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On Learning the
Past Tenses of English Verbs

D. E. RUMELHART and J. L. McCLELLAND

THE ISSUE

Scholars of language and psycholinguistics have been among the first
to stress the importance of rules in describing human behavior. The
reason for this is obvious. Many aspects of language can be character-
ized by rules, and the speakers of natural languages speak the language
correctly. Therefore, systems of rules are useful in characterizing what
they will and will not say. Though we all make mistakes when we
speak, we have a pretty good ear for what is right and what is wrong—
and our judgments of correctness—or grammaticality—are generally
even easier to characterize by rules than actual utterances.

On the evidence that what we will and won’t say and what we will
and won’t accept can be characterized by rules, it has been argued that,
in some sense, we "know" the rules of our language. The sense in
which we know them is not the same as the sense in which we know
such "rules" as "i before e except after ¢," however, since we need not
necessarily be able to state the rules explicitly. We know them in a way
that allows us to use them to make judgments of grammaticality, it is
often said, or to speak and understand, but this knowledge is not in a
form or location that permits it to be encoded into a communicable ver-
bal statement. Because of this, this knowledge is said to be implicit.

A slight variant of this chapter will appear in B. MacWhinney (Ed.), Mechanisms of
language acquisition. Hillsdale, NJ: Erlbaum (in press).
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So far there is considerable agreement. However, the exact charac-
terization of implicit knowledge is a matter of great controversy. One
view, which is perhaps extreme but is nevertheless quite clear, holds
that the rules of language are stored in explicit form as propositions,
and are used by language production, comprehension, and judgment
mechanisms. These propositions cannot be described verbally only
because they are sequestered in a specialized subsystem which is used
in language processing, or because they are written in a special code
that only the language processing system can understand. This view we
will call the explicit inaccessible rule view.

On the explicit inaccessible rule view, language acquisition is thought
of as the process of inducing rules. The language mechanisms are
thought to include a subsystem—often called the language acquisition
device (LAD)—whose business it is to discover the rules. A consider-
able amount of effort has been expended on the attempt to describe
how the LAD might operate, and there are a number of different pro-
posals which have been laid out. Generally, though, they share three
assumptions:

- @ The mechanism hypothesizes explicit inaccessible rules.

® Hypotheses are rejected and replaced as they prove inadequate
to account for the utterances the learner hears.

® The LAD is presumed to have innate knowledge of the possible
range of human languages and, therefore, is presumed to con-
sider only hypotheses within the constraints imposed by a set of
linguistic universals.

The recent book by Pinker (1984) contains a state-of-the-art example
of a model based on this approach.

We propose an alternative to explicit inaccessible rules. We suggest
that lawful behavior and judgments may be produced by a mechanism
in which there is no explicit representation of the rule. Instead, we
suggest that the mechanisms that process language and make judgments
of grammaticality are constructed in such a way that their performance
is characterizable by rules, but that the rules themselves are not written
in explicit form anywhere in the mechanism. An illustration of this
view, which we owe to Bates (1979), is provided by the honeycomb.
The regular structure of the honeycomb arises from the interaction of
forces that wax balls exert on each other when compressed. The
honeycomb can be described by a rule, but the mechanism which pro-
duces it does not contain any statement of this rule.

In our earlier work with the interactive activation model of word per-
ception (McClelland & Rumelhart, 1981, Rumelhart & McClelland,
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1981, 1982), we noted that lawful behavior emerged from the interac-
tions of a set of word and letter units. Each word unit stood for a par-
ticular word and had connections to units for the letters of the word.
There were no separate units for common letter clusters and no explicit
provision for dealing differently with orthographically regular letter
sequences—strings that accorded with the rules of English—as opposed
to irregular sequences. Yet the model did behave differently with
orthographically regular nonwords than it behaved with words. In fact,
the model simulated rather closely a number of results in the word per-
ception literature relating to the finding that subjects perceive letters in
orthographically regular letter strings more accurately than they per-
ceive letters in irregular, random letter strings. Thus, the behavior of
the model was lawful even though it contained no explicit rules.

1t should be said that the pattern of perceptual facilitation shown by
the model did not correspond exactly to any system of orthographic
rules that we know of. The model produced as much facilitation, for
example, for special nonwords like SLNT, which are clearly irregular, as
it did for matched regular nonwords like SLET. Thus, it is not correct
to say that the model exactly mimicked the behavior we would expect
to emerge from a system which makes use of explicit orthographic
rules. However, neither do human subjects. Just like the model, they
showed equal facilitation for vowelless strings like SLNT as for regular
nonwords like SLE7. Thus, human perceptual performance seems, in
this case at least, to be characterized only approximately by rules.

Some people have been tempted to argue that the behavior of the
model shows that we can do without linguistic rules. We prefer, how-
ever, to put the matter in a slightly different light. There is no denying
that rules still provide a fairly close characterization of the performance
of our subjects. And we have no doubt that rules are even more useful
in characterizations of sentence production, comprehension, and gram-
maticality judgments. We would only suggest that parallel distributed
processing models may provide a mechanism sufficient to capture law-
ful behavior, without requiring the postulation of explicit but inaccessi-
ble rules. Put succinctly, our claim is that PDP models provide an
alternative to the explicit but inaccessible rules account of implicit
knowledge of rules.

We can anticipate two kinds of arguments against this kind of claim.
The first kind would claim that although certain types of rule-guided
behavior might emerge from PDP models, the models simply lack the
computational power needed to carry out certain types of operations
which can be easily handled by a system using explicit rules. We
believe that this argument is simply mistaken. We discuss the issue of
computational power of PDP models in Chapter 4. Some applications
of PDP models to sentence processing are described in Chapter 19.
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The second kind of argument would be that the details of language
behavior, and, indeed, the details of the language acquisition process,
would provide unequivocal evidence in favor of a system of explicit
rules.

It is this latter kind of argument we wish to address in the present
chapter. We have selected a phenomenon that is often thought of as
demonstrating the acquisition of a linguistic rule. And we have
developed a parallel distributed processing model that learns in a
natural way to behave in accordance with the rule, mimicking the gen-
eral trends seen in the acquisition data.

THE PHENOMENON

The phenomenon we wish to account for is actually a sequence of
three stages in the acquisition of the use of past tense by children learn-
ing English as their native tongue. Descriptions of development of the
use of thepast tense may be found in Brown (1973), Ervin (1964), and
Kuczaj (1977).

In Stage 1, children use only a small number of verbs in the past
tense. Such verbs tend to be very high-frequency words, and the
majority of these are irregular. At this stage, children tend to get the
past tenses of these words correct if they use the past tense at all. For
example, a child’s lexicon of past-tense words at this stage might con-
sist of came, got, gave, looked, needed, took, and went. Of these seven
verbs, only two are regular—the other five are generally idiosyncratic
examples of irregular verbs. In this stage, there is no evidence of the
use of the rule—it appears that children simply know a small number of
separate items.

In Stage 2, evidence of implicit knowledge of a linguistic rule
emerges. At this stage, children use a much larger number of verbs in
the past tense. These verbs include a few more irregular items, but it
turns out that the majority of the words at this stage are examples of
the regular past tense in English. Some examples are wiped and puiled.

The evidence that the Stage 2 child actually has a linguistic rule
- comes not from the mere fact that he or she knows a number of regu-
lar forms. There are two additional and crucial facts:

e The child can now generate a past tense for an invented word.
For example, Berko (1958) has shown that if children can be
convinced to use rick to describe an action, they will tend to say
ricked when the occasion arises to use the word in the past
tense.
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e Children now incorrectly supply regular past-tense endings for
words which they used correctly in Stage 1. These errors may
involve either adding ed to the root as in comed /k'md/, or
adding ed to the irregular past tense form as in camed /kamd/!
(Ervin, 1964; Kuczaj, 1977).

Such findings have been taken as fairly strong support for the asser-
tion that the child at this stage has acquired the past-tense "rule." To
quote Berko (1958):

If a child knows that the plural of wifch is witches, he may sim-
ply have memorized the plural form. If, however, he tells us
that the plural of gurch is gutches, we have evidence that he
actually knows, albeit unconsciously, one of those rules which
the descriptive linguist, too, would set forth in his grammar.
(p. 151)

In Stage 3, the regular and irregular forms coexist. That is, children
have regained the use of the correct irregular forms of the past tense,
while they continue to apply the regular form to new words they learn.
Regularizations persist into aduithood—in fact, there is a class of words
for which either a regular or an irregular version are both considered
acceptable—but for the commonest irregulars such as those the child
acquired first, they tend to be rather rare. At this stage there are some
clusters of exceptions to the basic, regular past-tense pattern of English.
Each cluster includes a number of words that undergo identical changes
from the present to the past tense. For example, there is a ing/ang
cluster, an ing/ung cluster, an eet/it cluster, etc. There is also a group
of words ending in /d/ or /t/ for which the present and past are
identical.

Table 1 summarizes the major characteristics of the three stages.

Variability and Gradualness

The characterization of past-tense acquisition as a sequence of three
stages is somewhat misleading. It may suggest that the stages are
clearly demarcated and that performance in each stage is sharply dis-
tinguished from performance in other stages.

1 The notation of phonemes used in this chapter is somewhat nonstandard. It is
derived from the computer-readable dictionary containing phonetic transcriptions of the
verbs used in the simulations. A key is given in Table 5.
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TABLE |

CHARACTERISTICS OF THE THREE STAGES
OF PAST TENSE ACQUISITION

Verb Type Stage 1 Stage 2 Stage 3

Early Verbs Correct  Regularized Correct
Regular - Correct * Correct

Other Irregular — Regularized  Correct or Regularized
Novel - Regularized Regularized

In fact, the acquisition process is quite gradual. Little detailed data
exists on the transition from Stage 1 to Stage 2, but the transition from
Stage 2 to Stage 3 is quite protracted and extends over several years
(Kuczaj, 1977). Further, performance in Stage 2 is extremely variable.
Correct use of irregular forms is never completely absent, and the same
child may be observed to use the correct past of an irregular, the
base+ed form, and the past+ed form, within the same conversation.

Other Facts About Past-Tense Acquisition

Beyond these points, there is now considerable data on the detailed
types of errors-children make throughout the acquisition process, both
from Kuczaj (1977) and more recently from Bybee and Slobin (1982).
We will consider aspects of these findings in more detail below. For
now, we mention one intriguing fact: According to Kuczaj (1977),
there is an interesting difference in the errors children make to irregu-
lar verbs at different points in Stage 2. Early on, regularizations are
typically of the base-+ed form, like goed; later on, there is a large
increase in the frequency of past+ed errors, such as wented.

THE MODEL

The goal of our simulation of the acquisition of past tense was to
simulate the three-stage performance summarized in Table 1, and to
see whether we could capture other aspects of acquisition. In particu-
lar, we wanted to show that the kind of gradual change characteristic of
normal acquisition was also a characteristic of our distributed model,
and we wanted to see whether the model would capture detailed aspects
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of the phenomenon, such as the change in error type in later phases of
development and the change in differences in error patterns observed
for different types of words. '

We were not prepared to produce a full-blown language processor
that would learn the past tense from full sentences heard in everyday
experience. Rather, we have explored a very simple past-tense learning
environment designed to capture the essential characteristics necessary
to produce the three stages of acquisition. In this environment, the
model is presented, as learning experiences, with pairs of inputs—one
capturing the phonological structure of the root form of a word and the
other capturing the phonological structure of the correct past-tense ver-
sion of that word. The behavior of the model can be tested by giving it
just the root form of a word and examining what it generates as its
"current guess” of the corresponding past-tense form.

Structure of the Model

The basic structure of the model is illustrated in Figure 1. The
model consists of two basic parts: (a) a simple pattern associator net-
work similar to those studied by Kohonen (1977; 1984; see Chapter 2)
which learns the relationships between the base form and the past-tense
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FIGURE 1. The basic structure of the model.
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form, and (b) a decoding network that converts a featural representa-
tion of the past-tense form into a phonological representation. All
learning occurs in the pattern associator; the decoding network is sim-
ply a mechanism for converting a featural representation which may be
a near miss to any phonological pattern into a legitimate phonological
representation. Our primary focus here is on the pattern associator.
We discuss the details of the decoding network in the Appendix.

Units. The pattern associator contains two pools of units. One pool,
called the input pool, is used to represent the input pattern correspond-
ing to the root form of the verb to be learned. The other pool, called
the output pool, is used to represent the output pattern generated by
the model as its current guess as to the past tense corresponding to the
root form represented in the inputs.

Each unit stands for a particular feature of the input or output string.
The particular features we used are important to the behavior of the
model, so they are described in a separate section below.

Connections. The pattern associator contains a modifiable connec-
tion linking each input unit to each output unit. Initially, these connec-
tions are all set to 0 so that there is no influence of the input units on
the output units. Learning, as in other PDP models described in this
book, involves modification of the strengths of these interconnections,
as described below.

Operation of the Model

On test trials, the simulation is given a phoneme string corresponding
to the root of a word. It then performs the following actions. First, it
encodes the root string as a pattern of activation over the input units.
The encoding scheme used is described below. Node activations are
discrete in this model, so the activation values of all the units that
should be on to represent this word are set to 1, and all the others are
set to 0. Then, for each output unit, the model computes the net input
to it from all of the weighted connections from the input units. The
net input is simply the sum over all input units of the input unit activa-
tion times the corresponding weight. Thus, algebraically, the net input
to output unit / is

net; = %aj W

where a; represents the activation of input unit j, and w; represents
the weight from unit j to unit .
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Each unit has a threshold, 8, which is adjusted by the learning pro-
cedure that we will describe in a moment. The probability that the unit
is turned on depends on the amount the net input exceeds the thresh-
old. The logistic probability function is used here as in the Boltzmann
machine (Chapter 7) and in harmony theory (Chapter 6) to determine
whether the unit should be turned on. The probability is given by

1 o))
p (ai =1= — (net. —
1+ e (net; —0,)/ T

where T represents the temperature of the system. The logistic func-
tion is shown in Figure 2. The use of this probabilistic response rule
allows the system to produce different responses on different occasions
with the same network. It also causes the system to learn more slowly
so the effect of regular verbs on the irregulars continues over a much
longer period of time. As discussed in Chapter 2, the temperature, T,
can be manipulated so that at very high temperatures the response of
the units is highly variable; with lower values of T, the units behave
more like linear threshold units.

Since the pattern associator built into the model is a one-layer net
with no feedback connections and no connections from one input unit
to another or from one output unit to another, iterative computation is
of no benefit. Therefore, the processing of an input pattern is a simple
matter of first calculating the net input to each output unit and then
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FIGURE 2. The logistic function used to calculate probability of activation. The x-axis
shows values of ne;; — 9,/ T, and the y-axis indicates the corresponding probability that
unit / will be activated.
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setting its activation probabilistically on the basis of the logistic equa-
tion given above. The temperature T only enters in setting the varia-
bility of the output units; a fixed value of T was used throughout the
simulations.

To determine how well the model did at producing the correct out-
put, we simply compare the pattern of output Wickelphone activations
to the pattern that the correct response would have generated. To do
this, we first translate the correct response into a target pattern of
activation for the output units, based on the same encoding scheme
used for the input units. We then compare the obtained pattern with
the target pattern on a unit-by-unit basis. If the output perfectly repro-
duces the target, then there should be a 1 in the output pattern wher-
ever there is a 1 in the target. Such cases are called hits, following the
conventions of signal detection theory (Green & Swets, 1966). There
should also be a 0 in the output whenever there is a 0 in the target.
Such cases are called correct rejections. Cases in which there are 1s in
the output but not in the target are called false alarms, and cases in
which there are Os in the output that should be present in the input are
called rmisses. A variety of measures of performance can be computed.
We can measure the percentage of output units that match the correct
past tense, or we can compare the output to the pattern for any other
response alternative we might care to evaluate. This allows us to look
at the output of the system independently of the decoding network.
We can also employ the decoding network and have the system syn-
thesize a phonological string. We can measure the performance of the
system either at the featural level or at the level of strings of
phonemes. We shall employ both of these mechanisms in the evalua-
tion of different aspects of the overall model.

Learning

On a learning trial, the model is presented with both the root form of
the verb and the target. As on a test trial, the pattern associator net-
work computes the output it would generate from the input. Then, for
each output unit, the model compares its answer with the target. Con-
nection strengths are adjusted using the classic perceptron convergence
procedure (Rosenblatt, 1962). The perceptron convergence procedure is
simply a discrete variant of the delta rule presented in Chapter 2 and
discussed in many places in this book. The exact procedure is as fol-
lows: We can think of the target as supplying a teaching input to each
output unit, telling it what value it ought to have. When the actual
output matches the target output, the model is doing the right thing
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and so none of the weights on the lines coming into the unit are
adjusted. When the computed output is 0 and the target says it should
be 1, we want to increase the probability that the unit will be active the
next time the same input pattern is presented. To do this, we increase
the weights from all of the input units that are active by a small amount
m. At the same time, the threshold is also reduced by n. When the
computed output is 1 and the target says it should be 0, we want to
decrease the probability that the unit will be active the next time the
same input pattern is presented. To do this, the weights from all of the
input units that are active are reduced by m, and the threshold is
increased by 7. In all of our simulations, the value of n is simply set
to 1. Thus, each change in a weight is a unit change, either up or
down. For nonstochastic units, it is well known that the perceptron
convergence procedure will find a set of weights that will allow the
model to get each output unit correct, provided that such a set of
weights exists. For the stochastic case, it is possible for the learning
procedure to find a set of weights that will make the probability of error
as low as desired. Such a set of weights exists if a set of weights exists
that will always get the right answer for nonstochastic units.

Learning Regular and Exceptional Patterns in a
Pattern Associator

In this section, we present an illustration of the behavior of a simple
pattern associator model. The model is a scaled-down version of the
main simulation described in the next section. We describe the scaled-
down version first because in this model it is possible to actually exam-
ine the matrix of connection weights, and from this to see clearly how
the model works and why it produces the basic three-stage learning
phenomenon characteristic of acquisition of the past tense. Various
aspects of pattern associator networks are described in a number of
places in this book (Chapters 1, 2, 8, 9, 11, and 12, in particular) and
elsewhere (J. A. Anderson, 1973, 1977, J. A. Anderson, Silverstein,
Ritz, & Jones, 1977, Kohonen, 1977, 1984). Here we focus our atten-
tion on their application to the representation of rules for mapping one
set of patterns into another.

For the illustration model, we use a simple network of eight input
and eight output units and a set of connections from each input unit to
each output unit. The network is illustrated in Figure 3. The network
is shown with a set of connections sufficient for associating the pattern
of activation illustrated on the input units with the pattern of activation
illustrated on the output units. (Active units are darkened; positive
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FIGURE 3. Simple network used in illustrating basic properties of pattern associator net-
works; excitatory and inhibitory connections needed to allow the active input pattern to
produce the illustrated output pattern are indicated with + and —. Next to the network,
the matrix of weights indicating the strengths of the connections from each input unit 10
each output unit. Input units are indexed by the column they appear in; output units are
indexed by row.

and negative connections are indicated by numbers written on each
connection). Next to the network is the matrix of connections
abstracted from the actual network itself, with numerical values
assigned to the positive and negative connections. Note that each
weight is located in the matrix at the point where it occurred in the
actual network diagram. Thus, the entry in the ith row of the jth
column indicates the connection w;; from the jth input unit to the ith
output unit.

Using this diagram, it is easy to compute the net inputs that will arise
on the output units when an input pattern is presented. For each out-
put unit, one simply scans across its rows and adds up all the weights
found in columns associated with active input units. (This is exactly
what the simulation program does!) The reader can verify that when
the input pattern illustrated in the left-hand panel is presented, each
- output unit that should be on in the output pattern receives a net input
of +45; each output unit that should be off receives a net input of
—45.2 Plugging these values into Equation 1, using a temperature

2 In the examples we will be considering in this section, the thresholds of the units are
fixed at 0. Threshold terms add an extra degree of freedom for each output unit and
allow the unit to come on in the absence of input, but they are otherwise inessential to
the operation of the model. Computationally, they are equivalent to an adjustable weight
to an extra input unit that is always on.
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of 15,2 we can compute that each output unit will take on the correct
value about 95% of the time. The reader can check this in Figure 2;
when the net input is +45, the exponent in the denominator of the
logistic function is 3, and when the net input is —45, the exponent
is —3. These correspond to activation probabilities of about .95 and
.05, respectively.

One of the basic properties of the pattern associator is that it can
store the connections appropriate for mapping a number of different
input patterns to a number of different output patterns. The perceptron
convergence procedure can accommodate a number of arbitrary associa-
tions between input patterns and output patterns, as long as the input
patterns form a linearly independent set (see Chapters 9 and 11).
Table 2 illustrates this aspect of the model. The first two cells of the
table show the connections that the model learns when it is trained on
each of the two indicated associations separately. The third cell shows
connections learned by the model when it is trained on both patterns in
alternation, first seeing one and then seeing the other of the two.
Again, the reader can verify that if either input pattern is presented to a
network with this set of connections, the correct corresponding output
pattern is reconstructed with high probability; each output unit that
should be on gets a net input of at least +45, and each output unit that
should be off gets a net input below —45.

The restriction of networks such as this to linearly independent sets
of patterns is a severe one since there are only N linearly independent
patterns of length N. That means that we could store at most eight
unrelated associations in the network and maintain accurate perform-
ance. However, if the patterns all conform to a general rule, the capac-
ity of the network can be greatly enhanced. For example, the set of
connections shown in Table 2D is capable of processing all of the pat-
terns defined by what we call the rule of 78. The rule is described in
Table 3. There are 18 different input/output pattern pairs correspond-
ing to this rule, but they present no difficulty to the network. Through
repeated presentations of examples of the rule, the perceptron conver-
gence procedure learned the set of weights shown in cell D of Table 2.
Again, the reader can verify that it works for any legal association fit-
ting the rule of 78. (Note that for this example, the "regular" pairing

3 For the actual simulations of verb learning, we used a value of T equal to 200. This
means that for a fixed value of the weight on an input line, the effect of that line being
active on the unit’s probability of firing is much lower than it is in these illustrations.
This is balanced by the fact that in the verb learning simulations, a much larger number
of inputs contribute to the activation of each output unit. Responsibility for turning a
unit on is simply more distributed when larger input patterns are used.
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TABLE 2

WEIGHTS IN THE 8-UNIT NETWORK
AFTER VARIOUS LEARNING EXPERIENCES

229

Weights acquired in learning
24— (146

15
-16
-17

16
-16

17
-16
-17

15 . .15
-16 . . -16
-17 . Y

16 . . 16
-16 . . -16

17 . Vi
-16 . . -16
-17 . .17

Weights acquired in learning
A and B together

B. Weights acquired in learning

(346 — 367

-16 -16
-17 17
17 17
-16 -16
-17 17
16 16
17 17
-17 -17

-16
-17

17
-16

D. Weights acquired in learning

the ruie of 78

24 -24 . . 24 24 61 -37 37 -5 5 3 6 -7
-13 -13 -26 . =13 -13 -35 60 -38 -4 6 3 -5 .8
23 24 1 . 24 -23 -39 35 61 -4 -5 -4 9 -6
24 25 -1 . =25 24 6 -4 -5 59 37 37 -8 -7
-13 -13 -26 . =13 -13 -5 -5 -4 -36 60 -38 -7 -7
13 13 26 1313 -5 4 -6 -37 -38 60 -8 -7
25 24 -1 . 24 -25 1 . 1 . -50 51
-12 .13 225 .o-13 -12 1201 49 -50
TABLE 3
THE RULE OF 78

Input patterns consist of one 123

active unit from each of the 456)

following sets: ((R)]

The output pattern paired The same unit from (1 2 3)

“with a given input pattern The same unit from (4 5 6)

consists of"

' Examples:

An exception:

The other unit from (7 8)
247—248
168— 167
357—358

147—147
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of (147) with (14 8) was used rather than the exceptional mapping
illustrated in Table 3).

We have, then, observed an important property of the pattern associ-
ator: If there is some structure to a set of patterns, the network may be
able to learn to respond appropriately to all of the members of the set.
This is true, even though the input vectors most certainly do not form
a linearly independent set. The model works anyway because the
response that the model should make to some of the patterns can be
predicted from the responses that it should make to others of the pat-
terns. :

Now let’s consider a case more like the situation a young child faces
in learning the past tenses of English verbs. Here, there is a regular
pattern, similar to the rule of 78. In addition, however, there are
exceptions. Among the first words the child learns are many excep-
tions, but as the child learns more and more verbs, the proportion that
are regular increases steadily. For an adult, the vast majority of verbs
are regular.

To examine what would happen in a pattern associator in this kind of
a situation, we first presented the illustrative 8-unit mode! with two pat-
tern pairs. One of these was a regular example of the 78 rule
[258)—(Q257)]. The other was an exception to the rule
[(147)— (14 7]. The simulation saw both pairs 20 times, and con-
nection strengths were adjusted after each presentation. The resulting
set of connections is shown in cell A of Table 4. This number of learn-
ing trials is not enough to lead to perfect performance; but after this
much experience, the model tends to get the right answer for each out-
put unit close to 90 percent of the time. At this point, the fact that one
of the patterns is an example of a general rule and the other is an
exception to that rule is irrelevant to the model. It learns a set of con-
nections that can accommodate these two patterns, but it cannot gen-
eralize to new instances of the rule.

This situation, we suggest, characterizes the situation that the
language learner faces early on in learning the past tense. The child
knows, at this point, only a few high-frequency verbs, and these tend,
by and large, to be irregular, as we shall see below. Thus each is
treated by the network as a separate association, and very little generali-
. zation is possible.

But as the child learns more and more verbs, the proportion of regu-
lar verbs increases. This changes the situation for the learning model.
Now the model is faced with a number of examples, all of which follow
the rule, as well as a smattering of irregular forms. This new situation
changes the experience of the network, and thus the pattern of inter-
connections it contains. Because of the predominance of the regular
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TABLE 4

REPRESENTING EXCEPTIONS: WEIGHTS IN THE 8-UNIT NETWORK

A. After 20 exposures to B. After 10 more exposures to
147047, 0258—0Q257N all 18 associations
12 -12 12 -12 .12 -12 44 34 -26 -2 -10 4 -8 -8
1113 .- 13 .- 13 -32 46 27 -11 2 -4 9 4
-11 -11 -1 -1 .o-11 -1 230 24 43 -5 -5 -1 -2 9
12 -12 12 -12 .12 -12 -1 -7 -7 45 34 26 4 -1
-11 1t =11 11 .o-11 11 8 -3 -3 31 4 27 1 -7
-11 -12 .-l 12 .o-11-12 6 -8 -3 -31 -28 42 -7 -10
12 11 o121 o120 11 1m -2 6 11 -2 -6 -35 38
-11 -13 .o-11 13 .o-11 -13 9 -4 7 13 1 6 36 -42
C. After 30 more exposures to D. After a total of 500 exposures
all 18 associations to all 18 associations

61 -38 -38 -6 -5 -4 -6 9 64 -39 -39 -5 4 -5 -7
-38 62 39 6 5 -4 -8 -7 -39 63 -39 -5 5 -5 -7 -8
-37 38 62 -5 -5 -3 -7 -6 -39 40 64 -5 -5 -5 -8 -7
4 -6 -6 62 -40 -38 -8 -8 S 5 -5 64 -40 -39 -8 -7
S5 5 4 38 62 -38 -1 -7 -5 -5 -5 .39 63 -39 -7 -8
6 -4 -5 -38 -39 62 -8 -7 5 -5 -5 -39 -39 63 -8 -7
20 -5 -4 22 -5 -6 -50 61 71 -28 -29 70 -28 -28 -92 106
.19 8 5 -18 5 7 54 -60 -70 27 28 -70 27 28 91 -106

form in the input, the network learns the regular pattern, temporarily
"overregularizing" exceptions that it may have previously learned.

Our illustration takes this situation to an extreme, perhaps, to illus-
trate the point. For the second stage of learning, we present the model
with the entire set of eighteen input patterns consisting of one active
unit from (1 2 3), one from (4 5 6), and one from (7 8). All of these
patterns are regular except the one exception already used in the first
stage of training.

At the end of 10 exposures to the full set of 18 patterns, the model
has learned a set of connection strengths that predominantly captures
the "regular pattern." At this point, its response to the exceptional pat-
. tern is worse than it was before the beginning of Phase 2; rather than
getting the right output for Units 7 and 8, the network is now regulariz-
ing it.

The reason for this behavior is very simple. All that is happening is
that the model is continually being bombarded with learning experi-
ences directing it to learn the rule of 78. On only one learning trial out
of 18 is it exposed to an exception to this rule.
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In this example, the deck has been stacked very strongly against the
exception. For several learning cycles, it is in fact quite difficult to tell
from the connections that the model is being exposed to an exception
mixed in with the regular pattern. At the end of 10 cycles, we can see
that the model is building up extra excitatory connections from input
Units 1 and 4 to output Unit 7 and extra inhibitory strength from Units
1 and 4 to Unit 8, but these are not strong enough to make the model
get the right answer for output Units 7 and 8 when the (1 4 7) input
pattern is shown. Even after 40 trials (panel C of Table 4), the model
still gets the wrong answer on Units 7 and 8 for the (1 4 7) pattern
more than half the time. (The reader can still be checking these asser-
tions by computing the net input to each output unit that would result
from presenting the (1 4 7) pattern.)

It is only after the model has reached the stage where it is making
very few mistakes on the 17 regular patterns that it begins to accommo-
date to the exception. This amounts to making the connection from
Units 1 and 4 to output Unit 7 strongly excitatory and making the con-
nections from these units to output Unit 8 strongly inhibitory. The
model must also make several adjustments to other connections so that
the adjustments just mentioned do not cause errors on regular patterns
similar to the exceptions, such as (157), (24 7)), etc. Finally, in
panel D, after a total of 500 cycles through the full set of 18 patterns,
the weights are sufficient to get the right answer nearly all of the time.
Further improvement would be very gradual since the network makes
errors so infrequently at this stage that there is very little opportunity
for change.

It is interesting to consider for a moment how an association is
represented in a model like this. We might be tempted to think of the
representation of an association as the difference between the set of
connection strengths needed to represent a set of associations that
includes the association and the set of strengths needed to represent the
same set excluding the association of interest. Using this definition, we
see that the representation of a particular association is far from invari-
ant. What this means is that learning that occurs in one situation (e.g.,
in which there is a small set of unrelated associations) does not neces-
sarily transfer to a new situation (e.g., in which there are a number of
regular associations). This is essentially why the early learning our
illustrative model! exhibits of the (1 4 7) — (1 4 7) association in the
context of just one other association can no longer support correct per-
formance when the larger ensemble of regular patterns is introduced.

Obviously, the example we have considered in this section is highly
simplified. However, it illustrates several basic facts about pattern asso-
ciators. One is that they tend to exploit regularity that exists in the
mapping from one set of patterns to another. Indeed, this is one of the
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main advantages of the use of distributed representations. Second, they
allow exceptions and regular patterns to coexist in the same network.
Third, if there is a predominant regularity in a set of patterns, this can
swamp exceptional patterns until the set of connections has been
acquired that captures the predominant regularity. Then further, grad-
ual tuning can occur that adjusts these connections to accommodate
both the regular patterns and the exception. These basic properties of
the pattern associator model lie at the heart of the three-stage acquisi-
tion process, and account for the gradualness of the transition from
Stage 2 to Stage 3.

Featural Representations of Phonological Patterns

The preceding section describes basic aspects of the behavior of the
pattern associator model and captures fairly well what happens when a
pattern associator is applied to the processing of English verbs, follow-
ing a training schedule similar to the one we have just considered for
the acquisition of the rule of 78. There is one caveat, however: The
input and target patterns—the base forms of the verbs and the correct
past tenses of these verbs—must be represented in the model in such a
way that the features provide a convenient basis for capturing the regu-
larities embodied in the past-tense forms of English verbs. Basically,
there were two considerations:

® We needed a representation that permitted a differentiation of
all of the root forms of English and their past tenses.

® We wanted a representation that would provide a natural basis
for generalizations to emerge about what aspects of a present
tense correspond to what aspects of the past tense.

A scheme which meets the first criterion, but not the second, is the
scheme proposed by Wickelgren (1969). He suggested that words
should be represented as sequences of context-sensitive phoneme units,
which represent each phone in a word as a triple, consisting of the
phone itself, its predecessor, and its successor. We call these triples
Wickelphones. Notationally, we write each Wickelphone as a triple of
phonemes, consisting of the central phoneme, subscripted on the left
by its predecessor and on the right by its successor. A phoneme occur-
ring at the beginning of a word is preceded by a special symbol (#)
standing for the word boundary; likewise, a phoneme occurring at the
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end of a word is followed by #. The word /kat/, for example, would be
represented as g4k, \a,, and ,t,,. Though the Wickelphones in a word
are not strictly position specific, it turns out that (a) few words contain
more than one occurrence of any given Wickelphone, and (b) there are
no two words we know of that consist of the same sequence of Wickel-
phones. For example, /slit/ and /silt/ contain no Wickelphones in
common.

One nice property of Wickelphones is that they capture enough of
the context in which a phoneme occurs to provide a sufficient basis for
differentiating between the different cases of the past-tense rule and for
characterizing the contextual variables that determine the subregulari-
ties among the irregular past-tense verbs. For example, the word-final
phoneme that determines whether we should add /d/, /t/ or /"d/ in
forming the regular past. And it is the sequence N, which is
transformed to ,N 4 in the ing — ang pattern found in words like sing.

The trouble with the Wickelphone solution is that there are too many
of them, and they are too specific. Assuming that we distinguish 35
different phonemes, the number of Wickelphones would be 353, or
42,875, not even counting the Wickelphones containing word bound-
aries. And, if we postulate one input unit and one output unit in our
model for each Wickelphone, we require rather a large connection
matrix (4.3x 10% squared, or about 2x 10%) to represent all their possi-
ble connections.

Obviously, a more compact representation is required. This can be

obtained by representing each Wickelphone -as a distributed pattern of
activation over a set of feature detectors. The basic idea is that we
represent each phoneme, not by a single Wickelphone, but by a pattern
of what we call Wickelfeatures. Each Wickelfeature is a conjunctive, or
context-sensitive, feature, capturing a feature of the central phoneme, a
feature of the predecessor, and a feature of the successor.

Details of the Wickelfeature representation. For concreteness, we
will now describe the details of the feature coding scheme we used. It
contains several arbitrary properties, but it also captures the basic prin-
ciples of coarse, conjunctive coding described in Chapter 3. First, we
will describe the simple feature representation scheme we used for cod-
- ing a single phoneme as a pattern of features without regard to its
predecessor and successor. Then we describe how this scheme can be
extended to code whole Wickelphones. Finally, we show how we
"blur" this representation, to promote generalization further.

To characterize each phoneme, we devised the highly simplified
feature set illustrated in Table 5. The purpose of the scheme was (a) to
give as many of the phonemes as possible a distinctive code, (b) to
allow code similarity to reflect the similarity structure of the phonemes
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TABLE §

CATEGORIZATION OF PHONEMES ON FOUR SIMPLE DIMENSIONS

Place

Front Middle Back

V/L u/s V/L U/S V/L u/s

Interrupted Stop b p d t g k

Nasal m - n - N -
Cont. Consonant  Fric. v/D f/T z S Z/} S/C

Lig/SV w/l - r - y h
Vowel High E i (6] - U u

Low A e | a/a w */o
Key: N = nginsing, D = thin the, T = thin with, Z = z in azure; S = sh in ship,
C=chinchip, E=-eeinbeet, i = 1iin bit;, O = oa in boar, ~ = u in but or schwa;
U = oo in boot; u = o0 in book; A = aiin bair, e = e in ber, 1 = i_e in bite,

a = ain bat,a = ain father, W = ow in cow; * = aw in saw; 0 = 0 in hot.

in a way that seemed sufficient for our present purposes, and (c) to
keep the number of different features as small as possible.

The coding scheme can be thought of as categorizing each phoneme
on each of four dimensions. The first dimension divides the phonemes
into three major types: interrupted consonants (stops and nasals), con-
tinuous consonants (fricatives, liquids, and semivowels), and vowels.
The second dimension further subdivides these major classes. The
interrupted consonants are divided into plain stops and nasals; the con-
tinuous consonants into fricatives and sonorants (liquids and
semivowels are lumped together); and the vowels into high and low.
The third dimension classifies the phonemes into three rough places of
articulation—front, middle, and back. The fourth subcategorizes the
consonants into voiced vs. voiceless categories and subcategorizes the
vowels into long and short. As it stands, the coding scheme gives
identical codes to six pairs of phonemes, as indicated by the duplicate
entries in the cells of the table. A more adequate scheme could easily
be constructed by increasing the number of dimensions and/or values
on the dimensions.

Using the above code, each phoneme can be characterized by one
value on each dimension. If we assigned a unit for each value on each
dimension, we would need 10 units to represent the features of a single
phoneme since two dimensions have three values and two have two
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values. We could then indicate the pattern of these features that
corresponds to a particular phoneme as a pattern of activation over the
10 units.

Now, one way to represent each Wickelphone would simply be to use
three sets of feature patterns: one for the phoneme itself, one for its
predecessor, and one for its successor. To capture the word-boundary
marker, we would need to introduce a special eleventh feature. Thus,
the Wickelphone .k, can be represented by

[ (000) (00) (000) (00) 1]
[ (100) (10) (001) (01) 0]
[ (001) (01) (010) (01) O]

Using this scheme, a Wickelphone could be represented as a pattern of
activation over a set of 33 units.

However, there is one drawback with this. The representation is not
sufficient to capture more than one Wickelphone at a time. If we add
another Wickelphone, the representation gives us no way of knowing
which features belong together.

We need a representation, then, that provides us with a way of deter-
mining which features go together. This is just the job that can be
done with detectors for Wickelfeatures—triples of features, one from
the central phoneme, one from the predecessor phoneme, and one
from the successor phoneme.

Using this scheme, each detector would be activated when the word
contained a Wickelphone containing its particular combination of three
features. Since each phoneme of a Wickelphone can be characterized
by 11 features (including the word-boundary feature) and each Wickel-
phone contains three phonemes, there are 11 x11 x 11 possible Wickel-
feature detectors. Actually, we are not interested in representing
phonemes that cross word boundaries, so we only need 10 features for
the center phoneme.

Though this leaves us with a fairly reasonable number of units
(11 x10 x11 or 1,210), it is still large by the standards of what will
easily fit in available computers. However, it is possible to cut the

number down still further without much loss of representational capac-
" ity since a representation using all 1,210 units would be highly redun-
dant; it would represent each feature of each of the three phonemes 16
different times, one for each of the conjunctions of that feature with
one of the four features of one of the other phonemes and one of the
four features of the other.

To cut down on this redundancy and on the number of units
required, we simply eliminated all those Wickelfeatures specifying
values on two different dimensions of the predecessor and the
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successor phonemes. We kept all the Wickelfeature detectors for all
combinations of different values on the same dimension for the prede-
cessor and successor phonemes. It turns out that there are 260 of these
(ignoring the word-boundary feature), and each feature of each
member of each phoneme triple is still represented four different times.
In addition, we kept the 100 possible Wickelfeatures combining a
preceding word-boundary feature with any feature of the main
phoneme and any feature of the successor; and the 100 Wickelfeatures
combining a following word boundary feature with any feature of the
main phoneme and any feature of the successor. All in all then, we
used only 460 of the 1,210 possible Wickelfeatures.

Using this representation, a verb is represented by a pattern of
activation over a set of 460 Wickelfeature units. Each Wickelphone
activates 16 Wickelfeature units. Table 6 shows the 16 Wickelfeature
units activated by the Wickelphone A, the central Wickelphone in
the word came. The first Wickelfeature is turned on whenever we have
a Wickelphone in which the preceding contextual phoneme is an inter-
rupted consonant, the central phoneme is a vowel, and the following
phoneme is an interrupted consonant. This Wickelfeature is turned on
for the Wickelphone A, since /k/ and /m/, the context phonemes,
are both interrupted consonants and /A/, the central phoneme, is a
vowel. This same Wickelfeature would be turned on in the

TABLE 6

THE SIXTEEN WICKELFEATURES FOR THE WICKELPHONE A |

Feature Preceding Context  Central Phoneme  Following Context

1 Interrupted Vowel Interrupted
2 Back Vowel Front
3 Stop Vowel Nasal
4 Unvoiced Vowel Voiced
5 Interrupted Front Vowel
6 Back Front Front
7 Stop Front Nasal
8 Unvoiced Front Voiced
9 Interrupted Low Interrupted
10 Back Low Front
11 Stop Low Nasal
12 Unvoiced Low Voiced
13 Interrupted Long Vowel
14 Back Long Front
15 Stop Long Nasal
16 Unvoiced Long Voiced







