser imposes its preferred structuring on the sentence based only
on syntactic considerations, passing the results of this processing on

quickly to a thematic interpreter that can reject the syntactic parse in
favor of a thematically more appropriate reading.

Whichever view one holds, it is clear that a mechanism is needed in
which all the' constituents of a sentence can work simultaneously to
influence the assignment of roles to constituents. While we ourselves
tend to favor a highly interactive view, the model we will describe here
takes as its input a partial surface parse (though it is one that leaves
certain attachment decisions unspecified) and generates from it a case-
level representation. Intended extensions of the model, which we wil
describe below, would incorporate feedback to the syntactic structure
level; but most of the model's behavior is not dependent on this feed-
back, and so readers committed to a less interactive view of the relation
between syntactic and thematic analyses may yet find the model to be
of interest.
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GOALS

The primary goal of our model is to provide a mechanism that can
begin to account for the joint role of word order and semantic con-

straints on role assignment. We wanted the model to be able to learn
to do this based on experience with sentences and their cae representa-
tions, We wanted the model to be able to generalize what it learned to
new sentences made up of novel combinations of words.

In addition, we had several other goals for the model:

. We wanted the model to be able to select contextually appropri-
ate readings of ambiguous words.

. We wanted the model to select the appropriate verb frame
based on the pattern of arguments and their semantic features.

. We wanted the model to fill in missing arguments in incom-
plete sentences with plausible default values.

. We wanted the model to be able to generalize its knowledge of
correct role assignment to sentences containing a word it has
never seen before, given only a specification of some of the
semantic properties of the word.

The model succeeded in meeting all these goals, as we shall see.
The model also exhibits an additional property that we had not actu-

ally anticipated, even though it is a central characteristic of language

understanding: The model exhibits an uncanny tendency to shade its
representation of the constituents of a sentence in ways that are contex-

tually appropriate. It does this without any explicit training to do so; in
fact, it does this in spite of the fact that the training inputs it receives

are not contextually shaded as they would be in reality. We wil exam-
ine this aspect of the model's behavior through examples, and observe
how it emerges naturally from the model's structure.

The model is, of course, very far from a complete or final model of
sentence processing or even case role assignment. Perhaps it is best
seen as a partial instantiation of one view of what some properties of
the interface between syntactic and more conceptual levels of language
representation might be like. We offer the model not because it "solves
the problem of sentence comprehension." Rather, we offer it because it
suggests new ways of thinking about several aspects of language and
language representation. The simulation model that embodies these
ideas will undoubtedly require substantial development and elaboration.
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It is our belief, though, that the basic principles that it embodies will

prove extremely valuable as cognitive science continues to try to come
to grips with the problem of understanding natural language.

We have limited the model in several ways. Most importantly, we
have considered only single clause sentences. We have also considered
only a limited set of roles and a limited vocabulary. Since we have

restricted the analysis to English, case inflectional'morphology does not
arise. Within these bounds, we wil see that we have been able to meet

the goals of the model quite successfully, using a very simple PDP
architecture.

Previous, Related Work

Both Cottrell (1985; Cottrell & Small, 1983) and Waltz and Pollack
(1985) have preceded us in noting the appeal of connectionism as a
means of exploiting the multiple constraints that appear to influence
both case role assignment and the contextual disambiguation of ambi-
guous noun phrases, Their models differ from ours in several ways,
most notably in that both rely primarily on local representations (one-
unit-one-concept) as opposed to distributed representations, although
Waltz and Pollack (1985) do suggest ways that a distributed representa-
tion could be used to represent global contextual influences on word

meaning disambiguation. Within the context of distributed models,
ours builds on the work of 1. A. Anderson (1983) and Kawamoto

(1985): Both models show how context can be used to select the
appropriate reading of an ambiguous word. Our work incorporates
mechanisms quite like theirs to accomplish this and other goals.
Finally, Hinton's (1981a) early discussion of the use of distributed
representations to represent propositions played an important role in
the development of the ideas described here.

ARCHITECTURE OF THE MODEL

The role-assignment model is a distributed model, and has many
properties in common with the verb learning model described in
Chapter 18, The model consists of two sets of units: one for
representing the surface structure of the sentence and one for
representing its case structure. The model learns through presentations
of correct surface-structure/ case-structure pairs; during testing, we sim-
ply present the surface-structure input and examine the output the
model generates at the case-structure leveL.
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Sentences. The sentences processed by the model consist of a verb
and from one to three NPs. There is always a Subject NP, and option-
ally there may be an Object NP. If this is present, there may also be a
with-NP; that is, a NP in a sentence-final prepositional phrase beginning
with the word with. All of the numbered sentences considered in the
introduction are examples of sentence types that might be presented to
the modeL.

Input format of sentences. What the model actually sees as input is
not the raw sentence but a canonical representation of the constituent
structure of the sentence, in a form that could be produced by a simple
surface parser and a simple lexicon. Such a parser and lexicon are not,
in fact, parts of the model in its present form-the sentences are simply
presented to the model in this canonical format. We discuss ways such
a parser could be implemented in a PDP model in the discussion
section.

Semantic Microfeatures

In the canonical input format, words are represented as lists of
semantic microfeatures (Hinton, 1981a; see Chapter 3; Waltz & Pol-

lack, 1985, also make some use of a microfeature representation). For
both nouns and verbs, the features are grouped into several dimen-
sions. Each dimension consists of a set of mutually exclusive values,
and, in general, each word is represented by a vector in which one and
only one value on each dimension is ON for the word and all of the
other values are OFF. Values that are set to be ON are represented in
the feature vectors as Is. Values that are set to be OFF are represented
as dots (".").

We chose the dimensions and the values on each dimension to cap-
ture what we felt were important dimensions of semantic variation in
the meanings of words that had implications for the role assignments of
the words. We should be very clear about one point, though, which is
that we do not want to suggest that the full range of the phenomena
that are described under the rubric of the "meanings" of the words are
captured by these semantic microfeatures. Indeed, we do not think of
words as actually having some fixed meaning at alL. Exactly how we
do think of meanings will become clear after we examine the behavior
of the model, so we postpone a fuller consideration of this issue until
the discussion.

The full set of dimensions used in the feature sets are given in
Table 1. The noun dimensions are largely self-explanatory, but the
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TABLE 1

FEATURE DIMENSIONS AND VALUES

Nouns

HUMAN human nonhuman

SOFTESS soft hard

GENDER male female neuter

VOLUME small medium large

FORM compact 1-0 2-D 3-D

POINTINESS pointed rounded

BREAKABIUTY fragile unbreakable

OBJ- TYPE food toy tool utensil furniture
animate nat-inan

Verbs

DOER yes no

CAUSE yes no-cause no-change

TOUCH agent inst both none AisP

NAT_CHNG pieces shreds chemical none
unused

AGT_MVMT

PT_MVM

INENSITY

trans part none NA

trans part none NA

low high

Note: nat-inan = natural inanimate, AisP = Agent is Patient,
NA = not applicable.

different dimensions of the verbs may need some explication. Basi-
cally, these dimensions are seen as capturing properties of the scenario
specified by the verb. Thus, the DOER dimension indicates whether

there is an Agent instigating the event. The CAUSE dimension speci-
fies whether the verb is causaL. If not, it indicates whether this is
because there is no cause specified (as in the case of the window broke)

or whether it is because there is no change (as in the case of the boy
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touched the girl). The TOUCH dimension indicates whether the Agent,
the Instrument, both, or neither touches the Patient; the" AisP" value

simply indicates that the Agent and the Patient are the same (as in the
cat moved). The NAT_CHNG dimension specifies the nature of the
change that takes place in the Patient. The AGT_MVMT and
PT_MVT specify the movement of the Agent and the Patient, respec-
tively; and INTENSITY simply indicates the forcefulness of the action.
The labels given to the dimensions are, of course, only for reference;
they were chosen so that each noun or verb dimension would have a
unique first letter that could be used to designate the dimension.

It must be stressed that we are not strongly wedded to this particular
choice of features, and that other features would need to be included to
extend the model to larger sets of nouns and verbs. On the other hand,
the features that we did include were carefully chosen because they

seemed highly relevant to determining the case role assignments. For
example, the DOER dimension directly specifies whether there is or is
not an Agent. Thus, the features of the verb, in particular, often have
direct case-structural implications. (We would prefer a model that con-
structed its own semantic microfeatures using back propagation

(Chapter 81 or a related method for learning, but this extension has not
yet been implemented.)

Figures 1 and 2 give the vectors that we assigned to each of the
words used in the modeL. It wil be immediately noted that some of

our encoding decisions were arbitrary, and that sometimes we seem to
be forcing words into molds that they do not perfectly fit. Further,
each feature has the same weight as all the others, and is as definite as
all the others. Reality is not nearly so definite or evenhanded, of

course. Balls are round, but may be soft or hard; paperweights are gen-
erally compact in shape but need not be, etc. The definiteness of the
input used in the simulations is a simplification that we have adopted to
make the initial coding of the input patterns as straightforward as possi-
ble. A more realistic coding would allow some features to be more
definite than others. We wil see that the model tends to correct this
deficiency on its own accord.

One of our goals for the model is to show how it can select the con-
textually appropriate meaning for an ambiguous word. For ambiguous
words (bat, flying or baseball, and chicken, living or cooked) the input
pattern is the average of the feature patterns of each of the two read-

ings of the word. This means that in cases where the two agree on the
value of a particular input dimension, that dimension has the agreed
value in the input representation. In cases where the two disagree, the

feature has a value of .5 (represented by"?") in the input representa-

tion. A goal of the simulations is to see if the model can correctly fill
in these unspecified values, effectively retrieving the contextually

-i I
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ball
II-bat
bb-bat
bat
boy
paperw
cheese
Ii-chicken
co-chicken
chicken
curtain
desk
doll
food
fork
girl
hatchet
hammer
man
woman
plate
rock

potato
pasta
spoon
carrot
vase
window
dog
wolf
sheep
lion

HU SO
. 1 1
. 1 1
. 1 . 1
. 1 ??
1 1
. 1 . 1
. 1 1
. 1 1
. 1 1
. 1 1
. 1 1
. 1 . 1
. 1 1
. 1 1
. 1 . 1

1 1
. 1 . 1
. 1 . 1
1 1
1 1
. 1 . 1
. 1 . 1
. 1 1
. 1 1
. 1 . 1
. 1 . 1
. 1 . 1
,1 . 1
. 1 1
,1 1
. 1 1
. 1 1

GND
. , 1

1 . .
. . 1

? ?
1 . .
. . 1

. , 1

, 1

. . 1

? ?

. . 1

. . 1

. 1

. . 1

. . 1

. 1

. . 1

. . 1

1 . .
. 1

, . 1

. . 1

, . 1

. . 1

. , 1

, . 1

. . 1

, . 1

1 . .
1 . .
. 1

1 . ,
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VOL
1

1

1

1

. 1

1

1

1

1

1

, 1

. . 1

1

1 . .
1 . .
. 1

1 . .
1 . .
. . 1

. . 1

1

1

1

1

1

1

1

. 1

. 1

. 1

. 1

. . 1

FORM
1 . . .
. . . 1

. 1 . .

? ?
. . . 1

1 . . .
, . 1

. . . 1

1. . .
? . . ?
. . 1 .

. . . 1

. . . 1

? ? ? ?

. 1 . .

. . . 1

. 1 . .

. 1 . .

. . . 1

. . . 1

. . 1 .

, . . 1

1. . .

. 1

. 1

. 1

. 1

. . 1

. . . 1

. . . 1

. , , 1

. . . 1

PO
. 1

1

, 1

? ?

. 1

1

. 1

. 1

, 1

. 1

. 1

1

. 1

. 1

1

. 1

1

. 1

. 1

. 1

. 1

1

. 1

. 1

. 1

1

. 1

1

. 1

1

. 1

1

SR
, 1

. 1

. 1

, 1

. 1

. 1

1

1

1

? ?

1

. 1

1

1 .
. 1

. 1

. 1

, 1

, 1

. 1

1

. 1

1

1

. 1

1

1 .
1

.1

. 1

1

. 1

OBJ_TYP
. 1 . . .. ......1
. 1 . . . . .

? . .. ?.....1
. . . . 1 , .
1 . . . . . ......11......?....?
, . . . 1 . .....1
_ 1 . . .. .1.........1...
. . . . . 1

. . 1 . . . ...1...

. . . . . 1.....1
. . . .1 . .......1
1 . . . . . .1......
.. . 1 . . .
1 . . . . . .....1......1.......1
, . . , , 1

. , . . . 1

. . . . . 1

FIGURE 1. The nouns used in the model and their features. For ambiguous noun con-
stituents, the correct, fully specified reading was used in specifying what the case role
representation of the constituent should be, but the underspecified, ambiguous forms
were used in the sentence-level input representation. See text for a full discussion,

appropriate missing values in the process of assigning the word to the
appropriate case role. Figure 1 indicates both" full" readings of bat and
chicken, as well as the ambiguous forms used as inputs. 

2

Another goal for the model is to show how it can select the contextu-
ally appropriate reading of a verb. This is handled in much the same

2 For the concept food, which is taken to be the implied Patient in sentences like The
boy ate, no particular shape seems appropriate, Therefore the intended output representa-
tion is assumed to be unspecified (as indicated by the "?") for all values on the shape
dimension. For all other dimensions, food has what we take to be the typical values for
foods.
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ate
ateAVP
ateAVPI
ateAVF

broke
brokeAVPI
brokeA VP
brokelVP
brokePV

M
hitAVPI
hitVP
hitlVP

moved
movedA VP
movedA VS
movedPV

touched
touchedAVPI
touchedA VP
touchedlVP

DO CAU
1 1 . .
1 1 . .
1 1
.1 1 . .

TOUCH
. . 1

, , 1

. . 1

. . 1

N CHG..1..
. . 1. .

. . 1

.. 1 ..

. . . 1

. . . 1

. . . 1

, . . 1

. . . 1

. . , 1

. , . 1

. . . 1

. . . 1

. . . 1

. . . 1

. . . 1

A_MV

. 1

. 1

. 1

. 1

. 1 .. 1

. 1 .. 1

. 1 .. 1

...1 ..1

. 1 .. 1

. 1

. 1

. 1

. . , 1

1

1

1

. . . 1

. 1

. 1

. 1

, . . 1

P MV
1 . . .

1

1

1

IN

1

1

1

1

, 1

, 1

. 1

. 1

. 1

, . 1

, . 1

. . 1

. . 1

. 1

. 1

. 1

, 1

1 , 1 . ..1 . 1 .. .1 1....
. 1 . 1 .. .
. 1. ... 1 .

1

1 .
1 .
. 1

. ; 1

, . 1

, . 1

. . 1

. 1 .. .

. 1 .. .
1 . .. .
. 1 .. .

. . 1

, . 1

. . 1

. . 1

FIGURE 2. The verbs used in the model and their microfeature representations. The
forms followed by strings of uppercase letters (e.g., A VPI) represent the alternative
feature patterns that the model must choose between as its way of specifying the contex-
tually appropriate reading of the verb. These alternative feature patterns correspond to
the semantic features of the verb appropriate for particular configurations of case roles, as
indicated by the uppercase letters: A = Agent, V = Verb, P = Patient, I = Instrument,
M = Modifier, S = Self, F = implied Food. The position of the letter indicates the
position of the corresponding constituent in the input sentence. The patterns given with
the generic verb unadorned by uppercase letters were used in the sentence-level, input
representations.

1 .
1 .
1 .
. 1

1 1....1 1....1 ....1
. 1. ... 1 .

way as noun ambiguity resolution. The. different readings are
represented by (potentially) different sets of semantic microfeatures;

for example; the Agent/No-Instrument reading of broke (brokeA VP)

involves contact between the Agent and the Patient, while the
Instrument/No-Agent version (brokeIVP) and the Agent/Instrument
version (broke A VPI) involve contact between the Instrument and the
Patient. The input representation of the features of a given verb is the
same, regardless of context, and the task given to the model is to

activate the set of features for the sentence-appropriate version. Rather
than use the average pattern based on all of the different possible read-
ings of the verb, we used a "generic" pattern for each verb, which is
the pattern for what we took to be the verb's most typical case frame.

i

1

1

1

. 1

. , 1

. . 1

, . 1

. . 1

. 1 .. .
, 1 , ..1....
. 1 . ..
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This is indicated in Figure 2 by the pattern of features next to the plain

verb.3
The feature patterns corresponding to the different case frames the

model must choose among are indicated on the lines in the table fol-
lowing its generic pattern, (The labels on these lines are used simply to

designate the feature patterns. They indicate the roles the various argu-
ments in the surface structure of the sentence play. Thus, broke A VPI
specifies the case frame in which the surface subject is the Agent, the
surface object is the Patient, and the with-NP is the Instrument. Note
that the microfeatures of two different readings of the same verb may
or may not differ, depending on whether the features of the scenario do
or do not change in different case frames.

The feature vectors for the constituents of the sentence The boy

broke the window with the hammer are shown just below the correspond-
ing constituents at the top of Figure 3. Note that these are displayed in

the order: Verb, Subject NP, Object NP, and With-NP. The row of
letters below the feature vectors indicates the first letter of the name of
the dimension on which each feature represents a value. For example,
the first two elements of the verb feature vector are labeled d for the
DOER dimension; the first two values of each of the three noun
feature vectörs are labeled h for the HUMAN dimension.

Sentence-structure units. The sentence-structure level representation
of an input sentence is not actually the set of constituent feature vec-
tors; rather, it is the pattern of activation these vectors produce over
units that correspond to pairs of features. These units are called

sentence-structure (SS) units.4

3 The different handling of nouns and verbs is not a principled distinction, but an
exploration of two endpoints on a continuum ranging from underspecification of the
input for ambiguous words to complete specification of an input representation, regard-
less of the fact that the features used in the case role representation wil differ as a func-
tion of context. Perhaps the idea that the features wil be altered as a function of context

is the best way of putting things in this case. We imagine that the true state of affairs is
intermediate between these two extremes, for both nouns and verbs. In any case, the
model does not have any prior commitment to the idea that the f.eatures in the input
representation should be preserved in the output representation; the full prespecification
simply gives the model a fuller description to work from, thereby allowing greater dif-
ferentiation of the different verbs.

4 An alternative name for these units would be "surface-structure" units, to indicate
that they do not capture the notion of underlying subject, object, etc. However, we have
chosen the term "sentence-structure" because, for present purposes, the information they
capture is not even a full surface-structure parse of the sentence; in particular, it does not
specify the attachment of the with-NP.
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FIGURE 3, The top line of this figure displays the constituents of the sentence The boy
broke the window with the hammer in the order: Verb, Subject NP, Object NP, and With-

NP. Below these are the microfeatures of each constituent, and below these are conjunc-
tive sentence-structure units for each constituent. Below the horizontal line are the
blocks of case-structure units for the Agent, Patient, Instrument, and Modifier roles.
Below these is an indication of the pattern of noun features the model is activating for
each slot (represented by the vertical black bars), followed by a representation of the
microfeatures of the correct filler of each slot. The last line gives the label of the correct
head (verb frame or modified NP) and tail (slot filler) for each slot. See text for further
explanation.

Each SS unit represents the conjunction of two microfeatures of the
filler of a particular surface role, Since there are four sentence-

structure roles, there are four sets of SS units. Within each set there is
a unit that stands for the conjunction of every microfeature value on

each dimension with every microfeature value on every other dimen-
sion. For example, for nouns there are units for: '
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HUMAN = yes / GENDER = male
SOLIDITY = hard / BREAKABILITY = fragile

among many others; for the verb, one of the units corresponds to

DOER = yes / TOUCH = instrument

(i.e., there is a doer-the Instrument touches the Patient).
The sentence-structure units are displayed in Figure 3 in four roughly

triangular arrays. The verb array is separated from the arrays for the
three NPs to indicate that different features are conjoined in the verb
and NP representations.

Each array contains the conjunctive units for the constituent immedi-
ately above it. There is a unit wherever there is aI, a "?", or a ".".

Within each array, the units are laid out in such a way that the column
a unit is in indicates one of the microfeatures that it stands for, and the
row it is in indicates the other microfeature. Rows and columns are
both ordered in the same way as the microfeature vectors at the top of
the figure. The dimensions are indicated by the row of letters across
the top of each array and along the left (for the verb units) or right (for
the three sets of NP units). Note that the set of units in each array fills
less than half of each block for two reasons. First, there are only
(n (n -1)1/ 2 distinct pairs of n features; second, pairs of values on the

same dimension are not included.
We considered various schemes for activating the sentence-structure

units. One possible scheme would be to use a strict deterministic
activation rule, so that a particular SS unit would be turned on only if
both of the features the unit stands for were on in the feature vector.
This use of the SS units would allow the model to learn to respond in a
finely tuned way to particular conjunctions of microfeatures. However,
we wished to see how well the model could function using an
inherently noisy input representation. Furthermore, as discussed in

Chapter 18, we knew that generalization is facilitated when units that
only partially match the input have some chance of being activated. In
the present case, we considered it important to be able to generalize to
words with similar meanings. Therefore, the SS units were treated as
stochastic binary units, like the units used in Chapter 18. Each SS unit
received excitatory input from each of the two features that it stands
for, and we set the bias and variance of the units so that when both of
a SS unit's features were active, the unit came on with probability .85;
and when neither was active, it came on with probability .15. These
cases are represented in the figure by "1" and".", respectively. Units

receiving one excitatory input came on with probability .5; these units
are represented in Figure 3 by"?".
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The use of the SS units in conjunction with these particular activation
assumptions means that the input representation the model must use as
the basis for assigning words to case roles is both noisy and redundant.
Each feature of the input is represented in the activation of many of
the SS units, and no one of these is crucial to the representation. A
drawback of these particular activation assumptions, however, is that
they do not allow the model to learn to respond to specific conjunctions
of inputs. While the model does well in our present simulations, we
presume that simulations using a larger lexicon would require greater
differentiation of some of the noun and verb representations. To han-
dle such cases, we believe it would be necessary to allow tuning of the
input connections to the SS units via back propagation (Chapter 8) so

that greater differentiation can be obtained when necessary. In princi-
ple, also, higher-order conjunctions of microfeatures might sometimes
be required. Our use of broadly tuned, pair-wise conjunctive units
ilustrates the style of representation that we think is appropriate for the
input, but the present version is only an approximation to what we
would expect a model with a tunable input representation to build for
itself.

Case role representation. The case role representation takes a
slightly different form than the sentence-structure representation. To
understand this representation, it is useful to drop back to a more
abstract viewpoint, and consider more generally how we might
represent a structural description in a distributed representation. In
general, a structural description can be represented by a set of triples of
the form (A R B) where A and B correspond to nodes in the structural
description, and R stands for the relation between the nodes. For
example, a class-inclusion hierarchy can be represented by triples of the
form (X IS-A Y), where X and Yare category names. Any other
structural description, be it a syntactic constituent structure, a semantic
constituent structure, or anything else, can be represented in just this
way. Specifically, the case role assignment of the constituents of the
sentence The boy broke the window with the hammer can be represented
as:

Broke Agent Boy
Broke Patient Window
Broke Instrument Hammer

The constituent structure of a sentence such as The boy ate the pasta

with the sauce would be represented by:

Ate Agent Boy

Ate Patient Pasta
Pasta Modifier Sauce
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In a localist representation, we might represent each of these triples
by a single unit. Each such unit would then represent the conjunction

of a particular head or left-hand side of a triple, a particular relation,
and a particular tail or right-hand side. Our more distributed approach
is to allocate groups of units to stand for each of the possible relations
(or roles), namely, Agent, Patient, Instrument, and Modifier, and to
have units within each group stand for conjunctions of microfeatures of
the first and third arguments (the head and the tail) of the triple.
Thus, the triple is represented not by a single active unit, but by a pat-
tern of activation over a set of units.

In our implementation, there is a group of units for each of the four
relations allowed in the case structure. In Figure 3, the -Agent, Patient,

Instrument, and Modifier groups are laid out from left to right. Within
each group, individual units stand for conjunctions of one microfeature
of the head of each relation with a microfeature of the tail of each rela-
tion. Thus, for example, Broke-Agent-Boy is represented by a pattern
of activation over the left-most square block of units. The unit in the

ith row and jth column stands for the conjunction of feature i of the
verb with feature j of the noun. Thus all the units with the same verb
feature are lined up together on the same row, while all the units with
the same noun feature are lined up together in the same column. For
the Modifier group, the unit in the ith row and jth column stands for
the conjunction of feature i of the modified NP and feature j of the
modifier NP. Letters indicating the dimension specifications of the
units are provided along the side and bottom edges.

The figure indicates the net input to each case role unit produced at
the end of the training described below, in response to the sentence

The boy broke the window with the hammer. (We wil see very shortly
how these net inputs are produced.) As before, a 1 indicates that the
net input would tend to turn the unit on with probability (p) greater
than or equal to .85, and a"." indicates that the net input would tend to
turn it on with probabilty of .15 or less. A "+" indicates that the net
input has a tendency to turn the unit on (.85 ;: p ;: .5), and a "-"

indicates that the net input has a tendency to turn the unit off
(.5 ;: p ;: .15).

The correct case-frame interpretation of the sentence is provided to
the model by a specification that lists, for each of the four possible case
roles, the label corresponding to the head and tail of the role. These
are shown below each of the four blocks of case role units. The "#" is
used to indicate a null slot filler, as in the Modifier role in the present
example. From this it is possible to compute which units should be on
in the case role representation. Here we simply assume that all the
correct conjunctions should be turned on and all other units should
be off.
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'.

In this example, the pattern of net inputs to the case role units

corresponds quite closely to the correct case role representation of the
sentence. The features of boy may be seen in the columns of the block
of Agent units; the features of window in the columns of the block of

Patient units; and the features of hammer in the columns of the block
of Instrument units. The features of the Agent- Verb-Patient reading

of the verb broke can be seen in the rows of each of these three sets of
units. There are no features active in the fourth set of units, the
Modifier units, because there is no Modifier in this case. In both the

Agent and the Patient slots, the model tends to turn on (p:; .5) all
the units that should be on, and tends to turn off (p -c .5) all the units
that should be off. In the Instrument slot, there are some discrepan-

cies; these are indicated by blackening the background for the offending
units. All of the discrepancies are relatively mild in that the unit has

either a weak tendency to go on when it should not (+ on a black back-
ground) or to go off when it should be on (- on a black background).

Several things should be said about the case-frame repre~entations.

The first thing is that the slots should not be seen as containing lexical

items. Rather, they should be seen as containing patterns that specify
some of the semantic properties assigned by the model to the entities
designated by the words in the sentences. Thus, the pattern of feature
values for the verb break specifies that in this instance there is contact
between the Instrument and the Patient. This would also be the case in
a sentence like The hammer broke the window. However, in a sentence
like The boy broke the window, with no Instrument specified, the pattern
of feature values specifies contact between the Agent and the Patient.
Thus, the verb features provide a partial description of the scenario
described by the sentence. The noun features, likewise, provide a par-
tial description of the players (to use Filmore's analogy) in the
scenario, and these descriptions, as we will see later on, may actually be
modulated by the model to take on attributes appropriate for the
scenario in question.

Details of Sentence Processing and Learning

The model is very much like the verb learning model (Chapter 18).
When a sentence is presented, a conventional computer program front-
end determines the net input to each of the sentence-structure units,
based on the feature vectors of the words. Each of these units is then
turned on probabilistically, as described above. Each surface-structure
unit has a modifiable connection to each of the case-structure units. In
addition, each case-structure unit has à modifiable bias (equivalent to a
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connection from a special unit that is always on). Based on the
sentence-structure pattern and the current values of the weights, a net

input to each case-structure unit is computed; this is just the sum of
the weights of the active inputs to each unit plus the bias term. Case-
structure units take on activation values of 0 and 1, and activation is a
probabilistic function of the net input, as in the verb learning modeL.

During learning, the resulting activation of eacli case-structure unit is
compared to the value it should have in the correct reading of the sen-
tence, The correct reading is supplied as a "teaching input" specifying
which of the case role units should be on. The idea is that this teach-
ing input is analogous to the representation a real language learner

would construct of the situation in which the sentence might have
occurred. Learning simply amounts to adjusting connection strengths
to make the output generated by the model correspond more closely to
the teaching input. As in the verb learning model, if a unit should be
active and it is not, the weights on all the active input lines are incre-
mented and the threshold is decremented. If a unit should not be
active but it is, the weights on all the active output lines are decre-

mented and the threshold is incremented. This is, of course, just the
perceptron convergence procedure (Rosenblatt, 1962), whose strengths
and weaknesses have been examined and relied upon throughout the
book.

SIMULATION EXPERIMENTS

The most important thing about the model is the fact that its
response to new inputs is strictly dependent upon its experience. In
evaluating its behavior, then, it is important to have a clear understand-
ing of what it has been exposed to during learning. We have done a
number of different experiments with the model, but we wil focus pri-
marily on one main experiment.

The main experiment consisted of generating a corpus of sentences
derived from the sentence frames listed in Table 2. It must be

emphasized that these sentence frames were simply used to generate a
set of legal sentences. Each frame specifies a verb, a set of roles, and a
list of possible fillers of each role. Thus, the sentence frame The
human broke the fragile object with the breaker is simply a generator for
all the sentences in which human is replaced with one of the words on
the list of humans in Table 3, fragile_object is replaced with one of the
words on the list of fragile objects in Table 3, and breaker is replaced
with one of the words on the list of breakers in the table. It is clear
that these generators do not capture all of the subtle distributional
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TABLE 2

GENERATORS FOR SENTENCES USED IN TRAINING AND TESTS

Sentence Frame Argument Assignment

The human ate.

The human ate the food.

The human ate the food with the food.

The human ate the food with the utensiL.

The animal ate.

The predator ate the prey.

AVF

AVP

AVPM

AVPI

AVF

AVP

The human broke the fragile_object.

The human broke the fragile_object with the breaker.

The breaker broke the fragile_object.

The animal broke the fragile_object.

The fragile_object broke,

AVP

AVPI

IVP

AVP

PV

The human hit the thing.

The human hit the human with the possession.

The human hit the thing with the hitter.

The hitter hit the thing,

AVP

AVPM

AVPI

IVP

The human moved.

The human moved the object.

The animal moved.

The object moved,

AVS

AVP

AVS

PV

Note: Argument assignments specify the case role assignment of the constituents of
a sentence from left to right. A = Agent, V = Verb, P = Patient, I = Instrument,
M = Modifier, F = (implied) Food, S = Self.

properties of referents in real scenarios (e.g., the model is completely
sex and age neutral when it comes to hitting and breaking things, con-
trary to reality), and so we cannot expect the model to capture all these
subtleties. However, there are certain distributional facts implicit in the
full ensemble of sentences encompassed by the generators. For exam-
ple,all the breakers but one are hard, not soft (only ball is coded as soft
in the feature patterns); only the humans enter as Agents into scenarios
involving Instrument use; etc.

The "target" case-frame representations of the sentences were gen-
erated along with the sentences themselves. The case role assignments
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TABLE 3

NOUN CATEGORIES

human man woman boy girl

animal fl-bat Ii-chicken dog wolf sheep lion

object ball bb-bat paperwt cheese co-chicken curtain
desk doll fork hatchet hammer plate rock
pasta spoon carrot vase window

thing human animal object

predator wolf lion

prey Ii-chicken sheep

food co-chicken cheese spaghetti carrot

utensil fork spoon

fragile_ object plate window vase

hitter ball bb-bat paperwt hatchet hammer rock vase

breaker paperwt ball bb-bat hatchet hammer rock

possession ball dog bb-bat doll hatchet hammer vase

are indicated in Table 2 by the sequence of capital letters. These indi-
cate the assignment of arguments from the sentences to the roles of
Agent, Verb, Patient, Instrument, and Modifier (of the Patient). 5 Note
that there are some sentences that could be generated by more than
one generator. Thus, The boy hit the girl with the ball can be generated
by the generator The human hit the human with the possession, in which
case the ball is treated as a Modifier of the Patient. Alternatively, it
may be generated by the generator The human hit the thing with the
hitter. In this case, the ball is treated as the Instrument. Similarly, The
bat broke the vase can be generated by The breaker broke the
fragile_object, in which case its case-frame representation contains a

5 Two special caes should be noted: For The human ate, the cae frame contains a
specification (F) that designates an implied Patient that is the generic food with unspeci-
fied shape, as indicated in the feature patterns displayed in Figure 1. For The human
moved and The animal moved, the case frame contains a specification (S) that indicates
that there is an implied Patient who is the same as the Agent (note that the sense of the
verb move used here involves moving oneself and not one's possessions).

i I



~ L
292 PSYCHOLOGICAL PROCESSES

baseball bat serving as Instrument. The same sentence can also be gen-
erated by The animal broke the fragile_object, in which case, of course,
its case-frame representation contains a flying bat serving as Agent.

For the main experiment, we generated all the sentences covered by
the generators and then selected eight of each type to use as training
sentences. Of these we selected two to be familar test sentences. In
addition, we selected two additional sentences from each generator to
be used as novel test sentences. These sentences were never used to
train the modeL. 6

The model was given 50 cycles of training with the set of training
sentences. On each cycle, each sentence was presented, the model's
response to it was generated, and connection strengths were adjusted

according to the perceptron convergence procedure.
After the 5th, 10th, 20th, 30th, 40th, and 50th training cycles, the

model was tested on both the familar and the novel test sentences. No
learning occurred during the tests, so that the response to the novel test
sentences always represented generalization from the training materials
rather than the effects of direct experience.

Basic Results

Figure 4 gives a very global indication of the model's performance on
both the familiar and the novel test sentences at each phase of testing.
The figure indicates the average number of incorrect microfeatures pro-
duced by the model as a function of learning trials, for both the fami-
liar and unfamiliar test sentences. There are a total of 2500 case role

units, so on the average the model is getting over 95% correct, even

with unfamilar sentences, after the first 5 learning cycles, and is down
to about 1 % error at Cycle 50. However, these statistics are somewhat
misleading, since on the whole, most of the case role units should be
off. A more realistic indication of the absolute performance level is
provided by the observation that between 56 and 1.68 of the units
should be on in the correct case role representation of each sentence,
In general, the errors that the model does make are about evenly dis-
tributed between sins of commission (false alarms) and sins of

6 Some of the generators (e.g., The human hit the thing with the hitter) generate rather
large numbers of different sentences (in this case, 756), but others (e.g., The human ate,
The predator ate the prey) generate only very small numbers of sentences (four in each of
these cases). The training materials contained four copies of each of two of these sen-

tences so that even here, there were two familiar test sentences and two unfamiliar test
sentences.

-- I



~ L
en 100:=
m-0 80

Q)l-I-
0 600
t:

:: .c
0)~
-c 20

0
0

19. SENTENCE PROCESSING 293

\\\\... .. ..------------
novel sentences

10 20 30 .c
Learning Cycle

50

FIGURE' 4. Average number of incorrect microfeatures produced as a function of
amount of learning experience (in number of cycles through the full list of training sen-
tences) .

omission (incorrect rejections). Thus, on average, at the end of 50
cycles, the model is turning on about 85 of the approximately 100

microfeatures that should be on, and is turning on about 15 out of 2400
microfeatures that should be off. This corresponds to a d of about 3.5.

Two things are apparent in the graph. First, there is a smooth and
continuing improvement in performance for both familar and unfami-
liar sentences. Second, there is an advantage for sentences that the

model has actually seen before, but it is not particularly great. As we
shall see, there is considerable variability in the model's abilty to deal
with particular sentences; only a part of it is accounted for by whether a
particular sentence happens to be old or new.

Figures 5 and 6 indicate the model's performance on each of the 38
familiar and unfamilar test sentences, at each of the six tests.

In what follows, we wil focus attention on the performance of the

model at the end of 50 learning cycles.

Use of Semantic and Word-Order Cues

To assess the model's ability to make use of word-order and semantic
cues to role assignment, we examined its performance on the verbs hit
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FAMILIAR SENTENCES

Number of eye i.s of Training
. Input Frame 10 20 30 40 50

man ato AVF 72 38 23 30 20 10gil"l ato AVF 54 38 23 11 13 9
woman ato ch...e AVP 49 32 26 '5 12 27.ornn ato pasta AVP 62 33 22 14 II 9
woman ata co chic pasta AVPI 90 66 49 37 36 29
man ato pait. co chic AVPM 78 47 31 27 25 10gi'-I ato pasta spoon "VPI 72 63 55 26 19 23
boy at. co-chic fork AVPI 73 47 45 20 26 6dog ato AVF 58 27 13 22 26 12sheep ato AVF 75 44 25 19 15 19
1 'on ato " chic AVP 60 48 31 17 19 10
1 ton a'. sheep AVP 52 34 11 21 10 9

woman broke w l ndow AVP 65 38 33 21 14 13
boy broke plata AVP 59 56 17 31 20 18...n broke . tndow bb bat AVPI 86 70 69 36 47 25
boy broke plate hatchet AVPI 101 52 37 35 30 14pape,..t broke vaS8 IVP 76 60 47 42 AD 35
bb_bat broke plate ivp. 108 91 9A 111 83 47fI bot broke . l ndow AVP. 107 149 119 105 111 108
waif broke plate AVo 91 62 A4 A7 26 30
yase broka Pv 70 55 33 31 14 21
. l ndow brOke Pv 73 41 24 27 16 16

..on hit pasta 4VP 85 55 34 30 19 16
9irl hit boy AVP 77 76 38 41 23 33
man hit gid hatchet AVP,.- 138 126 95 83 60 83
..on hit woman harrer AVP"- 130 112 79 63 59 69
woman hit fI -bot hammer AVP! . "4 67 87 46 41 33girl hit vase bb_bat AVP! 147 102 81 56 54 49hatchet hit pasta IVO 100 70 49 41 34 2'
he"". ,. hit vase IVP 103 75 57 55 49 32

..on moved AVS 83 77 41 35 36 20
woman ,"oyed 4VS 104 68 33 40 24 37
woman Ihved plate AVo 79 64 49 32 36 31
gil"l tfved pasta 4VP 66 57 45 29 29 16
fI ba' i-o".d AVS. 122 109 103 71 50 52
dog IIved 4VS 97 64 46 64 45 42
doll moved PV 146 103 82 84 90 69
desk moved PV 93 86 48 44 50 .,

FIGURE 5, Number of microfeature errors for each familar sentence, after 5, 10, 20,
30, 40, and 50 cycles through the set of training stimuli. Sentences are written in SVOW
(W = with-NP) order to faciltate reading; the column labeled "Verb Frame" indicates
the role assignments of these arguments, The * indicates a sentence that is ambiguous in
terms of the set of generators used, in that it could have been generated in two different
ways. Recall that ambiguous words (bat, chicken) are ambiguously specified in the input;
it is the job of the model to select the contextually appropriate reading.

and break. In the case of break, constraints are very important; in the
case of hit, role assignment is sometimes determined by word order
alone.

The dog broke the plate, the hammer broke the vase, and the win-
dow broke. The verb break can take its Instrument, its Agent, or even
its Patient as its Subject. In the first two cases (as in The dog broke the

plate and The hammer broke the vase), it is only the semantic properties
of the subject that can tell us whether it is Agent or Instrument.
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boy at.wo,.n at.
woman at.man at.
woman ateboy ateman at.
woman atefl bat at.
ll-chlcat.wolf atewolf ata
f 1 bat
dog
girl
woman
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FIGURE 6. Number of missed features in output for each unfamiliar sentence, after 5,
10, 20, 30, 40, and 50 cycles of training. See previous caption for conventions.

These two sentences happened to be among the unfamilar test sen-
tences generated by the generators The animal broke the fragile object
and The breaker broke the fragile_object. 7 The patterns of activitY pro-
duced by the model in response to each of these two sentences are
shown in Figures 7 and 8. We can see that in the case of The dog broke
the plate, there is a strong pattern of activation over the Agent units,
while in the case of The hammer broke the vase, there is' a strong pattern
of activation over the Instrument units. In fact, the pattern of activa-
tion over the Agent units in the first case corresponds closely to the
expected target pattern for brokeA VP-agent-dog, and the pattern of

7 The others were The bat broke the vase and The ball broke the vase. Each of these sen-
tences will be discussed later.
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FIGURE 7. Display of the stiite of the model after processing the sentence The dog broke
the plate.

activation over the Patient units in the second case corresponds closely

to the expected target pattern for brokeIVP-instrument-hammer.

Thus, the model has correctly assigned the word dog to be Agent in the
first case, and the word hammer to be Instrument in the second. A
summary display that makes the same point is shown below the case
role representations in Figures 7 and 8, and is repeated, for these and
other sentences, in Figure 9.

The summary display indicates in histogram form the features of the
right-hand side of the triple stored in the corresponding block of units.

The summary pattern for the Agent role in the sentence The dog broke
the plate is shown below the block of Agent units in Figure 7. The pat-
tern just below this indicates the" correct" pattern; in this instance, this
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FIGURE 8. Display of the state of the model after processing the sentence The hammer
broke the vase.

pattern is just the feature pattern for dog. In this case we can see that
the pattern the model produced is very close to the correct answer. 8

8 The summaries are based on average probability of activation, with the average only
taken over the subset of units associated with a particular noun feature that is also associ-
ated with the features of the correct verb frame. Thus, for example, there are 25 units
for the feature nonhuman in each of the four case slots. These units are displayed as the
second column of units in each slot; the ones that indicate whether this feature holds for
the Agent are shown in the second column of the Agent units, the left-most block.
Seven of these units conjoin this feature with a feature of the verb frame brokeA VP. In
the case of The dog broke the plate, ilustrated in Figure 7, most of these units have a ten-

dency to come on (.5 -: p -: .85), while two (the last two) have a tendency to stay off
US -: p -: .5)-a tendency that is considered to be erroneous and results in these units

having black backgrounds. The average of these probabilities is about ,65, This value is
translated into the height of the bar in the second position of the Agent slot for the sen-
tence The dog broke the plate.
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FIGURE 9. Summary of the activations produced on the case role units by the sentences
The dog broke the plate, The hammer broke the vase, and The plate broke.

Below each feature-pattern summary, we present in quantitative form
a measure of the similarity of all possible nouns from the sentence with
the summary pattern for each slot. We also compare the contents of
each slot to the "#" pattern, corresponding to "all units off." The

numbers (called deviation scores) indicate the mean squared deviation of
the indicated noun pattern from the summary representation of the
contents of each slot. A small deviation score indicates a close

correspondence. Thus, if we look at the row of numbers labeled dog,
we can see again that the pattern over the Agent units (first column) is
very similar to the pattern for dog, Further, we can see that the pattern
for dog is not similar to the patterns in any of the other slots (second

through fourth columns). The pattern on the Patient units is similar to
the pattern for plate, and the patterns on the Instrument and Modifier
units are similar to the null pattern. For the sentence The hammer

broke the vase, the pattern on the Instrument units is similar to the pat-
tern for hammer, the pattern on the Patient units is similar to the pat-
tern for vase, and the patterns on the Agent and Modifier units are
similar to the blank pattern. Thus, each argument has effectively been

assigned the correct role, and each role has effectively been assigned

the correct filler. 9

9 With respect to the summary pattern on the Instrument slot for The hammer broke the

window, we can see that the model is trying to activate both values on the POINTINESS
dimension. Because hammer and hatchet are identical except for this feature, the
representation is really describing a somewhat pointy hammer (or perhaps blunt hatchet).

-i
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This example has been described in some detail, in part to explicate
our displays of the model's responses to particular sentences. In the
process we have seen clearly that dog and hammer trigger the appropri-
ate bindings of arguments to slots. This is also the case for examples
of the form The plate broke. There, Figure 9 indicates that the only slot
in which there is appreciable activity is the Patient slot.

These examples ilustrate that the model has learned quite a bit about
assigning fillers to slots on the basis of the microfeatures of the slot fill-
ers involved. For the word break, animate surface subjects are treated
as Agents and inanimate surface subjects are treated as Instruments if
an Object is specified; if not, the inanimate surface subject is treated as
Patient. The model seems to capture this fact pretty well in its
behavior. 10 /

The boy hit the girl and the girl hit the boy. For the verb hit, there
is a possibilty that a sentence describing .an instance of hitting wil have
two animate arguments, which may be equally plausible candidates to
serve as Agent. The only way to tell which is the Agent (in the
absence of other context) is to rely on word-order information. We
know that boy is the Agent in the The boy hit the girl only because it
occurs in the preverbal position. The model has no diffculty coping
with this fact. Figure 10 shows in summary form the features activated
by the sentences The girl hit the boy (a sentence the model actually
experienced during learning) and The boy hit the girl (a sentence not
experienced during learning). In both cases, the model activates the
feature pattern for the correct argument in the correct slot. This is so,
even though the feature patterns for boy and girl differ by a single
feature.11 As a more formal test of the model's abilty to assign slot

10 One thing that we see ilustrated here is that with certain novel sentences, the model
may have a tendency to misgenerate some of their features when assigning them to
underlying slots. Thus, for example, in the case of The plate broke, only some of the

features are produced faithfully. These are, in fact, the features associated with the slot
fillers that the model actually learned to deal with in this sentence frame (vase, window).

The ones that are poorly reproduced are the features that the familar exemplars differ on
or which differ between the familiar examples and plate. Such errors would be greatly

reduced if'a more disparate range of Patient-intransitive verbs with a more disparate
range of subjects had been used in the learning. Such errors could also be cleaned up

quite a bit by an auto-associative network of connections among the case role units. The
virtues of augmenting the model with such a network are considered in more detail later.

i i Though the model did not actually learn the sentence The boy hit the girl or any other
sentence containing boy and girl as Subject and Object, it did learn several sentences in
which boy was the subject of hit and several others in which girl was the object. As it
happened, several of these involved modifiers of girl, hence the rather diffuse pattern of
activation over the Modifier units.
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FIGURE 10. Summaries of of the role assignment patterns produced by The girl hit the
boy and The boy hit the girl.

fillers to slots based only on .sentence-structure information, we tested
the model on the full set of 12 different human-hit-human sentences.

In all cases, the preverbal argument more closely matched the pattern
of activation in the Agent role, and the post verbal argument more
closely matched the pattern in the Patient role.

V erb- Frame Selection

Part of the task of the model is to put slot fillers in the correct
places, but there is more that it must do than this. It must also deter-

mine from the ensemble of arguments what reading of the verb is
intended. By this, we mean which of the possible scenarios the verb
might describe is actually being described in this particular case. For
example, the sentences The boy broke the window with the hammer gen-
erates quite a different mental scenario than .The dog broke the window

or The window broke. Our model captures the differences between
these scenarios in two ways: one is simply in terms of the set of under-
lying roles and the assignment of sentence constituents to these roles.
We have already seen in our earlier discussion of break that the model
produced a different set of slots and assigned the preverbal noun phrase
to a different role in each of the sentences The dog broke the window,

The hammer broke the vase, and The plate broke. The other way the
model captures the differences between scenarios is in terms of the pat-
tern of activation of verb features in the Agent, Patient, and Instru-

ment slots. Thus in The boy hit the girl, we visualize physical contact
between the boy and the girl; in the case of The boy hit the girl with the
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rock, we visualize physical contact between the rock and the girL. These
and other related distinctions are captured (admittedly, imperfectly) in
the different feature patterns associated with the verb frames. As with
the feature patterns for nouns, the patterns that we used do not ade-
quately encode the differential flexibility of different aspects of the dif-
ferent scenarios. Nevertheless they capture the essence of the differ-
ence, say, between one or the other kind of hittirtg.

The features of the scenario are captured in the pattern of activation
of the case role units. To this point, we have been summing along
columns of units to determine the features of the object assigned to a
particular role by the modeL. To determine the features of the action or
scenario assigned to the sentence, we need to look along the rows. Fig-
ures 3, 7, and 8 indicate that features in somewhat different patterns of
rows are activated by the sentences The boy broke the window with the

hammer, The dog broke the plate, and The hammer broke the vase. These
are, indeed, the correct verb features in each one. Thus, we see that
the model has learned to successfully assign a different scenario,
depending on the arguments supplied along with the verb.

In general, the model did quite well selecting the correct scenario.
For every unambiguous test sentence, familiar or unfamilar, the value
on each scenario dimension that was most active was the correct value.

Filing in Missing Arguments

The model does a very good job filling in plausible default values for
missing arguments. To demonstrate this, we tested the model on the
sentence fragment The boy broke. The results are shown in Figure 11.
The model fills in, fairly strongly, a plausible but underspecified fragile
object-something that is nonhuman, neuter, non pointed, fragile, and
has object-type lÙrniture (plate, vase, and window are all classified as fur-
niture in the model). Values on the size (VOLUME) and shape
(FORM) dimensions are very weakly specified.12

We see similar kinds of things happening with The girl ate, though in
this case, the model is actually taught to fill in foo.d of unspecified
form, sò this performance is not surprising. Something slightly

12 While the model's response to The boy broke clearly ilustrates default assignment, it
differs from the way many people appear to process this input; several people have com-
mented to us that they read this fragment as a complete sentence specifying that it was
the boy that broke, even though this produces a somewhat anomalous reading. The
model's response to The boy broke is closer to the kind of thing most people get with a
verb like hit, which does not have an intransitive reading.
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FIGURE 11. Summaries of the model's response to The boy broke. The girl ate, and The
man moved.

.,.;..-..-
different happens with The man moved: The model is taught to treat
man as both Agent and Patient in such sentences; and indeed, the pat-
tern for man predominates in the Patient slot. (Note that if an object is
specified, as in The man moved the piano, it is handled correctly.)

These additional examples make two points: First, that the model
can be explicitly trained to fill in implied arguments; and second, that
the fillng in of implied arguments is clearly specific to the particular
verb. What is filled in on the Patient slot is quite different for each of
these three examples.

Lexical Ambiguity Resolution

In general, the model does very well with ambiguous words. That is,
it has little diffculty determining which reading to assign to an ambigu-
ous word based on its context of occurrence-as long as the context is
itself suffcient to disambiguate the meaning of the word.

To demonstrate this point, we carried out a number of analyses of
the model's responses to sentences containing the ambiguous nouns
chicken (live or cooked) and bat (flying or baseball. We divided the
sentences containing these ambiguous words into those that had only
one case-frame representation derivable from the generators and those
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that could have been generated in two different ways. An example of
the former kind of sentence is The chicken ate the carrot, since only a
live chicken could occur as the preverbal NP with ate. An example of
the latter kind of sentence is The bat broke the window, which could be

generated either from The animal broke the fragile_object or from The
breaker broke the fragile_object. Given the set of generators, the context
specifies which reading is correct for the first kind of sentence but does
not specify which reading is correct for the latter. Since our present
interest is to see how well the model can do at using context to resolve
ambiguity, we focus here on the former type.

Our first analysis simply compared the model's performance with
these sentences to its performance with sentences containing no ambi-
guous words. Since a large number of factors contribute to the
number-of-bits-incorrect measure, we focused on a set of seven
matched pairs of sentences that were generated from the same genera-
tors and were also either both old or both new, but differed in that one
contained an ambiguous word (e.g., The woman ate the chicken with the
carrot) and the other did not (The boy ate the carrot with the pasta). The
average number of features missed was 28.4 for the items containing
ambiguous words and 29.1 for the control items, F(1,6) .. 1.

Another way to examine the data is to examine the relative strengths
of the features of the two readings of an ambiguous word in the output
summary representation. Figure 12 indicates a typical case and one
interesting exception to the general pattern. In the typical case (The

man ate the chicken with the fork), we see that the features of the
cooked chicken have been strongly activated in the Patient slot, and
though there are some weak traces of the features of the live chicken,
they are not stronger than the weak extraneous activation we often see
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of incorrect features for unambiguous words. In the atypical case (The
wolf ate the chicken), the pattern is really much closer to the cooked
chicken than the live one that the model was "supposed" to have

retrieved. It is diffcult to fault the model too much in this case, how-
ever. Though it was never given sentences of the form The animal ate
the food, it was given sentences of the form The animal ate, where the
underlying case frame included (implied) food. Thus the model had
considerable reason to treat the object of The animal ate as food.

Though it had learned The lion ate chicken referred to a live chicken, it
appears to prefer to treat chicken in The wolf ate chicken more as cooked
food than as a living animaL. Some of the properties of the live chicken
are weakly present-e.g., its female sex and its natural, animate object-
type classification - but the predominant pattern is that of food.

With this exception, the model has shown itself quite capable of han-
dling sentences containing ambiguous words as well as sentences con-
taining only unambiguous words. This is, of course, not really surpris-
ing in view of the fact that all the words in the sentence are used to
help constrain the features assigned to the fillers of every role in the
case frame. When one word does not provide the information to con-
strain the output, the model can exploit information contained in other
words.

Structural Ambiguity

In this section, we briefly consider another type of ambiguity that

sometimes arises even when the words in the sentence are unambigu-

ous. This is the structural ambiguity of sentences such as The man hit

the woman with the hammer. In such cases, hammer can either be the
Instrument or simply a Modifier of woman. This case-structure ambi-
guity parallels an ambiguity in the syntactic structure of the sentence as
well; if hammer is an Instrument, it is dominated directly by the VP;
whereas if it is a Modifier, it is dominated by the. NP the window.

Because hammer was included both in the list of possible possession-
modifiers of human objects and in the list of possible instruments of
hitting (designated as possessions and hitters in the sentence frames in
Table 2 and in the noun categories in Table 3), either of these readings
is equally possible. Thus, it is not so surprising that the model has con-
siderable diffculty with such sentences, generating a blend of the two
readings.

A particularly interesting case of case-structure ambiguity occurs with
the sentence The bat broke the window. As already mentioned, the sen-
tence is both lexically ambiguous and ambiguous in case structure, and
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the structural ambiguity hinges on the lexical ambiguity, If bat is a
baseball bat then the case frame specifies an Instrument and a Patient,
but if it is a flying bat then the case frame specifies an Agent and a
Patient.

Figure 13 ilustrates the pattern of activation generated in this case.

What the model does, quite sensibly, is activate one kind of bat-the
flying bat-on the Agent units and the other-the baseball bat-on the
Instrument units (see the figure caption for a detailed explanation of
the use of the black background in this figure).

People generally get only one reading of a sentence at a time, even

when (as in this case) the sentence is easy to interpret in either of two
ways. In a later section of this chapter we explain how cross-

connections among the case role units and back-connections to

sentence-level units would tend to cause the model to choose a single
interpretation, even in these ambiguous cases.

Shades of Meaning

Another property of the model, related to its handling of ambiguity,
is the fact that it can shade the feature patterns it assigns, in ways that
often seem quite appropriate. One example of this tendency arises in
the model's response to the sentence The ball broke the vase. A sum-
mary of the pattern produced is shown in Figure 14. The feature pat-
tern on the Instrument units matches the features of ball fairly closely.
The value on each dimension that is most strongly activated is the
correct value, except on one dimension-the hard/soft dimension. On
this dimension, we can see that the model has gotten ball completely
wrong-it has strongly activated hard, instead of soft.

In one sense, this is clearly an "error" on the model's part; all the
balls that it learned about were soft, not hard balls. But in another
sense, it is a perfectly sensible response for the model to make. All of
the other instruments of breaking (called breakers in Table 3) were, in
fact, hard. The model picked up on this fact, and shaded its interpreta-
tion of the meaning of the word ball as a result. As far as this model is
concerned, balls that are used for breaking are hard, not soft.

This kind of shading of meaning is just another manifestation of the
process that fills in missing arguments, chooses appropriate verb

frames, and selects "Contextually appropriate meanings of words. It is
part and parcel of the mechanism that generally results in the activation
of the nominally correct feature pattern. It is a mechanism that natur-
ally blends together what it learns into a representation that regularizes
slot fillers, in the same way that the verb learning model discussed in
Chapter 18 regularizes verbs.
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FIGURE 13. State of the model after processing the sentence The bat broke the window,
For this sentence, the black background on the Agent units shows which units would be
active in the pattern for flying bat as Agent of the agentive (A VP) reading of broke. The
black background on the Instrument units indicates the units that would be active in the
pattern for baseball bat as Instrument of the instrumental (IVP) reading of broke. The
black background on the Patient units indicates the units that would be active in either the
pattern appropriate for window as Patient of the agentive reading of broke or in the instru-
mental reading of broke.

Other Creative Errors

The model made a number of other interesting "errors." Its response
to The doll moved was a particularly striking example. Recall that the
training stimuli contained sentences from the frames The animal moved,

The human moved, and The object moved. In the first two cases, the case
frame contained the subject as both Agent and Patient, as in The animal
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FIGURE 14. Summary of the activations on the case role units for the sentence The ball
broke the vase.

moved itself In the third case, the case frame contained the subject

only as Patient. The model had some diffculty with these construc-
tions, but generally put inanimate subjects into the Patient role only (as
in The desk moved), and animate subjects into both the Agent and
Instrument role. With The doll moved, however, the case-frame

representation shows considerable activation in the Agent slot. The

pattern of activation there (Figure 15) seems to be pretty much that of
a small (though fragile and nonhuman) girl-or perhaps it is simply an
animate dolL.

Generalization to Novel Words

We have already seen that the model can generalize quite well from
particular sentences that it has learned about to new ones that it has not
seen before. It is, obviously, important to be able to generalize in this
way, since we cannot expect the training set of sentences to cover all
possible word combinations in the language, even if they contain only a
single clause. Thus far, however, we have only considered generaliza-

tion to sentences made up of familiar words. What would happen, we
wondered, if we tested the model using new words that it had never
seen before? To examine this issue, we tested the model on the verb
touch. Touch differs from hit in only one feature, namely, intensity;
otherwise all of the same verb features are appropriate to it. We
assumed that the model already knew the meaning of touch-that is, we
assumed that the correct input microfeatures were activated on presen-
tation of a sentence containing it. We then took all of the test sen-
tences containing the word hit, replaced hit with touched, and tested the
model on each of these sentences. Overall, performance was somewhat
worse than with hit, but the model was stil able to assign arguments to
the correct underlying roles. In particular, it had no diffculty assigning
animate Subject NPs to the role of Agent and the Object NP to the role
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FIGURE 15. State of the model after processing the sentence The doll moved. The units
with the black background in the Agent slot indicate the units appropriate for the pattern
corresponding to an "animate doll" as Agent of the Agent-Verb-Self (AVS) reading of
move. The units with the black background in the Patient slot indicate the units appropri-
ate for either an animate or (normal) toy doll as Patient of either the A VS or Patient-
Verb (PV) reading of move.

of Patient, nor did it have any problem assigning inanimate subjects to
the role of Instrument, as ilustrated in Figure 16.

Two characteristics of the model's performance with this novel verb
should be noted. The first is that it does not activate all the correct
verb features: The verb features captured in the case role representa-
tion are appropriate for hit rather than touch. There are two reasons for
this. One is the redundancy of the representation of the verbs. The

input representation we are using is an extremely rich and redundant
representation for capturing the very small number of verbs that we
have actually used, so the model learns to predict features from other

i I



~ L
19. SENTENCE PROCESSING 309

Tn. nlll~C:Mt tou,, t' ".:ie-a.

tOUlWl.. p...t. touhel.. twtCMt

- -.11...11...1...11.1......
nn.:ii'nv"",:ii~ ~:: ~ COO

.. - --.1.1..11...1..1..1..1....
I'sngv"i. 11 c: c ~ ¡; ~ ~MS:l9fiVVV""rJPCtlooo hN~n~;;;~~~c~;;;;ê;

o
pllSt"l1
I'Ult'Cl"t
o

.. ....
'.3197
. .3191. .....

. .1328

. .1"82

. .a:¡s
'.1328

'.iõ291
'.24'3
'.1642
to 1291

. . ....
'.3195'.31". . ....

TM 91"1 tOUMØ t' DO.

~ou.. girl tou~ -..-- ... .1.1..1..1....1.1.1.....1.nn.s~""øøOO
._. - .
:i~~~~f;;~¿~~~ò;~;; M..g~;;;;~ri~c~~:;~ :~

.........................
lV:ing"'~.a.al co c 0000

g,rl.0.
o
o

'.'191
. . 1739
to 1867
. .1867

.. '769

. ..279

. .1763

..i 763

. .3las

. .3185. . ...... ....

'.3132
'.3e16
. . ..16
.. ..16

""NT P'I"TIEHT IHSTiil.KT 1'0CU'"I I!R:

FIGURE 16. Summary of the pattern of activation produced by the model in response to
The hatchet touched the pasta and The girl touched the boy.

features. In a much less redundant set of verbs, the model would be
forced to learn to rely on just the right features of the sentence-level

pattern to predict the features of the case role representation correctly.

The second reason is that the deviant feature on the word touch does
not fall inside a subspace delineated by a set of related exemplars that
behave in similar ways. What we are seeing here, essentially, is assimi-
lation to a single familar verb that is near the novel verb in feature
space. When a novel word is presented that more nearly falls inside the
subspace delineated by a set of related exemplars, the model is better
able to correctly represent all the features of the novel word in the case
role representation, To show this, we defined a new fragile object, a
lamp, that was nonhuman, hard, neuter, medium-sized, one-
dimensional, not pointed, fragile, and furniture. This set of features
matches at least one of the breakable objects on every dimension, but
matches none of them on all of the dimensions. We then tested the
model by taking all of the familiar test sentences containing any of the
familiar breakable objects (window, vase, and plate) and then testing the

model on these sentences with the word lamp in the place of the fami-
liar breakable object. In many cases, as in the first example shown in
Figure 17, the model activated all the features correctly. That is, the
correct feature for lamp on each dimension was more strongly activated
than any other. The model was most vulnerable to error on the
VOLUME and FORM dimensions, as in the second example shown,
where it differed from two of the three familiar fragile objects in each
case. The example indicates, then, that the desirable tendency of the
model to shade the meanings of the words it encounters to fit the typi-
cal features it expects in certain contexts need not lead to severe distor-
tions of novel words, as long as their feature patterns fall inside the
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FIGURE 17. Summary of the response of the model to The woman broke the lamp and
The boy broke the lamp.

space spanned by a set of similar words that are treated by the model in
a consistent way.

Straightforward Extensions

The model does many things well, but it is really just the first step
toward a PDP model of sentence processing. In the general discussion
we wil consider some of the more general issues that confront the
attempt to extend a model of this type further. Here, we wil just men-
tion some straightforward extensions that should be fairly easy to
implement. We have not yet implemented these changes, so our dis-
cussion is somewhat speculative.

One straightforward set of extensions to the model would involve
adding cross-connections among the case role units. The cross-

connections would allow argument co-occurrence con~traints that are
verb-frame specific to be captured more effectively than they can now.
In the present version of the model, the influence of one argument on
another can only essentially add together with the influence of the verb
on that argument. This wil ultimately prove insuffcient, we believe,
because different verbs carry with them radically different interdepen-
dencies among their arguments. For example, see imposes some

restrictions between the Instrument and the Object (as in Bil saw the
man with the telescope and Bil saw the man with the revolver; the first is
ambiguous, the second is not) that are different from those posed by hit
(Bil hit the man with the telescope and Bil hit the man with the revolver

seem equally ambiguous). The present version of the model would not
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easily capture these kinds of verb-contingent argument constraints

because each argument is encoded separately from the verb at the sen-
tence level, and it is only connections from units at the sentence level
that determine the input to the case role units. This means that con-

junctions of noun characteristics with verb characteristics are not
directly at work in determining case role unit activations. The case role
units, however, do provide just such a conjunctive encoding. It seems
likely, therefore, that connections among these units would be able to
capture verb-specific (or, more exactly, verb-feature specific) con-
tingencies between slot fillers and their assignments to roles.

Cross-connections among the case role units would add a number of
other advantages, as welL. They would allow competitiøn among alter-
native interpretations of the same word at the case-frame level, so that
the stronger of two competing interpretations of the same word could
effectively suppress the weaker.

A second straightforward extension would be the addition of back-
connections from the case role units to the sentence-structure units.
This, too, could have several beneficial effects on the performance of
the modeL. In an extended version of the model with cross-connections

and back-connections, the computation performed by the present ver-
sion of the model would be just the first step in an iterative settling
process. This settling process could be used to fill in the features of one
reading or another of an ambiguous word at the sentence level, based
on the emerging pattern at the case role leveL. Once filled in, these
features could then add to the support for the "dominant" reading over
other, initially partially activated readings-the whole network would, in
effect, drive itself into a stable "corner" that would tend to represent a
coherent interpretation at both the sentence and the case role leveL.

Kawamoto (1985) has observed just such effects in a simulation of
word disambiguation based on the brain-state-in-a-box model of J. A.
Anderson, Silverstein, Ritz, and Jones (1977). (Cottrell, 1985, and
Waltz & Pollack, 1985, have also observed such effects in their more
localist sentence-processing models.)

Back connections would also allow case role activations to actually
specify the semantic features of novel or unfamilar words occurring in

constraining contexts. Consider, for example, the sentence, The girl
broke the shrafe with the feather. The context provides a considerable
amount of constraint on the properties of shrafe. The existing version
of the model is able to fill in a plausible interpretation at the case level,
but with feedback it would be able to pass this information back to the
sentence leveL.

Another way of passing information back to the surface-structure
level would be to use the back-propagation learning algorithm. The use
of back propagation to train the sentence-structure units could allow the
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right features to be constructed at the surface level with only a phono-
logical representation of the words as the predefined input. Back propa-
gation might also allow us to cut down on the rather excessive numbers
of units currently used in the surface-structure leveL. Right now there
are far more SS units than are strictly necessary to do the work that the
model is doing. While many units could be eliminated in a straightfor-
ward way (e.g., many of the sentence units could be eliminated because
they stand for unlikely conjunctions of features across dimensions, such
as human and tool), many more are simply redundant ways of encoding
the same information and so could be consolidated into fewer units. On
the other hand, for a larger vocabulary, some conjunctive units wil

turn out to be necessary, and pair-wise conjunctive units ultimately wil

probably not suffce. Indeed, we feel quite sure that no predefined
coding scheme of the kind we have used could provide a suffcient
basis for learning all the sentences in any real language without being
immensely wasteful, so it wil become crucial to train the sentence and
case role units to represent just the needed conjunctions of features.

Distributed Representation of Roles

We mention a final "straightforward" extension of the model under a
separate heading because it is both more speculative and perhaps some-
what more diffcult to understand than the previous suggestions. This
is the idea of using a distributed representation of the roles. The idea
was first suggested by Hinton (1981a), and is currently under explora-
tion by Derthick and Hinton at Carnegie-Mellon University. The

essence of the idea is to think of roles not as strictly separate, mono-
lithic objects, but as sets of role descriptors. Thus the role of Agent
has certain properties: It specifies an active participant in the scenario,
one that may be volitional; it specifies the instigator of the action. The
role of Patient, on the other hand, specifies a passive participant, one

whose volitional involvement is (pretty much) irrelevant, but who is
the one that experiences the effects of the action.

Various problems arise with treating these roles as unitary objects.
One is that some but not all of the Patient properties generally hold for
the role nominally identified as Patient. Similarly, some but not all of
the Agent properties generally hold for the role nominally identified as
Agent. In certain cases, as with sentences like The boy moved, enough

of these properties hold that we were led to assign the boy to both roles
at once.

One suggestion that has often been made is to proliferate separate
roles to deal separately with each of the slight variants of each of the
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traditional cases. This leads, of course, to a proliferation of roles that is
ungainly, unwieldy, and inelegant, and that detracts considerably from
the utility of the idea of roles as useful descriptive constructs.

Here, distributed representation can provide an elegant solution, just
as it has in other instances where there appears to be a temptation to
proliferate individualized, unitary representational constructs (see

Chapter 17). If each role is represented by a conjunction of role prop-
erties, then far more distinct roles can be represented on the same set
of role units. Furthermore, what the Agent roles of two verbs have in

common is captured by the overlap of the role features in the represen-
tations of their roles, and how they differ is captured by their differ-
ences. The notion of a role that represents a combined Agent/Patient
as in The boy moved is no longer a special case, and we get out of
assigning the same argument to two different slots.

So far, the vision outstrips the implementation of this idea, but we
wil sketch briefly one very rudimentary instantiation of it, in what
really amounts to a rather slight modification of the model we have
described above. Currently, our case role units stand for conjunctions
of a role, a feature of the verb, and a feature of the filler of the role.
The suggestion, quite simply, is to replace these units with units that
stand for a feature of a role, a feature of the verb, and a feature of the
filler of the role. The first NP in The boy broke the window with. the

hammer wil produce a pattern of activation over one set of these triples
(corresponding pretty much to the canonical features of agenthood),
while the boy in The boy moved would activate some units from other
role feature sets, as well as many of the typical agent feature units.

Again, we stress that we do not yet have much experience using this
kind of distributed representations of roles. However, Derthick and
Hinton (personal communication, 1985) are exploring these ideas in
the context of a PDP implementation of the representation language
KL-TWO (Brachman & Schmolze, 1985; Moser, 1983). They have
already shown that at least one version of the idea can be made to work
and that the coarse coding of roles can be used to allow inheritance of
constraints on role fillers.

DISCUSSION

Now that we have examined the model in some detail and considered
some possible extensions of it, we turn to more general considerations.
We consider three issues. First, we examine the basic principles of
operation of the model and mention briefly why they are important and
useful principles for a sentence-processing model to embody. Second,
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we consider some of the implications of the model for thinking about
language and the representation of language. Third, we address the
limitations of the present modeL. This part of the discussion focuses on
a key question concerning the feasibility of our approach, namely, the
requirement that any plausible model of language processing must be

able to handle sentences containing embedded clauses.

Basic Features of the Model

We emphasize before we begin that the basic features of the present
model are shared with a number of other distributed models, especially
those of Hinton (1981a) and those described in Chapters 3, 14, 17, and
18 of this book. The two most important properties of the model are
its abilty to exploit the constraints imposed by all the arguments in a
sentence simultaneously and its abilty to represent shades of meaning.
These aspects are basic, we believe, to any attempt to capture the flexi-
bility and context-sensitivity of comprehension.

The first of these properties is, perhaps, just as easily capturable

using local rather than distributed connectionist networks. These local

connectionist models capture this property much more effectively than
they have been captured in nonconnectionist mechanisms (e.g.,

Small's, 1980, word expert parser; cf. Cottrell & Small, 1983). Such
networks have been applied to sentence processing, particularly to the
problems of ambiguity resolution and role assignment (Cottrell, 1985;
Waltz & Pollack, 1985). Both models use single units to stand for
alternative meanings of words or as "binders" to tie words to alternative
roles, and use mutual activation and inhibition to select between alter-
native meanings and alternative role assignments.

The present model exhibits many of these same properties, but uses
distributed representations rather than local ones. What the distributed
representations have that local representations lack is the natural ability
to represent a huge palette of shades of meaning. With distributed
representations, it is quite natural to represent a blend of familar con-
cepts or a shaded version of a familar concept that fits a scenario
(Waltz & Pollack, 1985, do this with their context microfeatures).
Perhaps this is the paramount reason why the distributed approach
appeals to us. To be sure, it is possible to represent different shades of
meaning in a localist network. One can, for example, have different
units for each significantly different variation of the meaning of a word.
A problem arises, though, in specifying the meaning of "signifcantly
different." We will probably all agree that there are different readings
of the word bat in the sentences The bat hit the ball and The bat flew
round the cave. But what about the word chicken in the sentences The

-- I



~ L
19. SENTENCE PROCESSING 315

woman ate the chicken and The wolf ate the chicken? Or what about the
word ball in The baby kicked the ball and The ball broke the window?

There is no doubt that we think of different balls in these cases; but do
we really want to have a separate unit in memory for the soft, squishy,
rubber ball the baby kicks and the small, hard ball that can break a
window?

With distributed representations, we do not have to choose. Dif-
ferent readings of the same word are just different patterns of activa-
tion; really different readings, ones that are totally unrelated, such as
the two readings of bat simply have very little in common. Readings
that are nearly identical with just a shading of a difference are simply
represented by nearly identical patterns of activation.

These properties of distributed representations are extremely general,
of course, and they have come up before, particularly in the chapter on
schemata (Chapter 14). We also just invoked them in suggesting that
we might be able to use distributed representations instead of some
fixed set of case roles. In both of these other cases, as in the case of

distributed representation of word senses, the use of distributed
representation allows for all shades and degrees of similarity and differ-
ence in two representations to be captured in a totally seamless way.

A final basic feature of the model is the gradualness of acquisition it
exhibits. We have not stressed the time course of acquisition, but it
was, of course, a crucial property of the verb learning model, described
in Chapter 18, and it is quite evident that acquisition is gradual from
Figure 4. As with the verb learning model, our model also seems to

pick up on the strongest regularities first. This is seen most easily in
Figures 5 and 6 by comparing NV sentences from the hit and broke
generators. Those with animate preverbal NPs, which are Agents, are
learned more quickly than those with inanimate preverbal NPs, which

are Instruments. This is because a far greater number of constructions

have animate, Agent subjects than have inanimate, Instrument subjects.
These three basic properties-exploitation of multiple, simultaneous

constraints, the abilty to represent continuous gradations in meaning,

and the abilty to learn gradually, without formulating explicit rules,
picking up first on the major regularities, are hallmarks of parallel dis-
tributed models, and they are no less applicable to comprehension of
language than they are to any other aspect of cognitive processes.

Do Words Have Literal Meanings?

There is one further aspect of the distributed approach to representa-

tion of meaning that should be mentioned briefly. This is the stand our
model takes on the issue of whether words have literal meanings. It is
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normal and natural to think of words as having literal meanings, but it
is very difficult to say what these meanings really are. For, as we have
noted throughout this chapter, the apparent meanings of words are

infinitely malleable and very diffcult to pin down. An alternative view
is that words are clues to scenarios. This view, which has been pro-
posed by Rumelhart (1979) among others, never made very much
impression on us until we began to study the present modeL. However,
in exploring the model, we have found that it embodies Rumelharts
idea exactly. A sentence assembles some words in a particular order,
and each provides a set of clues that constrains the characteristics of the
scenario, each in its own way. The verb, in and of itself, may specify a
range of related scenarios and certain constraints on the players. The
nouns further restrict the scenario and further constrain the players.
But the words themselves are no longer present in the scenario, nor is
there necessarily anything in the scenario that corresponds to the literal
meaning of any of the words. Thus in the case of The doll moved, the
(partially activated) Agent is not a copy of the standard doll pattern,
but a pattern appropriate for a doll that can move under its own steam.

The crucial point, here, is that all the words work together to provide
clues to the case frame representation of the sentence, and none of the
words uniquely or completely determine the representation that is
assigned to any of the constituents of the underlying scenario. Cer-

tainly, the word hammer most strongly constrains the filler of the
Instrument role in The boy broke the vase with the hammer, but the other
words contribute to the specification .of the filler of this role, and ham-
mer contributes to the specification of the fillers of the other roles.
Compare The prisoner struck the rock with the hammer and The boy broke
the vase with the feather: The former suggests a heavier hammer; the
latter suggests an extremely fragile vase (if we give an instrumental
reading to the with-NP).

Toward a More Complete Model of Sentence Processing

As we have already made clear, the model that we have described in
this chapter is far from a complete model of the psychological processes
involved in sentence processing. It does not deal with the fact that sen-
tence processing is an on-line process, a process that unfolds in real
time as each word is heard. It does not deal with the integration of
processed sentences into larger contextual frameworks. It does not
handle anaphora and other referential phenomena, or tense, aspect, or
number. No attempt is made to deal with quantification or scoping
issues. The model even lacks a way of distinguishing different tokens
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with identical featural descriptions. Thus it does not explicitly desig-
nate separate dogs in dog eat dog and only one dog in The dog chased

himself Finally, the model completely ignores the complexities of syn-

tax. For the present model, a sentence can come in only one rigidly
structured form, and no embedded clauses, cleft sentences, or passive
constructions are allowed.

Clearly, we have much work to do before we can claim to have a
model that is in any sense complete or adequate. The question is, can
it be done at all? Is there any fundamental limitation in the PDP

approach that wil prevent the successful development of a full-scale
model of language processing that preserves the positive aspects of the
distributed approach?

Obviously, the proof is in the pudding. But we think the enterprise
can succeed. Rather than discuss all of the issues raised above, we will
discuss one that seems quite central, namely, the application of PDP
models to the processing of sentences with embedded clauses. We con-
sider several different ways that PDP models could be applied to the
processing of such sentences.

Interfacing PDP mechanisms with conventional parsers. We start
with what might be the simplest view, or at any rate the most conven-
tional: the idea that a model such as ours might be interfaced with a

conventional parser. For example, we might imagine that a parser simi-
lar to Marcus's PARSIFAL (980) might pass off the arguments of
completed (or possibly even incomplete) clauses to a mechanism such
as the one we have proposed for case role assignment and PP attach-
ment. In this way, the "role-assignment module" could be used with

any given sentoid and could be called repeatedly during the processing
of a sentence containing embedded clauses.

Interfacing our model with a conventional parser would perhaps pro-
vide a way of combining the best of both conventional symbol process-

ing and parallel distributed processing. We are not, however, particu-
larly inclined to follow this route ourselves. For it appears that it wil be
possible to implement the parser itself as a PDP mechanism. As we
shall see, there are at least three ways this might be done. One
involves implementing a true recursive automaton in a PDP network.
We describe this method first, even though we suspect that the human
parser is not in fact such a machine. After describing the mechanism,
we wil explain our objections to this view of the human sentence-

processing mechanism. This wil lead us to suggest two other mechan-
isms. One relies on the connection information distribution mechanism
described in Chapter 16 to program a parallel net to process sentences
of indefinite length and embeddedness; the other operates iteratively
rather than recursively, It is more computationally limited in some
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respects than the other mechanisms, but the limitations appear to con-
form to those of the human parser, as we shall see.

A PDP model that does recursion. It turns out that it is not diffcult
to construct a parallel network that does true recursive processing.

Hinton (personal communication) worked out the scheme we wil
describe here and implemented a rudimentary version of it in 1973.
While such a mechanism has not been applied directly to parsing, the
fact that recursive processing is possible suggests that there is no rea-

son, in principle, why it should riot provide a suffcient basis for imple-

menting some kind of parser.
The mechanism consists of a large network of units. Patterns of

activation on these units are distributed representations of a particular

state in a processing sequence. Processing occurs through the succes-
sion of states. The units are divided up into subnets that represent par-

ticular parts of the state. One important subnet is a set of units that
provides a distributed pattern corresponding to a stack-level counter.

The connections in the network are set up so that successive states of
a routine are associated with their predecessors. Thus, when one state is
in place, it causes another to follow it. States may also be used to drive
actions, such as output of a line segment, say, if the automaton is a
mechanism for recursively drawing figures, as Hinton's was. Process-
ing, then, amounts to carrying out a sequence of states, emitting
actions (and possibly reading input) along the way.

Callng subroutines in such a mechanism is not particularly diffcult,
since all that is required is to associate a particular state (the callng

state) with the start state of some routine. Passing parameters to the
called routine is likewise not particularly diffcult; in the simplest case

they can be parts of the calling state that are carried along when the
routine is called.

To implement recursion in such a network, all that is required is a
way to reinstate the callng state when a routine is done. To do this,
the mechanism associates the state of the stack-level units with the
state that is in place over the rest of the units, using an associative

learning rule to adjust connection strengths while processing is taking

place. These associations are implemented by rapidly changing a short-
term component of the weights whose long-term values implement the
associations that allow the model to cycle through a sequence of states.
The temporary associations stored in these short-term weights are not
strong enough to overrule the long-term weights, but they are suff-
ciently strong to determine the next state of the network when the
long-term weights leave several possibilities. So, at the end of a rou-
tine at stack level N, the network associatively reinstates stack level
N - 1, with the rest of the state cleared. This associative reinstatement
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of the previous stack-level state would be based on long-term, relatively
permanent associations between states corresponding to adjacent depths
in the stack. This reinstated stack-level state, which was associated in

the short-term weights with the calling state just before the subroutine
call occurred, would then simply use this short-term association to rein-
state the pattern that existed before the call. (A "done" bit would have
to be set to keep the process from doing the call again at this point.)

There is no apparent a priori limit to the number of embedded calls
that could be carried out by such a network, though for any fixed size
of the stack-level subnet, there wil be a corresponding maximum
number of associations that can be learned without error. Of course,
similar limitations also occur with all other stack machines; the stack is
always of finite depth. There would also likely be interference of previ-
ous callng states when returning from any particular level, unless the
learning were carefully tuned so that earlier associations with a particu-
lar stack level were almost completely wiped out or decayed by the time
a new one must be used. Care would also be necessary to avoid
crosstalk between stack-level representations. However, these problems
can be overcome by using enough units so that very different states are
used to represent each level of the stack.

JJrawbacks of true recursion. The scheme described in the previous
section has several fairly nice properties and deserves considerably

more exploration than it or some obvious variants have received to
date. However, it does have one drawback from our point of view-
one that it shares with other, more conventional implementations of

truly recursive automata. The drawback is that the callng state is not
present and active during the subroutine call; it is effectively inaccessi-
ble until it is reinstated after the return.

This property of truly recursive schemes limits their ability to simul-
taneously consider binding a prepositional phrase at each of two levels
of embedding. Consider the sentences:

(14) The boy put the cake the woman made in the kitchen.
(15) The boy saw the cake the woman made in the kitchen.

Our preferred reading of the first of these two sentences has the boy
putting the cake in the kitchen, rather than the woman preparing it
there; while in the second case, the preferred interpretation appears to

be that the woman made the cake in the kitchen, and the boy saw it at
some unspecified location. Since the material is the same from the
beginning of the embedding in both cases, it appears that the demand
the matrix clause material (The boy put the cake. . .) makes for a loca-
tive argument influences the decision about whether in the kitchen
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should be bound into the subordinate clause, While it may be possible
to arrive at these two different readings in a conventional parser by

backtracking or by passing aspects of the calling state along when the
subroutine is called, it would seem to be more natural to suppose that
the matrix clause is actively seeking its missing locative argument as
the embedded material is being processed, and so is prepared to steal in
the kitchen from the verb in the embedded clause. Thus, it appears that
a mechanism capable of processing at different levels of embedding at
the same time is needed.

A fixed-length sentence processor. A connectionist parser that can,
in principle, handle this kind of competition among alternative attach-
ment decisions at different levels of embedding has recently been
developed and implemented by Fanty (1985). He describes a mechan-
ism that effectively parses a sentence at many levels at the same time.
The parser consists of a fixed network of units. Some of the units
represent the terminal and nonterminal symbols of the grammar; other
units, called match units, represent the different possible expansions of
each nonterminaL. The symbol units are easily represented in a table in
which the columns represent starting positions in the input string and
the rows represent lengths. There is a unit for each terminal symbol in
each position of the bottom row, and there is a unit for each nontermi-
nal symbol at every position in the table; that is, there is a copy of each
nonterminal unit for every possible portion of the input that it could
cover. For each of these there is a set öf binder units, one for each pos-
sible expansion of each nonterminal unit.

A simple version of the table, for the indicated three-rule grammar,
is shown in Figure 18. Only a subset of the units-the ones that would

become active in the parse of aabbb-are shown.
The parser can only process strings up to a predefined maximal

length. Essentially, it processes the entire sentence in one two-pass

processing sweep. In the first, bottom-up pass, all possible constituents
are identified, and in the second, top-down pass, the constituents that
fit together with the top S and the subconstituents of the top S are rein-
forced. These active units represent the parse tree.

A very nice feature of Fanty's parse is that it takes into account all
levels of the parse tree simultaneously. This allows it to find a globally
satisfactory parse in one pair of sweeps, eliminating possible

constit%uents that do not fit together with others to make a globally

acceptable structure. With some modifications (different degrees of
strength for different rules; continuous, interactive processing as

opposed to a single pair of sweeps), it would probably be possible to
implement a mechanism that could choose the" better" of two alterna-
tive acceptable parses, as people seem to do with many ambiguous
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FIGURE 18. Parsing table used in Fanty's multilevel parser. Only the units active in the
correct parse of the string aabbb are illustrated. (From Context-Free Parsing in Connection-

ist Networks (TR-174, p, 3) by M. Fanty, 1985, Rochester, NY: University of Rochester,
Department of. Computer Science. Copyright 1985 by M. Fanty. Reprinted by permis-
sion.)

sentences. The parser of Selman and Hirst (1985; Selman, 1985),

whi.ch is similår to the Fanty parser in structure but uses simulated

annealing, appears to have just the right characteristics in this regard.
However, this kind of parser does have some drawbacks. Most

importantly, it is limited to sentences of a prespecified length. To
expand it, one needs not only to add more units, one needs to program
these units with the connections that allow them to do the jobs they are
needed or potentially needed to do. Second, the size does grow rather

quickly with the allowable length (see Fanty, 1985, for details).
Fanty's model is, in fact, somewhat reminiscent of the TRACE

model of speech perception (Chapter 15) in its reduplication of dedi-
cated units and connections. As with TRACE, it may be possible to
use connection information distribution (Chapter 16). to program the
necessary connections in the course of processing from a single, central
network containing the system's long-term knowledge of the rules of
English. Indeed, Fanty (1985) has explored an off-line variant of the
connection information distribution scheme; his version learns new
productions locally, and sends the results to a central network which
then distributes the results to the rest of the net, off-line. If the pro-

gramming of the connections could be made to work on-line in the
course of processing, as with the programmable blackboard model of
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reading, we would have a mechanism that stil needs large numbers of
units and connections, but crucially, these would be uncommitted units

and programmable connections. The computational capabilty of the
machine would be expandable, simply by increasing the size of the pro-
grammable network.

Myths about the limitations of PDP models. We hope that these
last two sections wil help to dispel some widely held beliefs about com-
putation and PDP models. We wil briefly consider two variants of
these beliefs. The first, quite simply, is that PDP models cannot do
recursion. Hinton's recursive processor needs considerably more

development before we wil have a working simulation that proves that
this belief is wrong, but it seems clear enough that a recursive PDP
processor will be available fairly soon. In fact, it is likely that a slightly
different approach will be explored more fully first: Touretzky and Hin-
ton (1985) have recently developed a PDP implementation of a produc-
tion system that can do rudimentary variable binding, and at present
it appears that they may be able to extend it to perform recursive

computations.
The second belief seems to follow from the first: It is that PDP

models are inherently incapable of processing a full range of sentences.
We say it only seems to follow because it depends upon accepting the
assumption that in order to process sentences it is necessary to be able.
to do recursion. Most people who have thought computationally about

sentence processing are familar with sentence-processing mechanisms
that are in fact recursive, such as the ATN (Woods, 1970) or the
Marcus parser. Since sentences are recursively defined structures, the
(implicit) argument goes, the mechanisms for parsing them must them-
selves operate recursively.

Fanty's (1985) parser, or an extension of it incorporating connection

information distribution, begins to suggest that this may not be so. In a
programmable version of Fanty's parser, we would have captured the
essential property of a recursive automaton-that the same procedural
knowledge be applicable at any point in a parse tree. But we would

have captured it in a very exciting new way, a way that would free the
mechanism from the serial processing constraint that prevents conven-
tional recUrsive mechanisms from being able to exploit constraints from
many levels at the same time. Connection information distribution
may actually permit us to reap the benefits of simultaneous mutual con-
straints while at the same time enjoying the benefits of being able to
apply the same bit of knowledge at many points in processing the same
sentence.

There are a couple of caveats, however. One is that connection
information distribution is very expensive computationally; a
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considerable number of units and connections are required to handle
the input to and output from the central knowledge structures (see

Chapter 12 for further discussion), and the resource demands made by
even a fixed version of Fanty's parser are quite high already. There
may turn out to be ways of reducing the resource demands made by the
Fanty parser. In the meantime, it is worth asking whether some other

approach might not succeed nearly as well with fewer resources.

Context-sensitve coding, iteration, and center embedding. There is
one more belief about sentences, this one even more deeply ingrained
than the last, that we have tacitly accepted up to this point. This is the
belief that sentences are indeed recursively defined structures. Clearly,
sentences are recursively definable, but there is one proviso: Only one
level of center embedding is allowed. It may be controversial whether
the "true" competence grammar of English accepts multiple center-
embedded sentences, but people cannot parse such sentences without
the use of very special strategies, and do not even judge them to be
acceptable (G. A. Miler, 1962). Consider, for example, the
"sentence":

(16) The man who the girl who the dog chased liked laughed.

The unparsability of sentences such as (16) has usually been explained
by an appeal to adjunct assumptions about performance limitations
(e.g., working-memory limitations), but it may be, instead, that they
are unparsable because the parser, by the general nature of its design, is
simply incapable of processing such sentences.13 \

It should be noted that parsers like the A TN and the Marcus parser
are most certainly not intrinsically incapable of processing such sen-
tences. Indeed, such parsers are especially well suited for handling an
indefinite number of center embeddings. Such mechanisms are clearly
necessary for processing such things as Lisp expressions, such as this
one taken from a program (actually, itself a parser) written by Jeff
Sokolov:

((and (eq (car (explode arg)) , / )
(eq (car (reverse (explode arg))) , / ))

(implode (reverse (cdr (reverse (cdr (explode arg)))))))

13 This argument has been made previously by a number of other authors, including
Reich (I 969). In fact, Reich proposed an iterative approach to sentence processing that is
similar, in some respects, to the one we consider here,
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But sentences in natural language are simply not structured in this way.
Perhaps, then, the search for a model of natural language processing

has gone down the garden path, chasing a recursive white rabbit.
One approach to sentence processing holds that we should ask much

less of a syntactic parser and leave most of the work of sentence pro-
cessing to a more conceptual level of processing. This position is most
strongly associated with Schank (1973), and Charniak (1983) is among
the recent proponents of this view.

Let us assume that the job of the parser is to spit out phrases
encoded in a form that captures their local context, in a way that is
similar to the way the verb learning model, described in Chapter 18, in
a form that captures their local context.14 Such a representation may

prove suffcient to allow us to reconstruct the correct bindings of noun
phrases to verbs and prepositional phrases to nearby nouns and verbs.
In fact, we suspect that this kind of local context-sensitive encoding can
capture the attachments of NPs to the right verbs in "tail-recursive"
sentences like

(17) This is the farmer that kept the cock that waked the priest that
married the man that milked the cow that tossed the dog that
worried the cat that kiled the rat that ate the malt that lay in
the house that Jack built. 15

Locally context-sensitive coding wil begin to break down, however,
when there is center embedding-specifically, more than one level of
center embedding. Local context can be used to signal both the begin-
ning and the end of an embedding, but cannot be used to specify which
beginning of an embedding the material just after the end of an embed-
ding should be bound to. Thus if we read to the last word of

(18) The man who the girl who the dog chased laughed

we may not know whether to bind laughed Gust after the end of the
embedding) to the man (NP before an embedding) or to the girl (a dif-
ferent NP before an embedding). If we bind it to the man, we may

14 For this to work it wil be necessary to code units, not in terms of the adjacent

words, but in terms of neighboring constituents more abstractly defined, Thus, in The girl
in the hat saw the mouse on the floor, we wil want to encode the complex NP the girl in the
hat as adjacent to the verb saw. Thus, local context wil have to be defined, as it is in
Marcus (I 980), in terms of constituents, not merely in terms of words. Getting this to
work wil be one of the major challenges facing this approach.

15 Adapted from E. Johnson, E, R. Sickels. & F. C. Sayers (Eds.) , Anthology of

Children's Literature (4th ed., p. 16), 1970, Boston: Houghton-Mimin.

i I



~ L
19. SENTENCE PROCESSING 325

experience a false sense of closure-this sentence is ungrammatical

because it has only two verbs for three clauses.
These suggestions lead us to the following conjecture: It may be pos-

sible to build a PDP language-processing mechanism that works itera-
tively along a sentence, building constituents represented by distributed
patterns conjunctively encoded with their local context of occurrence.
The mechanism would need a way of unifying constituents on two sides
of an intervening embedding, Exactly how this would be done remains
to be established, but as long as it is done in terms of a mechanism
sensitive only to the local context of the constituents before and after
the embedding, it may succeed where there is a single embedding but
fail in multiply embedded sentences where there are two suspended,
incomplete constituents that the mechanism must choose between
completing,

We hope it is clear that these ideas are speculative and that they are
but pointers to directions for further research. Indeed, all three of the
directions we have described in this section are only just beginning to
be explored systematically, and it is unclear which of them wil prove
most attractive on closer scrutiny. We mention them because they sug-
gest that ways of overcoming some of the apparent limitations of PDP
mechanisms may not be very far beyond our present grasp, and that it
may soon be possible to retain the benefits of parallel distributed pro-
cessing in mechanisms that can cope with the structural complexity and
semantic nuance of natural language.
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