e i e MY

P

PART II

BASIC MECHANISMS

The chapters of Part II represent explorations into specific architec-
tures and learning mechanisms for PDP models. These explorations
proceed through mathematical analysis coupled with results from simu-
lations. The major theme which runs through all of these explorations
is a focus on the learning problem. How can PDP networks evolve to
perform the kinds of tasks we require of them? Since one of the pri-
mary features of PDP models in general is their ability to self-modify,
these studies form an important base for the application of these
models to specific psychological and biological phenomena.

In Chapter 5§, Rumelhart and Zipser begin with a summary of the
history of early work on learning in parallel distributed processing sys-
tems. They then study an unsupervised learning procedure called com-
petitive learning. This is a procedure whereby feature detectors capable
of discriminating among the members of a set of stimulus input pat-
terns evolve without a specific teacher guiding the learning. The basic
idea is to let pools of potential feature detector units compete among
themselves to respond to each stimulus pattern. The winner within
each pool—the one whose connections make it respond most strongly
to the pattern—then adjusts its connections slightly toward the pattern
that it won. Several earlier investigators have considered variants of
the competitive learning idea (e.g., Grossberg, 1976; von der Malsberg,
1973). Rumelhart and Zipser show that when a competitive network is
trained through repeated presentations of members of a set of patterns,
each unit in a pool comes to respond when patterns with a particular
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attribute or property are presented. If there are two units in a pool,
each comes to respond to opposite values of a binary feature which is
useful in describing the stimulus set. If there are three units in the
pool, each unit comes to respond to a value of a trinary feature, etc. It
is shown through simulations and mathematical analysis that the com-
petitive learning system can serve as a basis for the development of
useful pattern descriptions.

Chapters 6 and 7 describe Smolensky’s harmony theory and Hinton
and Sejnowski’s Boltzmann machine, respectively. These approaches
were developed at the same time, and they have much in common.
Both harmony theory and Boltzmann machines employ binary units
whose values are determined probabilistically according to the
Boltzmann equation. Each employs simulated annealing in which the
temperature of the Boltzmann equation is moved slowly to zero as the
system relaxes into its solution state where it finally freezes. Both sys-
tems apply mathematical formulations borrowed from physics to their
systems to describe and analyze their behavior.

In spite of these similarities, the two systems were developed from
very different perspectives. The similarities arose largely because both
systems tapped mathematical physics as a tool for formalizing their
ideas. Smolensky’s harmony theory grew from an attempt to formalize
the notion of schema and the ideas of schema theory. Hinton and
Sejnowski’s Boltzmann machine is based on the idea that stochastic
units can be used as a mechanism of search—for finding globally good
states of networks through simulated annealing. It combines insights
on simulated annealing from Kirkpatrick, Gelatt, and Vecchi (1983)
with the proof by Hopfield (1982) that there is a global energy function
that can be locally minimized through a process of asynchronously
updating individual units.

Chapter 6 provides a mathematical development of harmony theory
and shows how a symbolic level of description can be seen as emerging
from interactions among the individual processing units in harmony
theory. It shows how harmony theory can be applied to a variety of
phenomena, including intuitive problem solving and aspects of percep-
tion. It also provides a useful description of the mathematical relation-
ships among harmony theory, Boltzmann machines, and the related
mechanisms studied by S. Geman and D. Geman (1984).

Chapter 7 focuses on the issue of learning in Boltzmann machines.
One of the most important contributions of the work on Boltzmann
machines is the development of the two phase (wake/sleep) learning
procedure. Hinton and Sejnowski show that if a Boltzmann machine
runs under the influence of environmental inputs for a while and then
runs "freely” —without inputs from the environment—there is a very
simple learning rule which will allow the Boltzmann machine to pick up
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environmental regularities and develop its own internal representations
for describing those regularities. The major part of Chapter 7 is an
analysis of this learning procedure.

Chapter 8 is the study of still another learning procedure. In this
chapter, Rumelhart, Hinton, and Williams show that it is possible to
develop a generalization of the delta rule described in Chapter 2 so that
arbitrary multilayered networks of units can be can be trained to do
interesting tasks. Using this learning rule, the system can learn to asso-
ciate arbitrary input/output pairs and in this way can learn to compute
arbitrary input/output functions. The generalized delta rule is shown to
provide a method of modifying any weight in any network, based on
locally available information, so as to implement a gradient descent pro-
cess that searches for those weights that minimize the error at the out-
put units. Further, simulation work presented in the chapter shows
that the problems of local minima often associated with gradient des-
cent and other hill-climbing methods are suprisingly rare.

In general, the chapters in this section demonstrate that the barriers
to progress in-understanding learning in networks of simple neuron-like
units have begun to crumble. There are still deep problems that remain
unsolved, but the learning mechanisms described in these chapters
make several inroads into some of the most challenging aspects of the
theory of parallel distributed processing.



CHAPTER 5

Feature Discovery by Competitive Learning

D. E. RUMELHART and D. ZIPSER

This chapter reports the results of our studies with an unsupervised
learning paradigm that we call competitive learning. We have examined
competitive learning using both computer simulation and formal
analysis and have found that when it is applied to paralle! networks of
neuron-like elements, many potentially useful learning tasks can be
accomplished. We were attracted to competitive learning because it
seems to provide a way to discover the salient, general features which
can be used to classify a set of patterns. The basic components of the
competitive learning scheme are:

e Start with a set of units that are all the same except for some
randomly distributed parameter which makes each of them
respond slightly differently to a set of input patterns.

e Limit the "strength" of each unit.

® Allow the units to compete in some way for the right to
respond to a given subset of inputs.

The net result of correctly applying these three components to a learn-
ing paradigm is that individual units learn to specialize on sets of

This chapter originally appeared in Cognitive Science, 1985, 9, 75-112. Copyright 1985
by Ablex Publishing. Reprinted by permission.
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similar patterns and thus become "feature detectors” or "pattern classif-
iers” In addition to Frank Rosenblatt, whose work will be discussed
below, several others have exploited competitive learning in one form
or another over the years. These include von der Malsburg (1973),
Grossberg (1976), Fukushima (1975), and Kohonen (1982). Our
analyses differ from many of these in that we focus on the develop-
ment of feature detectors rather than pattern classification. We address
these issues further below.

One of the central issues in the study of the processing capacities of
neuron-like elements concerns the limitations inherent in a one-level
system and the difficulty of developing learning schemes for multi-
layered systems. Competitive learning is a scheme in which important
features can be discovered at one level that a multilayer system can use
to classify pattern sets which cannot be classified with a single level
system.

Thirty-five years of experience have shown that getting neuron-like
elements to learn some easy things is often quite straightforward, but
designing systems with powerful general learning properties is a difficult
problem, and.the competitive learning paradigm does not change this
fact. What we hope to show is that competitive learning is a powerful
strategy which, when used in a variety of situations, greatly expedites
some difficult tasks. Since the competitive learning paradigm has roots
which go back to the very beginnings of the study of artificial learning
devices, it seems reasonable to put the whole issue into historical per-
spective. This is even more to the point, since one of the first simple
learning devices, the perceptron, caused great furor and debate, the
reverberations of which are still with us. .

In the beginning, thirty-five or forty years ago, it was very hard to
see how anything resembling a neural network could learn at all, so any
example of learning was immensely interesting. Learning was elevated
to a status of great importance in those days because it was somehow
uniquely associated with the properties of animal brains. After
McCulloch and Pitts (1943) showed how neural-like networks could
compute, the main problem then facing workers in this area was to
understand how such networks could learn.

The first set of ideas that really got the enterprise going were con-
tained in Donald Hebb’s Organization of Behavior (1949). Before Hebb's
work, it was believed that some physical change must occur in a net-
work to support learning, but it was not clear what this change could
be. Hebb proposed that a reasonable and biologically plausible change
would be to strengthen the connections between elements of the net-
work only when both the presynaptic and postsynaptic units were active
simultaneously. The essence of Hebb’s ideas still persists today in
many learning paradigms. The details of the rules for changing weight
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may be different, but the essential notion that the strength of connec-
tions between the units must change in response to some function of
the correlated activity of the connected units still dominates learning
models. _
Hebb’s ideas remained untested speculations about the nervous sys-
tem until it became possible to build some form of simulated network
to test learning theories. Probably the first such attempt occurred in
1951 when Dean Edmonds and Marvin Minsky built their learning
machine. The flavor of this machine and the milieu in which it
operated is captured in Minsky’s own words which appeared in a
wonderful New Yorker profile of him by Jeremy Bernstein (1981):

In the summer of 1951 Dean Edmonds and I went up to
Harvard and built our machine. It had three hundred tubes and
a lot of motors. It needed some automatic electric clutches,
which we machined ourselves. The memory of the machine
was stored in the positions of its control knobs, 40 of them,
and when the machine was learning, it used the clutches to
adjust its own knobs. We used a surplus gyropilot from a B24
bomber to move the clutches. (p 69)

This machine actually worked and was so fascinating to watch that
Minsky remembers:

We sort of quit science for awhile to watch the machine. We
were amazed that it could have several activities going on at
once in this little nervous system. Because of the random
wiring it had a sort of fail safe characteristic. If one of the
neurons wasn’t working, it wouldn’t make much difference and
with nearly three hundred tubes, and the thousands of
connections we had soldered there would usually be something
wrong somewhere. . . . I don’t think we ever debugged our
machine completely, but that didn’t matter. By having this
crazy random design it was almost sure to work no matter how
you built it. (p. 69)

In fact, the functioning of this machine apparently stimulated Minsky
sufficiently to write his PhD thesis on a problem related to learning
(Minsky, 1954). The whole idea must have generated rather wide
interest; von Neumann, for example, was on Minsky’s PhD committee
and gave him encouragement. Although Minsky was perhaps the first
on the scene with a learning machine, the real beginnings of meaning-
ful neuron-like network learning can probably be traced to the work of
Frank Rosenblatt, a Bronx High School of Science classmate of
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Minsky’s. Rosenblatt invented a class of simple neuron-like learning
networks which he called perceptrons. In his book, Principles of Neuro-
dynamics (1962), Rosenblatt brought together all of his results on per-
ceptrons. In that book he gives a particularly clear description of what
he thought he was doing:

Perceptrons are not intended to serve as detailed copies of any
actual nervous system. They're simplified networks, designed
to permit the study of lawful relationships between the organi-
zation of a nerve net, the organization of its environment, and
the "psychological” performances of which it is capable. Per-
ceptrons might actually correspond to parts of more extended
networks and biological systems; in this case, the results
obtained will be directly applicable. More likely they represent
extreme simplifications of the central nervous system, in which
some properties are exaggerated and others suppressed. In this
case, successive perturbations and refinements of the system
may yield a closer approximation.

The main strength of this approach is that it permits mean-
ingful questions to be asked and answered about particular
types of organizations, hypothetical memory mechanisms, and
neural models. When exact analytical answers are unobtainable,
experimental methods, either with digital simulation or
hardware models, are employed. The model is not the terminal
result, but a starting point for exploratory analysis of its
behavior. (p. 28)

Rosenblatt pioneered two techniques of fundamental importance to the
study of learning in neural-like networks: digital computer simulation
and formal mathematical analysis, although he was not the first to
simulate neural networks that could learn on digital computers (cf.
Farley & Clark, 1954).

Since the paradigm of competitive learning uses concepts that appear
in the work of Rosenblatt, it is worthwhile reviewing some of his ideas
in this area. His most influential result was the "perceptron learning
theorem" which boldly asserts:

Given an elementary a-perceptron, a stimulus world W, and
any classification C (W) for which a solution exists; let all
stimuli in W occur in any sequence, provided that each
stimulus must reoccur in finite time; then beginning from an
arbitrary initial state, an error correction procedure will always
yield a solution to C (W) in finite time, ... (p. 596)
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As it turned out, the real problems arose out of the phrase "for which a
solution exists" —more about this later.

Less widely known is Rosenblatt’s work on what he called "spontane-
ous learning." All network learning models require rules which tell how
to present the stimuli and change the values of the weights in accor-
dance with the response of the model. These rules can be characterized
as forming a spectrum, at one end of which is learning with an error-
correcting teacher, and at the other is completely spontaneous, unsu-
pervised discovery. In between is a continuum of rules that depend on
manipulating the content of the input stimulus stream to bring about
learning. These intermediate rules are often referred to as "forced
learning." Here we are concerned primarily with attempts to design a
perceptron that would discover something interesting without a teacher
because this is similar to what happens in the competitive learning case.
In fact, Rosenblatt was able to build a perceptron that was able to spon-
taneously dichotomize a random sequence of input patterns into classes
such that the members of a single class were similar to each other, and
different from-the members of the other class. Rosenblatt realized that
any randomly initialized perceptron would have to dichotomize an arbi-
trary input pattern stream into a "1-set,” consisting of those patterns
that happened to produce a response of 1, and a "0-set," consisting of
those that produced a response of 0. Of course one of these sets could
be empty by chance and neither would be of much interest in general.
He reasoned that if a perceptron could reinforce these sets by an
appropriate rule based only on the perceptron’s spontaneous response
and not on a teacher’s error correction, it might eventually end up with
a dichotomization in which the members of each set were more like
each other than like the members of the opposite set. What was the
appropriate rule to use to achieve the desired dicotomization? The first
rule he tried for these perceptrons, which he called C-type, was to
increment weights on lines active with patterns in the 1-set, and decre-
ment weights on lines active with patterns in the 0-set. The idea was to
force a dichotomization into sets whose members were similar in the
sense that they activated overlapping subsets of lines. The results were
disastrous. Sooner or later all the input patterns were classified in one
set. There was no dichotomy but there was stability. Once one of the
sets won, it remained the victor forever.

- Not to be daunted, he examined why this undesirable result occurred
and realized that the problem lay in the fact that since the weights
could grow without limit, the set that initially had a majority of the pat-
terns would receive the majority of the reinforcement. This meant that
weights on lines which could be activated by patterns in both sets would
grow to infinite magnitudes in favor of the majority set, which in turn
would lead to the capture of minority patterns by the majority set and
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ultimate total victory for the majority. Even where there was initial
equality between the sets, inevitable fluctuations in the random presen-
tation of patterns would create a majority set that would then go on to
win. Rosenblatt overcame this problem by introducing mechanisms to
limit weight growth in such a way that the set that was to be positively
reinforced at active lines would compensate the other set by giving up
some weight from all its lines. He called the modified perceptrons C'.
An example of a C’ rule is to lower the magnitude of all weights by a
fixed fraction of their current value before specifically incrementing the
magnitude of some of the weights on the basis of the response to an
input pattern. This type of rule had the desired result of making an
equal dichotomy of patterns a stable rather than an unstable state. Pat-
terns in each of the sets were similar to each other in the sense that
they depended on similar sets of input lines to produce a response. In
Rosenblatt’s initial experiment, the main feature of similarity was not
so much the shape of the patterns involved, but their location on the
retina. That is, his system was able to spontaneously learn something
about the geometry of its input line arrangement. Later, we will exam-
ine this important property of spontaneous geometry learning in consid-
erable detail. Depending on the desired leamning task, it can be either a
boon or a nuisance.

Rosenblatt was extremely enthusiastic about his spontaneous learning
results. In fact, his response can be described as sheer ecstasy. To see
what he thought about his achievements, consider his claim
(Rosenblatt, 1959):

It seems clear that the class C' perceptron introduces a new
kind of information processing automaton: For the first time,
we have a machine which is capable of having original ideas.
As an analogue of the biological brain, the perceptron, more
precisely, the theory of statistical separability, seems to come
closer to meeting the requirements of a functional explanation
of the nervous system than any system previously proposed.
(p. 449)

Although Rosenblatt’s results were both interesting and significant, the
claims implied in the above quote struck his contemporaries as
unfounded. What was also significant was that Rosenblatt appeared to
be saying that the type of spontaneous learning he had demonstrated
was a property of perceptrons, which could not be replicated by ordi-
nary computers. Consider the following quote from the same source:

As a concept, it would seem that the perceptron has
established, beyond doubt, the feasibility and principle of
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non-human systems which may embody human cognitive func-
tions at a level far beyond that which can be achieved through
present day automatons. The future of information processing
devices which operate on statistical, rather then logical princi-
ples seems to be clearly indicated. (p. 449)

It is this notion of Rosenblatt’s—that perceptrons are in some way
superior to computers—that ignited a debate in artificial intelligence
that had significant effects on the development of neural-like network
models for both learning and other cognitive processes. Elements of
the debate are still with us today in arguments about what the brain can
do that computers can’t do. There is no doubt that this was an impor-
tant issue in Rosenblatt’s mind, and almost certainly contributed to the
acrimonious debate at that time. Consider the following statement by
Rosenblatt made at the important conference on Mechanization of
Thought Processes back in 1959:

Computers seem to share two main functions with the brain:
(a) Decision making, based on logical rule, and (b) control,
again based on logical rules. The human brain performs these
functions, together with a third: interpretation of the environ-
ment. Why do we hold interpretation of the environment to be
so important? The answer, I think, is to be found in the laws
of thermodynamics. A system with a completely self contained
logic can never spontaneously improve its ability to organize,
and to draw valid conclusions from information. (Rosenblatt,
1959, p. 423)

Clearly in some sense, Rosenblatt was saying that there were things
that the brain and perceptrons, because of their statistical properties,
could do which computers could not do. Now this may seem strange
since Rosenblatt knew that a computer program could be written that
would simulate the behavior of statistical perceptrons to any arbitrary
degree of accuracy. Indeed, he was one of the pioneers in the applica-
tion of digital simulation to this type of problem. What he was actually
referring to is made clear when we examine the comments of other par-
ticipants at the conference, such as Minsky (1959) and McCarthy
(1959), who were using the symbol manipulating capabilities of the
computer to directly simulate the logical processes involved in decision
making, theorem proyving, and other intellectual activities of this sort.
Rosenblatt believed the computer used in this way would be inadequate
to mimic the brain’s true intellectual powers. This task, he thought,
could only be accomplished if the computer or other electronic devices
were used to simulate perceptrons. We can summarize these divergent
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points of view by saying that Rosenblatt was concerned not only with
what the brain did, but with how it did it, whereas others, such as Min-
sky and McCarthy, were concerned with simulating what the brain did,
and didn’t really care how it was done. The subsequent history of Al
has shown both the successes and failures of the standard Al approach.
We still have the problems today, and it’s still not clear to what degree
computational strategies similar to the ones used by the brain must be
employed in order to simulate its performance.

In addition to producing fertilizer, as all debates do, this one also
stimulated the growth of some new results on perceptrons, some of
which came from Minsky. Rosenblatt had shown that a two layer per-
ceptron could carry out any of the 22" possible classifications of N
binary inputs; that is, a solution to the classification problem had always
existed in principle. This result was of no practical value however,
because 2V units were required to accomplish the task in the com-
pletely general case. Rosenblatt’s approach to this problem was to use a
much smaller number of units in the first layer with each unit con-
nected to a small subset of the N inputs at random. His hope was that
this would give the perceptron a high probability of learning to carry
out classifications of interest. Experiments and formal analysis showed
that these random devices could learn to recognize patterns to a signifi-
cant degree but that they had severe limitations. Rosenblatt (1962)
characterized his random perceptron as follows:

It does not generalize well to similar forms occurring in new
positions in the retinal field, and its performance in detection
experiments, where a familiar figure appears against an
unfamiliar background, is apt to be weak. More sophisticated
psychological capabilities, which depend on the recognition of
topological properties of the stimulus field, or on abstract rela-
tions between the components of a complex image, are lacking.
(pp. 191-192)

Minsky and Papert worked through most of the sixties on a mathemati-
cal analysis of the computing powers of perceptrons with the goal of
understanding these limitations. The results of their work are available
in a book called Perceptrons (Minsky & Papert, 1969). The central
theme of this work is that parallel recognizing elements, such as per-
ceptrons, are beset by the same problems of scale as serial pattern
recognizers. Combinatorial explosion catches you sooner or later,
although sometimes in different ways in parallel than in serial. Minsky
and Papert’s book had a very dampening effect on the study of
neuron-like networks as computational devices. Minsky has recently
come to reconsider this negative effect:
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I now believe the book was overkill. . . . So after being irritated
with Rosenblatt for overclaiming and diverting all those people
along a false path, I started to realize that for what you get out
of it —the kind of recognition it can do—it is such a simple.
machine that it would be astonishing if nature did not make use
of it somewhere. (Bernstein, 1981, p. 103)

Perhaps the real lesson from all this is that it really is worthwhile trying
to put things in perspective.

Once the problem of scale has been understood, networks of
neuron-like elements are often very useful in practical problems of
recognition and classification. These networks are somewhat analogous
to computers, in that they won’t do much unless programmed by a
clever person; networks, of course, are not so much programmed as
designed. The problem of finding networks of practical size to solve a
particular problem is challenging because relatively small changes in
network design can have very large effects on the scale of a probiem.
Consider networks of neuron-like units that determine the parity of
their N binary inputs (see Figure 1). In the simple perceptrons studied
by Minsky and Papert, units in the first layer output 1 only if all their
inputs are 1 and output 0 otherwise. This takes 2V units in the first
layer, and a.single linear threshold unit with a fan-in of 2% in the
second layer, to determine parity. If the units in the first layer are
changed to linear threshold elements, then only N of them are
required, but all must have a fan-in of N. If we allow a multilayer net-
work to do the job, then about 3NV units are needed, but none needs a
fan-in of more than 2. The number of layers is of order log,N. The
importance of all this to the competitive learning paradigm, or any
other for that matter, is that no network can learn what it is not capable
of doing in principle. What any particular network can do is dependent
on its structure and the computational properties of its component ele-
ments. Unfortunately, there is no canonical way to find the best net-
work or to determine what it will learn, so the whole enterprise still has
much of the flavor of an experimental science.

THE COMPETITIVE LEARNING MECHANISM
Paradigms of Learning

It is possible to classify learning mechanisms in several ways. One
useful classification is in terms of the learning paradigm in which the
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FIGURE 1. A: Parity network from Minsky and Papert (1969). Each ¢ unit has an out-
put of 1 only if all of its inputs are 1. I is a linear threshold unit with threshold of 0, i.e.,
like all the other linear threshold units in the figure, it fires only when the sum of its
weighted inputs is greater than the threshold. This and all the other networks signal odd
parity with a 1 in the rightmost unit of the network. B: Parity network made from two
layers of linear threshold units. C. Three-unit network for determining the parity of 2
pair of inputs. D: Two-layer network using the subnetwork described in (C). In general,
the number of P-units is of order N and the number of layers is of order log,N.

model is supposed to work. There are at least four common learning
paradigms in neural-like processing systems:
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® Aduro Associator. In this paradigm a set of patterns are repeat-
edly presented and the system is supposed to "store" the pat-
terns. Then, later, parts of one of the original patterns or pos-
sibly a pattern similar to one of the original patterns is
presented, and the task is to "retrieve” the original pattern
through a kind of pattern completion procedure. This is an
auto-association process in which a pattern is associated with
itself so that a degraded version of the original pattern can act
as a retrieval cue.

® Pattern Associator. This paradigm is really a variant on the
auto-association paradigm. A set of pairs of patterns are repeat-
edly presented. The system is to learn that when one member
of the pair is presented it is supposed to produce the other. In
this paradigm one seeks a mechanism in which an essentially
arbitrary set of input patterns can be paired with an arbitrary set
of output patterns.

® (lassification Paradigm. The classification paradigm also can be
considered as a variant on the previous learning paradigms,
although the goals are sufficiently different and it is sufficiently
common that it deserves separate mention. In this case, there
is a fixed set of categories into which the stimulus patterns are
to be classified. There is a training session in which the system
is presented with the stimulus patterns along with the categories
to which each stimulus belongs. The goal is to learn to
correctly classify the stimuli so that in the future when a partic-
ular stimulus or a slightly distorted version of one of the
stimuli is presented, the system will classify it properly. This is
the typical paradigm in which the perceptron is designed to
operate and in which the perceptron convergence theorem is
proved.

® Regularity Detector. In this paradigm there is a population of
stimulus patterns and each stimulus pattern, S, is presented
with some probability p,. The system is supposed to discover
statistically salient features of the input population. Unlike the
classification paradigm, there is no a priori set of categories into
which the patterns are to be classified; rather, the system must
develop its own featural representation of the input stimuli
which captures the most salient features of the population of
input patterns.

Competitive learning is a mechanism well-suited for regularity detec-
tion, as in the environment described in above.
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Competitive Learning

The architecture of a competitive learning system (illustrated in Fig-
ure 2) is a common one. It consists of a set of hierarchically layered
units in which each layer connects, via excitatory connections, with the
layer immediately above it. In the most general case, each unit of a
layer receives an input from each unit of the layer immediately below
and projects output to each unit in the layer immediately above it.
Moreover, within a layer, the units are broken into a set of inhibitory
clusters in which all elements within a cluster inhibit all other elements
in the cluster. Thus the elements within a cluster at one level compete
with one another to respond to the pattern appearing on the layer
below. The more strongly any particular unit responds to an incoming
stimulus, the more it shuts down the other members of its cluster.

There are many variations on the competitive learning theme. A
number of researchers have developed variants of competitive learning
mechanisms and a number of results already exist in the literature. We
have already mentioned the pioneering work of Rosenblatt. In addi-
tion, von der Malsburg (1973), Fukushima (1975), and Grossberg
(1976), among others, have developed models which are competitive
learning models, or which have many properties in common with com-
petitive learning. We believe that the essential properties of the com-
petitive learning mechanism are quite general. However, for the sake
of concreteness, in this paper we have chosen to study, in some detail,
the simplest of the systems which seem to be representative of the
essential characteristics of competitive learning. Thus, the system we
have analyzed has much in common with the previous work, but wher-
ever possible we have simplified our assumptions. The system that we
have studied most is described below:

o The units in a given layer are broken into a set of nonoverlap-
ping clusters. Each unit within a cluster inhibits every other
unit within a cluster. The clusters are winner-take-all, such
that the unit receiving the largest input achieves its maximum
value while all other units in the cluster are pushed to their
minimum value.! We have arbitrarily set the maximum value
to 1 and the minimum value to 0.

I A simple circuit for achieving this result is attained by having each unit activate itself
and inhibit its neighbors. Grossberg (1976) employs just such a network to choose the
maximum value of a set of units.
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FIGURE 2. The architecture of the competitive learning mechanism. Competitive learn-
ing takes place in a context of sets of hierarchically layered units. Units are represented
in the diagram as dots. Units may be active or inactive. Active units are represented by
filled dots, inactive ones by open dots. In general, a unit in a given layer can receive
inputs from all of the units in the next lower layer and can project outputs to all of the
units in the next higher layer. Connections between layers are excitatory and connections
within layers are inhibitory: Each layer consists of a set of clusters of mutually inhibitory
units. The units within a cluster inhibit one another in such a way that only one unit per
cluster may be active. We think of the configuration of active units on any given layer as
representing the input pattern for the next higher level. There can be an arbitrary

number of such layers. A given cluster contains a fixed number of units, but different
clusters can have different numbers of units.
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® Every element in every cluster receives inputs from the same
lines.

® A unit learns if and only if it wins the competition with other
units in its cluster.

e A stimulus pattern S, consists of a binary pattern in which each
element of the pattern is either active or inactive. An active ele-
ment is assigned the value 1 and an inactive element is
assigned the value 0.

e Fach unit has a fixed amount of weight (all weights are posi-
tive) which is distributed among its input lines. The weight on
the line connecting unit i on the lower (or input) layer to unit j
on the upper layer, is designated W;;. The fixed total amount of
weight for unit j is designated ) w; = 1. A unit learns by

]

shifting weight from its inactive to its active input lines. If a
unit dees not respond to a particular pattern, no learning takes
place in that unit. If a unit wins the competition, then each of
its input lines give up some proportion g of its weight and that
weight is then distributed equally among the active input lines.?
More formally, the learning rule we have studied is:

0 if unit j loses on stimulus k
Awij = Cir . . . .
i 4 if unit j wins on stimulus &
&

where ¢, is equal to 1 if in stimulus pattern S;, unit / in the
lower layer is active and zero otherwise, and n, is the number

of active units in pattern S, (thus m, = Y.ci).
i

Figure 3 illustrates a useful geometric analogy to this system. We
can consider each stimulus pattern as a vector. If all patterns contain
the same number of active lines, then all vectors are the same length
and each can be viewed as a point on an N-dimensional hypersphere,

2 This learning rule was proposed by von der Malsburg (1973). As Grossberg (1976)
points out, renormalization of the weights is not necessary. The same result can be
obtained by normalizing the input patterns and then assuming that the weights approach
the values on the mput lines. Normalizing weights is simpler to implement than normal-
izing patterns, so we chose that option. For most of our experiments, however, it does
not matter which of these two rules we chose since all patterns were of the same
magnitude.
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FIGURE 3. A geometric interpretation of competitive learning. A: It'is useful to concep-
tualize stimulus patterns as vectors whose tips all lie on the surface of a hypersphere. We
can then directly see the similarity among stimulus patterns as distance between the
points on the sphere. In the figure, a stimulus pattern is represented as an x. The figure
represents a population of eight stimulus patterns. There are two clusters of three pat-
terns and two stimulus patterns which are rather distinct from the others. B: It is also
useful to represent the weights of units as vectors falling on the surface of the same
hypersphere. Weight vectors are represented in the figure as o’s. The figure illustrates
the weights of two units falling on rather different parts of the sphere. The response rule
of this model is equivalent to the rule that whenever a stimulus pattern is presented, the
unit whose weight vector is closest to that stimulus pattern on the sphere wins the com-
petition. In the figure, one unit would respond to the cluster in the northern hemisphere
and the other unit would respond to the rest of the stimulus patterns. C: The learning
rule of this model is roughly equivalent to the rule that whenever a unit wins the com-
petition (i.e., is closest to the stimulus pattern), that weight vector is moved toward the
presented stimulus. The figure shows a case in which there are three units in the cluster
and three natural groupings of the stimulus patterns. In this case, the weight vectors for
the three units will each migrate toward one of the stimulus groups.

where N is the number of units in the lower level, and therefore, also
the number of input lines received by each unit in the upper level.
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Each x in Figure 3A represents a particular pattern. Those patterns
that are very similar are near one another on the sphere; those that are
very different will be far from one another on the sphere. Now note
that since there are N input lines to each unit in the upper layer, its
weights can also be considered a vector in N-dimensional space. Since
all units have the same total quantity of weight, we have N-dimensional
vectors of approximately fixed length for each unit in the cluster.?
Thus, properly scaled, the weights themselves form a set of vectors
which (approximately) fall on the surface of the same hypersphere. In
Figure 3B, the O’s represent the weights of two units superimposed on
the same sphere with the stimulus patterns. Now, whenever a stimulus
pattern is presented, the unit which responds most strongly is simply
the one whose weight vector is nearest that for the stimulus. The
learning rule specifies that whenever a unit wins a competition for a
stimulus pattern, it moves a percentage g of the way from its current
location toward the location of the stimulus pattern on the hypersphere.
Now, suppose that the input patterns fell into some number, M,
"natural" groupings. Further, suppose that an inhibitory cluster receiv-
ing inputs from these stimuli contained exactly M units (as in Figure
3C). After sufficient training, and assuming that the stimulus group-
ings are sufficiently distinct, we expect to find one of the vectors for
the M units placed roughly in the center of each of the stimulus group-
ings. In this case, the units have come to detect the grouping to which
the input patterns belong. In this sense, they have "discovered” the
structure of the input pattern sets.

Some Features of Competitive Learning

There are several characteristics of a competitive learning mechanism
that make it an interesting candidate for further study, for example:

® Each cluster classifies the stimulus set into M groups, one for
each unit in the cluster. Each of the units captures roughly an
equal number of stimulus patterns. It is possible to consider a
cluster as forming an M-ary feature in which every stimulus
pattern is classified as having exactly one of the M possible

3 It should be noted that this geometric interpretation is only approximate. We have
used the constraint that ZWU = 1 rather than the constraint that zw,f = 1. This latter

1 ]
constraint would ensure that all vectors are in fact the same length. Our assumption only
assures that they will be approximately the same length.
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values of this feature. Thus, a cluster containing 2 units acts as
a binary feature detector. One element of the cluster responds
when a particular feature is present in the stimulus pattern, oth-
erwise the other element responds.

e If there is structure in the stimulus patterns, the units will break
up the patterns along structurally relevant lines. Roughly
speaking, this means that the system will find clusters if they
are there. (A key problem, which we address below, is specify-
ing the narure of the structure that this system discovers.)

e If the stimuli are highly structured, the classifications are highly
stable. If the stimuli are less well-structured, the classifications
are more variable, and a given stimulus pattern will be
responded to first by one and then by another member of the
cluster. In our experiments, we started the weight vectors in
random directions and presented the stimuli randomly. In this
case, there is rapid movement as the system reaches a relatively
stable configuration (such as one with a unit roughly in the
center of each cluster of stimulus patterns). These configura-
tions can be more or less stable. For example, if the stimulus
points don’t actually fall into nice clusters, then the configura-
tions will be relatively unstable, and the presentation of each
stimulus will modify the pattern of responding so that the sys-
tem will undergo continual evolution. On the other hand, if
the stimulus patterns fall rather nicely into clusters, then the
system will become very stable in the sense that the same units
will always respond to the same stimuli.*

e The particular grouping done by a particular cluster depends on
the starting value of the weights and the sequence of stimulus
patterns actually presented. A large number of clusters, each
receiving inputs from the same input lines can, in general, clas-
sify the inputs into a large number of different groupings, or
alternatively, discover a variety of independent features present
in the stimulus population. This can provide a kind of coarse
coding of the stimulus patterns.?

4 Grossberg (1976) has addressed this problem in his very similar system. He has
proved that if the patterns are sufficiently sparse, and/or when there are enough units in
the cluster, then a system such as this will find a perfectly stable classification. He also
points out that when these conditions don't hold, the classification can be unstable. Most
of our work is with cases in which there is no perfectly stable classification and the
number of patterns is much larger than the number of units in the inhibitory clusters.
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Formal Analysis

Perhaps the simplest mathematical analysis that can be given of the
competitive learning model under discussion involves the determination
of the sets of equilibrium states of the system—that is, states in which
the average inflow of weight to a particular line is equal to the average
outflow of weight on that line. Let p, be the probability that stimulus
S, is presented on any trial. Let v, be the probability that unit j wins
when stimulus S, is presented. Now we want to consider the case in
which Y A w; Vi Dx = 0, that is, the case in which the average change in

k
the weights is zero. We refer to such states as equilibrium states. Thus,
using the learning rule and averaging over stimulus patterns we can
write

Cik
0= gZ ;Pk Vik — gZ Wi Pk Vik
k Tk k

which implies that at equilibrium

DPr Ci Ve

wijzpk Vik = Z———n
k k k
and thus
Z P Cig Vik
W, = —X i
(7~ N
Zpk Vik
k

There are a number of important observations to note about this equa-
tion. First, note that Y_p, vy is simply the probability that unit k wins

k
averaged over all stimulus patterns. Note further that Y p, cy Vi is the

k
probability that input line 7 is active and unit j wins. Thus, the ratio
2 Dk Cik Vik
—ipT is the conditional probability that line / is active given unit j
& Vik
k

5 There is a problem in that one can’t be certain that the different clusters will discover
different features. A slight modification of the system in which clusters "repel” one
another can insure that different clusters find different features. We shall not pursue that
further in this paper.
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wins, p (line; = 1| unit; wins). Thus, if all patterns are of the same
size, i.e., n, = n for all k, then the weight w;; becomes proportional to
the probability that line i is active given unit j wins. That is,

w; — np (line; = 1] unit; wins).

We are now in a position to specify the response, at equilibrium, of
unit j when stimulus S is presented. Let a; be the input to unitj in
the face of stimulus S;. This is simply the sum of weights on the active
input lines. This can be written

Z PrCik Vik

i

kT
J z{; ijvil 2 il 21’/; Vi
k

which implies that at equilibrium
zpi Tii Vji

.1
ay= <=
Jl
zpivji
i

where r; represents the overlap between stimulus / and stimulus i,

Chi Cul ey .
r; = Z-——n—— Thus, at equilibrium a unit responds most strongly to
k i
patterns that overlap other patterns to which the unit responds and
responds most weakly to patterns that are far from patterns to which it
responds. Finally, it should be noted that there is another set of
restrictions on the value of v, —the probability that stimulus unit j
responds to stimulus S;. In fact, the competitive learning rule we have
studied has the further restriction that

1 Qe >C¥,’k for all l#_] ,/
Vik =1 0 otherwise. '

Thus, in general, there are many solutions to the equilibrium equations
described above. The competitive learning mechanisms can only reach
those equilibrium states in which the above-stated relationships
between the v, and the aj also hold.

Whenever the system is in a state in which, on average, the weights
are not changing, we say that the system has reached an equilibrium
state. In such a state the values of aj; become relatively stable, and
therefore, the values of v; become stable. When this happens, the sys-
tem always responds the same way to a particular stimulus pattern.
However, it is possible that the weights will be pushed out of
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equilibrium by an unfortunate sequence of stimuli. In this case, the
system can move toward a new equilibrium state (or possibly back to a
previous one). Some equilibrium states are more stable than others in
the sense that the v; become very unlikely to change values for long
periods of time. In particular, this will happen whenever the largest K
is much larger than any other a; for all stimulus patterns S;. In this
case, small movements in the weight vector of one of the units is very
unlikely to change which unit responds to which stimulus pattern. Such
equilibrium states are said to be highly srable. We should expect, then,
that after it has been learning for a period of time, the system will
spend most of its time in the most highly stable of the equilibrium
states. One good measure of the stability of an equilibrium state is
given by the average amount by which the input to the winning units is
greater than the response of all of the other units averaged over all pat-
terns and all units in a cluster. This measure is given by T below:

T= Zkavjk (ajk - a,-k).
k Jof

The larger the value of T, the more stable the system can be expected
to be and the more time we can expect the system to spend in that
state. Roughly, if we assume that the system moves into states which
maximize 7T, we can show that this amounts to maximizing the overlap
among patterns within a group while minimizing the overlap among
patterns between groups. In the geometric analogy above, this will
occur when the weight vectors point toward maximally compact
stimulus regions that are as distant as possible from other such regions.

SOME EXPERIMENTAL RESULTS
Dipole Experiments

The essential structure that a competitive learning mechanism can
discover is represented in the overlap of stimulus patterns. The sim-
plest stimulus population in which stimulus patterns can overlap with
one another is one constructed out of dipoles—stimulus patterns con-
sisting of exactly two active elements and the rest inactive. If we have
a total of N input units there are N(N-1)/2 possible dipole stimuli. Of |
course, if the actual stimulus population consists of all N(N-1)/2 possi- !
bilities, there is no structure to be discovered. There are no clusters ,
for our units to point at (unless we have one unit for each of the possi- ’
ble stimuli, in which case we can point a weight vector at each of the :
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possible input stimuli). If, however, we restrict the possible dipole
stimuli in certain ways, then there can be meaningful groupings of the
stimulus patterns that the system can find. Consider, as an example, a
case in which the stimulus lines could be thought of as forming a two- -
dimensional grid in which the only possible stimulus patterns were
those which formed adjacent pairs in the grid. If we have an N x M
grid, there are N(M—1) + M (N—1) possible stimuli. Figure 4 shows
one of the 24 possible adjacent dipole patterns defined on a 4 x4 grid.
We carried out a number of experiments employing stimulus sets of
this kind. In most of these experiments we employed a two-layer sys-
tem with a single inhibitory cluster of size two. Figure 5 illustrates the
architecture of one of our experiments. The results of three runs with
this architecture are illustrated in Figure 6, which shows the relative
values of the weights for the two units. The values are shown laid out
on a 4 x4 grid so that weights are next to one another if the units with
which they connect are next to one another. The relative values of the
weights are indicated by the filling of the circles. If a circle is filled,
that indicates that Unit 1 had the largest weight on that line. If the cir-
cle is unfilled, that means that Unit 2 had the largest weight on that
line. The grids on the left indicate the initial configurations of the
weights. The grids on the right indicate the final configurations of
weights. The lines connecting the circles represent the possible stimuli.
For example, the dipole stimulus pattern consisting of the upper left
input line and the one immediately to the right of it is represented by
the line connecting the upper-left circle in the grid with its right neigh-
bor. The unit that wins when this stimulus is presented is indicated by
the width of the line connecting the two circles. The wide line indicates

i
e} o o 0 ]
i
|
o} [} ° o !
i
e} o} . o
o) o} o o) ;

FIGURE 4. A dipole stimulus defined on a 4x4 matrix of input units. The rule for gen-
erating such stimuli is simply that any two adjacent units may be simultaneously active.
Nonadjacent units may not be active and more than two units may not be simultaneously
active. Active units are indicated by filled circles.
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FIGURE 5. The architecture of a competitive learning system with 16 input units and
one cluster of size two in the second layer.

that Unit 1 was the winner, the narrow line indicates that Unit 2 was
the winner. It should be noted, therefore, that two unfilled circles
must always be joined by a narrow line and two filled circles must
always be joined by a wide line. The reason for this is that if a particu-
lar unit has more weight on both of the active lines then that unit must
win the competition. The results clearly show that the weights move
from a rather chaotic initial arrangement to an arrangement in which
essentially all of those on one side of the grid are filled and all on the
other side are unfilled. The border separating the two halves of the
grid may be at any orientation, but most often it is oriented vertically
and horizontally, as shown in the upper two examples. Only rarely is
the orientation diagonal, as in the example in the lower right-hand grid.
Thus, we have a case in which each unit has chosen a coherent half of
the grid to which they respond. It is important to realize that as far as
the competitive learning mechanism is concerned the sixteen input
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FIGURE 6. Relative weight values for the two members of the inhibitory cluster. A4:
The results for one run with the dipole stimuli defined over a two-dimensional grid. The
left-hand grid shows the relative values of the weights initially and the right-hand grid
shows the relative values of the weights after 400 trials. A filled circle means that Unit 1
had the larger weight on the corresponding input. An unfilled circle means that Unit 2
had the larger weight. A heavy line connecting two circles means that Unit 1 responded
to the stimulus pattern consisting of the activation of the two circles, and a light line
means that Unit 2 won the corresponding pattern. In this case the system has divided the
grid horizontally. B: The results for a second run under the same conditions. In this
case the system has divided the grid horizontally. C: The results for a third run. In this
case the left-hand grid represents the state of the system after 50 trials. Here the grid
was divided diagonally.
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lines are unordered. The two-dimensional grid-like arrangement exists
only in the statistics of the population of stimulus patterns. Thus, the
system has discovered the dimensional structure inherent in the stimulus
population and has devised binary feature detectors that tell which half
of the grid contains the stimulus pattern. Note, each unit responds to
roughly half of the stimulus patterns. Note also that while some units
break the grid vertically, some break the grid horizontally, and some
break it diagonally; a combination of several clusters offers a rather
more precise classification of a stimulus pattern.

In other experiments, we tried clusters of other sizes. For example,
Figure 7 shows the results for a cluster of size four. It shows the initial
configuration and its sequence of evolution after 100, 200, 400, 800,
and after 4000 training trials. Again, initially the regions are chaotic.
After training, however, the system settles into a state in which stimuli
in compact regions of the grid are responded to by the same units. It
can be seen, in this case, that the trend is toward a given unit respond-
ing to a maximally compact group of stimuli. In this experiment, three
of the units settled on compact square regions while the remaining one
settled on two unconnected stimulus regions. It can be shown that the
state into which the system settled does not quite maximize the value
T, but does represent a relatively stable equilibrium state.

In the examples discussed thus far, the system, to a first approxima-
tion, settled on a highly compact representation of the input patterns in
which all patterns in a region are captured by one of the units. The
grids discussed above have all been two-dimensional. There is no need
to restrict the analysis to a two-dimensional grid. In fact, a two-unit
cluster will, essentially, pass a plane through a space of any dimen-
sionality. There is a preference for planes perpendicular to the axes of
the spaces. Figure 8 shows a typical result for the system learning a
three-dimensional space. In the case of three dimensions, there are
three equally good planes which can be passed through the space and,
depending on the starting directions of the weight vectors and on the
sequence of stimuli, different clusters will choose different ones of
these planes. Thus, a system which receives input from a set of such
clusters will be given information as to which quadrant of the space in
which the pattern appears. It is important to emphasize that the coher-
ence of the space is entirely in the choice of input stimuli, not in the
architecture of the competitive learning mechanism. The system discov-
ers the spatial structure in the input lines.

Formal analysis. For the dipole examples described above, it is pos-
sible to develop a rather precise characterization of the behavior of the
competitive learning system. Recall our argument that the most stable
equilibrium state (and therefore the one the system is most likely to
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FIGURE 7. The relative weights of each of the four elements of the cluster after 6, 100,
200, 400, 800, and 4000 stimulus presentations.

end up in) is the one that maximizes the function
T= ZPk Zvjk (ajk — ay).
ki

Now, in the dipole examples, all stimulus patterns of the stimulus
population are equally likely (i.e., p, = 1/N), all stimulus patterns
involve two active lines, and for every stimulus pattern in the popula-
tion of patterns there are a fixed number of other stimulus patterns in
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i
FIGURE 8. The relative weights for a system in which the stimulus patterns were

~chosen from a three-dimensional grid after 4000 presentations.

N
the population which overlap it.® This implies that Zrkj = R for all j.
k

With these assumptions, it is possible to show that maximizing T is
equivalent to minimizing the function

._ﬁ B,

T Ni
(see appendix for derivation), where N; is the number of patterns on
which unit i wins, M is the number of units in the cluster, and B, is the
number of cases in which unit i responds to a particular pattern and

does not respond to a pattern which overlaps it. This is the number of
border patterns to which unit i responds. Formally, we have

N N
B,- = ZZVU (l_vik) for rjk>0.
J k

From this analysis, it is clear that the most stable states are ones in
which the size of the border is minimized. Since total border region is
minimized when regions are spherical, we can conclude that in a situa-
tion in which stimulus pairs are drawn from adjacent points in a

6 Note that this latter condition does not quite hold for the examples presented above
due to edge effects. It is possible to eliminate edge effects by the use of a torus. We
have carried out experiments on tori as well, and the results are essentially the same.
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high-dimensional hyperspace, our competitive learning mechanism will
form essentially spherical regions that partition the space into one such
spherical region for each element of the cluster.

Another result of our simulations which can be explained by these

equations is the tendency for each element of the cluster to capture
roughly equally sized regions. This results from the interconnectedness
of the stimulus population. The resuit is easiest in the case in which
M= 2. In this case, the function we want to minimize is given by

B, B
— 4+ =
Now, in the case of M= 2, we have B= B,, since the two regions
must border on one another. Moreover, we have N;+ N,= N, since
every pattern is either responded to by Unit 1 or Unit 2. Thus, we
want to minimize the function
1- 1

N, N=N,

B

This function is minimized when N;= N/ 2. Thus, there are two pre's-
sures which determine the performance of the system in these cases:

e There is a pressure to reduce the number of border stimuli to a
minimum.

~® There is a pressure to divide the stimulus patterns among the
units in a way that depends on the total amount of weight that
unit has. If two units have the same amount of weight, they
will capture roughly equal numbers of equally likely stimuius
patterns.

Learning Words and Letters

It is common practice to handcraft networks to carry out particular
tasks. Whenever one creates such a network that performs a task
rather successfully, the question arises as to how such a network might
have evolved. The word perception model developed in McClelland
and Rumelhart (1981) and Rumelhart and McClelland (1982) is one
such case-in-point. That model offers rather detailed accounts of a
variety of word perception experiments, but it was crafted to do its job.
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How could it have evolved naturally? Could a competitive learning
mechanism create such a network?

Let’s begin with the fact that the word perception mode! required a
set of position-specific letter detectors. Suppose that a competitive
learning mechanism is faced with a set of words—to what features
would the system learn to respond? Would it create position-specific
letter detectors or their equivalent? We proceeded to answer this ques-
tion by again viewing the lower level units as forming a two-
dimensional grid. Letters and words could then be presented by
activating those units on the grid corresponding to the points of a stan-
dard CRT font. Figure 9 gives examples of some of the stimuli used in
our experiments. The grid we used was a 7x14 grid. Each letter
occurred in a 7x 5 rectangular region on the grid. There was room for
two letters with some space in between, as shown in the figure. We
then carried out a series of experiments in which we presented a set of
word and/or letter stimuli to the system allowing it to extract relevant
features.

Before proceeding with a description of our experiments, it should be
mentioned that these experiments required a slight addition to the com-
petitive learning mechanism. The problem was that, unlike the dipole
stimuli, the letter stimuli only sparsely covered the grid and many of
the units in the lower level never became active at all. Therefore,
there was a possibility that, by chance, one of the units would have
most of its weight on input lines that were never active, whereas
another unit may have had most of its weight on lines common to all of
the stimulus patterns. Since a unit never learns unless it wins, it is
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FIGURE 9. Example stimuli for the word and letter experiments. . \
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possible that one of the units will never win, and therefore never learn.
This, of course, takes the competition out of competitive learning.
This situation is analogous to the situation in the geometric analogy in
which all of the stimulus points are relatively close together on the
hypersphere, and one of the weight vectors, by chance, points near the
cluster while the other one points far from the stimuli. (See Figure
10). It is clear that the more distant vector is not closest to any
stimulus and thus can never move toward the collection. We have
investigated two modifications to the system which deal with the prob-
lem. One, which we call the leaky learning model, modifies the learn-
ing rule to state that both the winning and the losing units move toward
the presented stimulus: the close vector simply moves much further.
In symbols this suggests that

C;

k - . . M
g,-nL— - gyw; if unit j loses on stimulus k
k
Aw; =
i Cik if unit 7 wi .
B~ 8wy unit j wins on stimulus k
&

where g, is the learning rate for the losing units, g, is the learning rate
for the winning unit, and where g, <<g,. In our experiments we made

FIGURE 10. A geometric interpretation of changes in stimulus sensitivity. The larger
the circle around the head of the weight vector the more sensitive the unit. The decision
as to which unit wins is made on the basis of the distance from the circle rather than
from the head of the weight vector. In the example, the stimulus pattern indicated by
the y is actually closer to the head of one vector o, but since it is closer to the circle sur-
rounding vector p, unit p would win the competition.
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g an order of magnitude smaller than g,,. This change has the property
that it slowly moves the losing units into the region where the actual
stimuli lie, at which point they begin to capture some units and the
ordinary dynamics of competitive learning take over.

The second method is similar to that employed by Bienenstock,
Cooper, and Munro (1982), in which a unit modulates its own sensi-
tivity so that when it is not receiving enough inputs, it becomes
increasingly sensitive. When it is receiving too many inputs, it
decreases its sensitivity. This mechanism can be implemented in the
present context by assuming that there is a threshold and that the
relevant activation is the degree to which the unit exceeds its threshold.
If, whenever a unit fails to win it decreases its threshold and whenever
it does win it increases its threshold, then this method will also make
all of the units eventually respond, thereby engaging the mechanism of
competitive learning. This second method can be understood in terms
of the geometric analogy that the weight vectors have a circle surround-
ing the end of the vector. The relevant measure is not the distance to
the vector itself but the distance to the circle surrounding the vector.
Every time a unit loses, it increases the radius of the circle; every time
it wins, it decreases the radius of the circle. Eventually, the circle on
the losing unit will be large enough to be closer to some stimulus pat-
tern than the other units.

We have used both of these mechanisms in our experiments and
they appear to result in essentially similar behavior. The former, the
leaky learning method, does not alter the formal analysis as long as the
ratio g;/g,, is sufficiently small. The varying threshold method is more
difficult to analyze and may, under some circumstances, distort the
competitive learning process somewhat. After this diversion, we can
now return to our experiments on the development of word/position-
specific letter detectors and other feature detectors.

Position-specific letter detectors. In our first experiment, we
presented letter pairs drawn from the set: 44, AB, B4, and BB. We
began with clusters of size two. The results were unequivocal. The sys-
tem developed position-specific letter detectors. In some experimental
runs, one of the units responded whenever 44 or AB was presented,
and the other responded whenever B4 or BB was presented. In this
case, Unit 1 represents an A4 detector in position 1 and Unit 2
represents a B detector for position 1. Moreover, as in the word per-
ception model, the letter detectors are, of course, in a mutually inhibi-
tory pool. On other experimental runs, the pattern was reversed. One
of the units responded whenever there was an A4 in the second position
and the other unit responded whenever there was a B in the second
position. Figure 11 shows the final configuration of weights for one of
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FIGURE 11. The final configuration of weights for a system trained on the stimulus
patterns 4, B, C, D.

our experimental runs. Note that although the units illustrated here
respond only to the letter in the first position, there is still weight on
the active lines in the second position. It is just that the weights on the
first position differentiate between 4 and B, whereas those on the
second position respond equally to the two letters. In particular, as sug-
gested by our formal analysis, asymptotically the weights on a given
line are proportional to the probability that that line is active when the
unit wins. That is, w; — p(unit; = 1| unit; wins). Since the lower
level units unique to 4 occur equally as often as those unique to B, the
weights on those lines are roughly equal. The input lines common to
the two letters are on twice as often as those unique to either letter,
and hence, they have twice as much weight. Those lines that never
come on reach zero weight. '

Word detection units. In another experiment, we presented the
same stimulus patterns, but increased the elements in the cluster from
two to four. In this case, each of the four level-two units came to
respond to one of the four input patterns—in short, the system
developed word detectors. Thus, if layer two were to consist of a
number of clusters of various sizes, large clusters with approximately
one unit per word pattern will develop into word detectors, while
smaller clusters with approximately the number of letters per spatial
position will develop into position-specific letter detectors. As we shall
see below, if the number of elements of a cluster is substantially less
than the number of letters per position, then the cluster will come to
detect position-specific letter features.

Effects of number of elements per serial position. In another experi-
ment, we varied the number of elements in a cluster and the number
of letters per serial position. We presented stimulus patterns drawn
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from the set: A4, AB, AC, AD, BA, BB, BC, BD. In this case, we
found that with clusters of size two, one unit responded to the patterns
beginning with 4 and the other responded to those beginning with B.
In our previous experiment, when we had the same number of letters
in each position, we found that the clusters were indifferent as to which
serial position they responded. Some responded to position 1 and oth-
ers to position 2. In this experiment, we found that a two-element
cluster always becomes a letter detector specific to serial position in
which two letters vary. Similarly, in the case of clusters of size four we
found that they always became letter detectors for the position in which
four letters varied. Thus, in this case one responded to an A4 in the
second position, one responded to a B in the second position, one
responded to a C in the second position, and one responded to a D in
the second position. Clearly, there are two natural ways to cluster the
stimulus patterns—two levels of structure. If the patterns are to be put
in two categories, then the binary feature 4 or B in the first position is
the relevant distinction. On the other hand, if the stimuli are to be
grouped into four groups, the four value feature determining the
second letter is the relevant distinction. The competitive learning algo-
rithm can discover either of the levels of structure—depending on the
number of elements in a cluster.

Letter similarity effects. In another experiment, we studied the
effects of letter similarity to look for units that detect letter features.
We presented letter patterns consisting of a letter in the first position
only. We chose the patterns so they formed two natural clusters based
on the similarity of the letters to one another. We presented the letters
A, B, S, and E. The letters were chosen so that they fell naturally into
two classes. In our font, the letters 4 and F are quite similar and the
letters B and S are very similar. We used a cluster of size two. Natur-
ally, one of the units responded to the 4 or the E while the other unit
responded to the B or the S. The weights were largest on those
features of the stimulus pairs which were common among each of these
similar pairs. Thus, the system developed subletter-size feature detec-
tors for the features relevant to the discrimination.

Correlated teaching inputs. We carried out one other set of experi-
ments with the word/letter patterns. In this case, we used clusters of
size two and presented stimuli drawn from the set: 44, BA, SB, EB.
Note that on the left-hand side, we have the same four letters as we
had in the previous experiment, but on the right-hand side we have
only two patterns; these two patterns are correlated with the letter in
the first position. An A in the second position means that the first
position contains either an 4 or a B, whereas a B in the second position
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means that the first position contains either an S or an E. Note further
that those correlations between the first and second positions are in
opposition to the "natural" similarity of the letters in the first serial
position. In this experiment, we first trained the system on the four
stimuli described above. Since the second serial position had only two
letters in it, the size-two cluster became a position-specific letter detec-
tor for the second serial position. One unit responded to the 4 and one
to the B in the second position. Notice that the units are also respond-
ing to the letters in the first serial position as well. One unit is
responding to an A4 or a B in the first position while the other responds
to an E or an S. Figure 12 shows the patterns of weights developed by
the two units. After training, the system was then presented patterns
containing only the first letter of the pair and, as expected, the system
had learned the "unnatural” classification of the letters in the first posi-
tion. Here the strong correlation between the first and second position
led the competitive learning mechanism to override the strong correla-
tion between the highly similar stimulus patterns in the first serial posi-
tion. This suggests that even though the competitive learning system is
an "unsupervised" learning mechanism, one can control what it learns
by controlling the statistical structure of the stimulus patterns being
presented to it. In this sense, we can think of the right-hand letter in
this experiment as being a kind of teaching stimulus aimed at determin-
ing the classification learned for other aspects of the stimulus. It
should also be noted that this teaching mechanism is essentially the
same as the so-called errorless learning procedure used by Terrace
(1963) in training pigeons to peck a certain color key by associating that
color with a response situation where their pecking is determined by
other factors. As we shall see below, this correlational teaching
mechanism is useful in allowing the competitive learning mechanism to
discover features which it otherwise would be unable to discover.

Oo.: :...: Unit 1
too :o.. Un|t2
| -

FIGURE 12. The pattern of weights developed in the correlated learning experiment.
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Horizontal and Vertical Lines

One of the classically difficult probiems for a linear threshold device
like a perceptron is to distinguish between horizontal and vertical lines.
In general, horizontal and vertical lines are not linearly separable and
require a multilayer perceptron system to distinguish them. One of the
goals of the competitive learning device is for it to discover features
that, at a higher level of analysis, might be useful for discriminating
patterns which might not otherwise be discriminable with a linear
threshold-type device. It is therefore of some interest to see what
kinds of features the competitive learning mechanism discovers when
presented with a set of vertical and horizontal lines. In the following
discussion, we chronicle a series of experiments on this problem.
Several of the experiments ended in failure, but we were able to dis-
cover a way in which competitive learning systems can be put together
to build a hierarchical feature detection system capable of discriminat-
ing vertical and horizontal lines. We proceed by sketching several of
our failures as well as our successes because the way in which the sys-
tem fails is elucidating. It should be noted at the outset that our goal is
not so much to present a model of how the human learns to distinguish
between vertical and horizontal lines (indeed, such a distinction is prob-
ably prewired in the human system), but rather to show how competi-
tive learning can discover features which allow for the system to learn
distinctions with multiple layers of units that cannot be learned by
single-layered systems. Learning to distinguish vertical and horizontal
lines is simply a paradigm case.

In this set of experiments, we represented the lower level of units as
if they were on a 6x6 grid. We then had a total of 12 stimulus pat-
terns, each consisting of turning on six Level 1 units in a row on the
grid. Figure 13 illustrates the grid and several of the stimulus patterns.
Ideally, one might hope that one of the units would respond whenever
a vertical line is presented; the other would respond whenever a
horizontal line is presented. Unfortunately, a little thought indicates
that this is impossible. Since every input unit participates in exactly
one vertical and one horizontal line, there is no configuration of
weights which will distinguish vertical from horizontal. This is exactly
why no linear threshold device can distinguish between vertical and
horizontal lines in one level. Since that must fail, we might hope that
some clusters in the competitive learning device will respond to vertical
lines by assigning weights as illustrated in Figure 14. In this case, one
unit of the pair would respond whenever the first, second, or fourth
vertical line was presented, and another would respond whenever the
third, fifth, or sixth vertical line was presented; since both units would
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FIGURE 13. Stimulus ;')attems for the horizontal/ vertical discrimination experiments.

receive about the same input in the face of a horizontal line, we might
expect that sometimes one and sometimes the other would win the
competition but that the primary response would be to vertical lines. If
other clusters settled down similarly to horizontal lines, then a unit at
the third level looking at the output of the various clusters could distin-
guish vertical and horizontal. Unfortunately, that is not the pattern of
weights discovered by the competitive learning mechanism. Rather, a
typical pattern of weights is illustrated in Figure 15. In this arrange-
ment, each cluster responds to exactly three horizontal and three verti-
cal lines. Such a cluster has lost all information that might distinguish
vertical from horizontal. We have discovered a feature of absolutely no
use in this distinction. In fact, such features systematically throw away
the information relevant to horizontal vs. vertical. Some further
thought indicates why such a result occurred. Note, in particular, that
two horizontal lines have exactly nothing in common. The grid that we
show in the diagrams is merely for our convenience. As far as the
units are concerned there are 36 unordered input units; sometimes
some of those units are active. Pattern similarity is determined entirely
by pattern overlap. Since horizontal lines don’t intersect, they have no
units in common, thus they are not seen as similar at all. However,
every horizontal line intersects with every vertical line and thus has
much more in common with vertical lines than with other horizontal
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FIGURE 14. A possible weight configuration which could distinguish vertical from
horizontal.
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FIGURE 15. A typical configuration of weights for the vertical/horizontal discrimina-
tion.

ones. It is this similarity that the competitive learning mechanism has
discovered.

Now, suppose that we change the system somewhat. Suppose that
we "teach” the system the difference between vertical and horizontal
(as we did in the previous experiments with letter strings). In this
experiment we used a 12x6 grid. On the right-hand side of the grid we
presented either a vertical or a horizontal line, as we did before. On



5. COMPETITIVE LEARNING 187

the left-hand side of the grid we always presented the uppermost
horizontal line whenever any horizontal line was presented on the
right-hand grid, and we always presented the vertical line furthest to
the left on the left-hand grid whenever we presented any vertical line
on the right-hand side of the grid. We then had a cluster of two units
receiving inputs from all 12x6 = 72 lower level units. - (Figure 16
shows several of the stimulus patterns.)

As expected, the two units soon learned to discriminate between
vertical and horizontal lines. One of the units responded whenever a
vertical line was presented and the other responded whenever a
horizontal line was presented. They were responding, however, to the
pattern on the left-hand side rather than to the vertical and horizontal
pattern on the right. This too should be expected. Recall that the
value of the w;; approaches a value which is proportional to the proba-
bility that input unit i is active, given that unit j won the competition.
Now, in the case of the unit that responds to vertical lines for example,
every unit on the right-hand grid occurs equally often so that all of the
weights connecting to units in that grid have equal weights. The same
is true for the unit responding to the horizontal line. The weights on
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FIGURE 16. Stimulus patterns for the vertical/horizontal discrimination experiments
with a correlated "teaching” input on the right-hand side.
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the right-hand grid are identical for the two cluster members. Thus,
when the "teacher" is turned off, and only the right-hand figure is
presented, the two units respond randomly and show no evidence of
having learned the horizontal/ vertical distinction.

Suppose, however, that we have four, rather than two, units in the
level-two clusters. We ran this experiment and found that of the four
units, two of them divided up the vertical patterns and two of them
divided up the horizontal patterns. Figure 17 illustrates the weight
values for one of our runs. One of the units took three of the vertical
line patterns; another unit took three other vertical patterns. A third
unit responded to three of the horizontal line patterns, and the last unit
responded to the remaining three horizontal lines. Moreover, after we
took away the "teaching” pattern, the system continued to classify the
vertical and horizontal lines just as it did when the left-hand "teaching"
pattern was present.

Cluster 1
Unit 1 Unit 2
Unit 3 Unit 4
........... |
Cluster 2 !
i
Unit 1 Unit 2 :

......

i
|
|

FIGURE 17. The weight values for the two clusters of size four for the
vertical/horizontal discrimination experiment with a correlated "teaching” stimulus.



5. COMPETITIVE LEARNING 189

In one final experiment with vertical and horizontal lines, we
developed a three-level system in which we used the same stimulus pat-
terns as in the previous experiment; the only difference was that we
had two clusters of four units at the second level and one cluster of two
units at the third level. Figure 18 shows the architecture employed. In
this case, the two four-element clusters each learned to respond to sub-
sets of the vertical and horizontal lines as in the previous experiment.
The two clusters generally responded to different subsets, however,
Thus, when the upper horizontal line was presented, Unit 1 of the first
cluster responded and Unit 3 of the second cluster responded. When
the bottom horizontal line was presented, Unit 1 of the first cluster
responded again, but Unit 4 of the second cluster also responded.
Thus, the cluster of size two at the highest level was receiving a kind of
dipole stimulus. It has four inputs and on any trial, two of them are
active. As with our analysis of dipole stimuli, we know that stimuli that
overlap are always put in the same category. Note that when a vertical
line is presented, one of the two units in each of the middle layers of
clusters that responds to vertical lines will become active, and that none
of the units that respond to horizontal lines will ever be active; thus,
this means that there are two units in each middle layer cluster that
respond to vertical lines. Whenever a vertical line is presented, one of
the units in each cluster will become active. None of the horizontal
units will ever be active in the face of a vertical stimulus. Thus, one of
the units at the highest ievel learns to respond whenever a vertical line
is presented, and the other unit responds whenever a horizontal line is

Layer 1

eeeeod Input Units

FIGURE 18. The architecture for the three-level horizontal/vertical discrimination
experiment.
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presented. Once the system has been trained, this occurs despite the
absence of the "teaching" stimulus. Thus, what we have shown is that
the competitive learning mechanism can, under certain conditions,
develop feature detectors which allow the system to distinguish among
patterns that are not differentiable by a simple linear unit in one level.

CONCLUSION

We have shown how a very simple competitive mechanism can dis-
cover a set of feature detectors that capture important aspects of the set
of stimulus input patterns. We have also shown how these feature
detectors can form the basis of a muitilayer system that can serve to
learn categorizations of stimulus sets that are not linearly separable.
We have shown how the use of correlated stimuli can serve as a kind of
"teaching” input to the system to allow the development of feature
detectors which would not develop otherwise. Although we find the
competitive learning mechanism a very interesting and powerful learn-
ing principle, we do not, of course, imagine that it is the only learning
principle. Competitive learning is an essentially nonassociative, statisti-
cal learning scheme. We certainly imagine that other kinds of learning
mechanisms will be involved in the building of associations among pat-
terns of activation in a more complete neural network. We offer this
analysis of these competitive learning mechanisms to further our
understanding of how simple adaptive networks can discover features
important in the description of the stimulus environment in which the
system finds itself.
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APPENDIX

For the case of homogeneous dipole stimulus patterns, it is possible
to derive an expression for the most stable equilibrium state of the sys-
tem. We say that a set of dipole stimulus patterns is homogeneous if
(a) they are equally likely and (b) for every input pattern in the set
there are a fixed number of other input patterns that overlap them.
These conditions were met in our simulations. Our measure of stability
is given by

T= ):kaZvjk (ajk —ay).
ki

Since p, = .ILV we can write

T= _EZZ Vie® jie — "}VEZ% Vik @ik -

ljk

Summing the first portion of the equation over / and the second over j
we have

M 1
T= szvjkajk - szaikzvjk-
ik i k i

Now note that when p, = 1/ N, we have a = 2’/9 il ZVk, Further-
more, ZVIk =1 and ZV,k = N;, where N, is the number of patterns

captured by unit /. Thus, we have

1 2 Vi
N Tven = J T

i k

Now, since all stimuli are the same size, we have r; = r;. Moreover,
since all stimuli have the same number of neighbors, we have
Z Z = R, where R is a constant determined by the dimen-

swnallty of the stimulus space from which the dipole stimuli are drawn.
Thus, we have
Zv,,

R I
22 ka_/k Nz M H]
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and we have
M z z RM

Since R, M, and N are constants, we have that 7 is maximum when-
, : : , L
ever T'= 3 3 vypay is maximum. Now substituting for a,, we can
j K

write
T — 1
= 2‘1722’/« Vik Vit -
ik
We can now substitute for the product vyv; the term
Vi — Vi (1= v;). We then can write

) 1 1

T'= ZTZZ’klvjk - ZVZZ’kIij(l - le)-
itk ik

Summing the first term of the equation first over /, then over 4, and

then over/, gives us

r 1

T = MR - Z]—V_—ZZrk,vjk(l - le).
. ik

Now, recall that r,, is given by the degree of stimulus overlap between

stimulus / and stimulus k. In the case of dipoles there are only three

possible values of ry;:

0 no overlap
T = 1 k=1
1/2 otherwise

Now, the second term of the equation for T'is 0 if either r,y = 0 or if
vie (1 = vy) = 0. Since vy is either 1 or 0, this will be zero whenever
Jj=lI. Thus, for all nonzero cases in the second term we have ry = %.
Thus we have

. 1 1
T = MR—EZW-ZZVJI((I - Vj[).
Jj ok
Finally, note that 2,2 v, (1 — v;) is 1 and ry is -% in each case in
k1

which different units capture neighboring patterns. We refer to this as
a case of bad neighbors and let B; designate the number of bad
neighbors for unit j. Thus, we have
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I« B
'=MR — - .
T'=M 22}; N,
B,
Finally, we can see that T’ will be a maximum whenever 7" = 27\;— is
J o

minimum. Thus, minimizing 7" leads to the maximally stable solution
in this case.



