CHAPTER 1 3

P3: A Parallel Network Simulating System

D. ZIPSER and D. RABIN

Research on parallel distributed processing is to a large extent depen-
dent upon the use of computer simulation, and a good deal of the
researcher’s time is spent writing programs for this purpose. Virtually
all the PDP systems described in this book require special-purpose com-
puter programs to emulate the networks under study. In writing pro-
grams of this type, it is usually found that the basic algorithms of the
PDP network are easy to program but that these rather simple "core"
programs are of little value unless they are embedded in a system that
lets the researcher observe and interact with their functions. These
user interface programs are generally tedious and very time consuming
to write. What is more, when they are directed toward one particular
system they can be quite inflexible, making it difficult to easily modify
the PDP network being studied. Also, because of the time involved,
particularly for interactive graphics programs, the researcher often
makes do with very limited facilities for analyzing the performance of
the network. In this chapter we will describe a general-purpose parallel
system simulator called P3. It was developed with PDP research explic-
itly in mind and its major goal is to facilitate simulation by providing
both the tools for network description and a powerful user interface
that can be used with any network described using the tools. There are
many problems to be faced and tradeoffs to be made in designing such
a system but in the process of doing this we feel that not only has a
useful system been developed, but also that we have learned a great
deal about the whole problem of PDP simulations.
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In P3 networks, each computing element, called a unit, contains a
computer program that reads inputs from connections and sets outputs
on other connections, possibly also modifying some local state parame-
ters. The major components of P3 are:

® The plan language, which describes the collection of units in a
model and specifies the connections between them. This
description is called a "plan."

® The method language, an extension to LISP, which implements
the internal computational behaviors of the units in a model.

® The constructor, which transforms the plan and associated
methods into a computer program and, when run, simulates the
network. .

® The simulation environment, which provides an interactive
display-oriented facility for observing and testing P3 models.

Input to units described in a P3 plan can come only from other units
in the plan. That is, there is no "outside world" in a P3 plan language
description of a network. This means that at the level of description of
the P3 plan language, the P3 network is closed. Access to the outside
world must occur inside a unit through its method. Methods may
access the world outside the P3 system through any available computer
peripheral. The only thing that methods are not allowed to do is to
reconfigure with the P3 system itself or communicate with other
methods through "underground connections" not mentioned in the P3
plan.

In any simulation, the relationship between real and modeled time is
of key importance. A real unit, such as a neuron, would read inputs
continuously and update its outputs asynchronously, but this cannot be
simulated exactly on a digital computer. Many simulations use a simple
synchronous approximation to real time. However, sometimes this pro-
duces unwanted artifacts and a closer approximation of asynchrony is
required. Often, in fact, what the investigator really wants to do is to
experiment with the effect of different kinds of time sirnulation on the
network under study. Since there is no way for the system designer to
know in advance all the possible ways that the investigator will want to
handle time, some strategy has to be used that allows great flexibility.
The approach taken by P3 is that this flexibility can come through the
methods that can use conditional updating. The P3 system itself is
completely synchronous and updates all units on each cycle. Since
updating a unit involves invoking its method, the question of whether
or not the outputs of a unit actually change on any P3 cycle can be
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decided by the method. For example, to model asynchronous updating,
each unit can have an additional input that controls whether or not it is
updated on a cycle. Then the decision as to which units are to be
updated can be given to a control unit that is connected by a separate
line to the update inputs of all the other units. The method program
inside this control unit decides which units in the network will be
updated on each cycle. Note that this approach is very flexible since
small changes in the method program of the control unit can imple-
ment a large range of possible update time schemes.

A typical P3 plan might contain a large number of simple neuron-like
units forming the core of the network together with a few special pur-
pose units to generate input to the core network and control its func-
tion. The master control unit, used above to implement asynchronous
updating, is an example of this kind of special-purpose unit. They can
also be used to sequence simulated experiments and to interpret output
of other units. How ali this can be done will become clearer as we
describe the use of P3 in detail. They key point here is that the P3
"style" is to include within the P3 plan all aspects of the simulation
including input to and control of the core network. This approach sim-
plifies the problem of constantly having to interfere special-purpose
routines to a general-purpose modeling environment.

It often happens that networks are modular, that is, made up of dis-
tinct subnetworks. P3 facilitates the use of modularity by allowing sub-
networks to be treated as single processing units. This feature is of par-
ticular use when several P3 units are used to simulate a single object
such as a "realistic” neuron. The modular feature also facilitates "top-
down" and "structured" definition of the plan even when the underly-
ing networks are not particularly modular.

The P3 plan language has an additional feature that is not directly
concerned with describing the functional aspects of a parallel network.
Every unit in a P3 plan has a location in a three-dimensional Euclidean
reference frame call P3 space. This means that every P3 plan not only
describes a network, but it also describes a geometrical structure. Since
the functioning of a P3 network does not depend on its geometrical
structure, it might seem odd to go to all the trouble of describing the
geometry. There are two main reasons for locating P3 units in space.
The first reason is to facilitate visualizing a P3 network while observing
its function during the simulation of a model. The units can be placed
so that they appear at the same relative positions on the computer
display during simulation as they have in the investigator’s conceptual
image of the model. The second reason to give each unit a position in
space is to make it possible to specify connections between units implic-
itly on the basis of their spatial locations rather than explicitly. This
latter feature is of particular importance when modeling systems in
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which the connectivity is described in terms of geometrical relations.
This is often the case when dealing with realistic neuronal modeling,
especially of primary sensory processing structures.

The P3 Plan Language

The job of the P3 plan language is to describe the units and connec-
tions that constitute the network being simulated. To do this, the
language uses a small but rich set of statements that make it possible to
succinctly describe large groups of complex, connected units. The
three fundamental constituents of the plan language are the UNIT
TYPE, UNIT, and CONNECT statements. The UNIT TYPE statement
names and describes a kind of unit. The UNIT statement instantiates
and names actual units. This statement can instantiate either a single
unit or a whole array of units of the same type. The CONNECT state-
ment makes connections. Since the statement can be used inside of
loops, a single connect statement can make an arbitrarily large number
of connections using the available array features. .

A unit in P3 can have any number of inputs and outputs together
with any number of parameters. Before the start of a simulation,
values must -be given to all parameters and to all outputs. Each value is
always a single computer word in length. The interpretation of this
word depends on how the methods use it. As the simulation proceeds,
these initial values are continuously updated. Taken together, the
values of the parameters and the outputs constitute the state of the sys-
tem at any time during simulation. The major difference between
parameter values and output values is that outputs are available to
other units in a network through connections, while the value of
parameters can only be read by the unit to which they belong. P3 units
can have two classes of parameters: unit parameters and terminal parame-
ters. The unit parameters apply to the whole unit, for example, the
threshold in a linear threshold unit. The terminal parameters are associ-
ated with individual inputs or outputs and correspond, for example, to
weights.

An important function of the P3 plan language is to describe the con-
nections between units. Since units can have multiple inputs and out-
puts there has to be some way to name them so that the CONNECT
statements will know which connections to make. These names are
also used within the method programs to read inputs and set outputs.
The basic form of the CONNECT statement is

(CONNECT < unit-name > OUTPUT < output-name >
TO < unit-name > INPUT < input-name >)
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For units with only a few inputs or outputs each input or output can be
given a separate name. When a unit has a large number of inputs or
outputs it is more convenient to group them together in input or output
arrays. The individual items in these arrays are referenced by giving
the array name and a set of subscript values. These arrays can be used
in iterative statements in plans and methods.

An output value can serve as input to any number of units, i.e., the
fan-out is arbitrarily large. Each individual input can receive only one
value. This is easy to enforce as long as it is known that just one con-
nection is to be made to each input. This works well in many cases but
it often happens that it is very hard or impossible for the programmer
to know exactly how many connections will be made. This is the case,
for example, when connection decisions are being made implicitly by
some computational procedure such as "connection by location" or ran-
dom connection. To overcome this, P3 secretly treats each individual
input as an array and automatically adjusts its size to fit the number of
inputs. This process is transparent to the programmer which means
that multiple connections can be made freely to a single input. There is
a special iteration statement in the method language to access these
multiple inputs. Each individual input that actually gets generated is
called a TERMINAL and there are procedures for associating parame-
ters with terminals and initializing their values.

The method programs that implement the internal functionings of
units are written in the form of ordinary computer programs in an
appropriate language. In the current implementation, which runs on
the Symbolics 3600, the language is LISP. In order to allow the
methods to use the values of inputs and parameters in their computa-
tions, a set of special access statements is incorporated into this system
and is available to LISP programs. These statements make it possible
for methods to read and set inputs, outputs, and parameters more or
less as if they are ordinary variables.

In order to illustrate how P3 works, we will describe a model of a
simple competitive learning network of the type described in Chapter 5.
The basic network contains two types of units: a pattern generator to
supply stimuli and a cluster of competitive learners connected to it,
which spontaneously discover some features of the patterns. Since
learning is spontaneous and does not require a teacher, the functioning
of the network is simple and straightforward. The pattern generators
sequentially produce output patterns that serve as input stimuli to the
cluster units. Each pattern is an activation vector specifying which of
the inputs are active and which are not. Each cluster unit produces an
output indicating its response to the current stimulus which is transmit-
ted to all other members of the cluster to create a "winner take all" net-
work. The cluster unit which wins is the only one that learns and it
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uses the weight redistribution procedure described in the competitive
learning chapter, that is,

0 if unit j loses on stimulus k
Aw,j =

Cik . PP .
g;;— — gw;; if unit j wins on stimulus k
k

where c; is equal to 1 if in stimulus pattern S, element i in the lower
layer is active and zero otherwise, and n, is the number of active ele-
ments in pattern S, (thus n, = Y ¢ ).

I
The first step in creating a P3 plan is to supply the UNIT TYPE
statements. The UNIT TYPE statement for the pattern generator is
given below:

(unit type dipole
parameters flag il j1 i2 j2
outputs (d array i j)
method < update routine code in lisp>)

In this, and all our other examples, words in italics are part of the P3
plan language while the nonitalicized words are supplied by the user.
The UNIT TYPE statement gives the type a name that wili be used
throughout the plan. The name for the pattern generator type is
"dipole." There are five parameters that are used internally for pattern
generation. The technicalities of the use of these parameters is
irrelevant here. The UNIT TYPE statement describes the output of the
unit. This output is a two-dimensional array of lines called "d." This
array of outputs is the retina on which stimulus patterns are generated
which serves as an input to the competitive learning cluster units. The
"i" and "j" that follow the word array are dummy variables that tell P3
how many dimensions the array has. The actual size of the array is
variable and is initialized when we instantiate units of the type dipole.
Note that the unit type dipole had no inputs since it is itself the source
of patterns.

The second basic unit type is the competitive learning unit, which in
our plan we call "competitor." The unit type statement for it is given
below:

(unit type competitor
parameters p g flag
inputs (C array i j terminal parameters W)
G-A)
outputs (0-A)
method < lisp code>)
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Note that the input array "C" of this unit corresponds exactly in form
to the output array "d" of the dipole unit described previously. This
correspondence will make it possible to make one-to-one connections
between the output of dipole type units and the input of competitor
type units. Also notice that a terminal parameter "W" has been associ-
ated with the input array "C" The competitor unit needs an additional
input called "i-A" which will receive information from the outputs of all
the other members of the cluster.

We have described the two unit types we will need. We can now go
ahead and instantiate units of these types. The statement that creates a
pattern generator unit of type dipole is shown below:

(unit stimulus of rype dipole
at(@000)
outputs (d array (10 5) (G0 5))))

The unit statement names the unit it is creating. This is the name of a
real unit that is actually going to exist in our model and it is the name
that will be referred to when this unit is connected to other units. For
P3 to build such a unit, it has to be told the type. There can be any
number of units of the same type and they can all have different
names. Since every real unit in P3 has a location in P3 space, we must
specify it in the unit statement that instantiates the unit. The ar clause
is used for this. The at is followed by a location specifier that simply
evaluates to the x-, y-, and z-coordinates of the unit in P3 space. For
simplicity we locate the pattern generator at the origin of P3 space
which will initially be located at the center of the display window when
we simulate the model. Since we are building a real unit, we have to
give a size to its array of output lines. This is done in the outputs clause
of the UNIT statement. Each subscript specifier consists of a subscript
name and initial value, which in the current implementation must be 0,
and final value, which in this example is 5 for both the "i" and the "j"
subscripts. This statement will generate a 6x 6 array of output lines on
connector "d."

Now that we have a source of patterns, we need to create a cluster of
units that will receive these patterns. The statement that instantiates
these units is given below:

(unit cluster array (k 0 — cluster-size 1) of type competitor
at (@ (* k (+ cluster-size 4)) (+ cluster-size 10) 0)
initialize (g = 0.05)
inputs (C array (i 0 (— stimulus-size 1))(j 0 (— stimulus-size 1)))

In this case, we are not instantiating a single unit but an array of units.
In the competitive learning model, the learning cluster always consists
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of two or more units, so we want a way to vary the number of units in
a cluster. In the first line of the unit statement we give the name clus-
ter to the array and then we indicate the size of the array with a sub-
script specifier. The name of this subscript is "k"; its initial value is 0.
Its final value is one less than the global constant "cluster-size" The
value of cluster-size, which will occur at various points in the plan, is
set by a statement at the beginning of the P3 plan that determines the
value of global constants. This feature means that we can change the
parameters such as cluster-size globally throughout the plan by only fid-
dling with a single value. The upper bound of the stimulus input line
array has also been set with the use of a global constant "stimulus-size"
rather than with an integer as was done previously. Also notice that
the variable "k" is used in an ar clause to place each unit of the array at
a different place in P3 space.

Our next task is to connect the units together in the appropriate
fashion. We have two classes of connections: those that go from the
stimulus generator to the learning cluster and those that interconnect
the units within the learning cluster. Each of these classes of connec-
tions has many individual connections within it, but these individual
connections can be specified algorithmically in such a way that only a
few CONNECT statements are needed to generate the entire network.
What is more, the algorithmic specification of these connections makes
it possible to change the size of the cluster or the size of the stimulus
array without altering the CONNECT statements at all. The code
required to connect the stimulus to the learning cluster is given below:

(for k0 (+ 1k))
exit when (> k cluster-size) do
(for G 0 (+ 1))
exit when (> i stimulus-size) do
(for GO (+ 1))
exit when (> j stimulus-size) do
(connect unit stimulus output d i j
to unit (cluster k) input Cij
terminal initialize (W = (si:random-in-range
0.0 (// 2.0 (expt (+ stimulus-size 1) 2))))))))

There are three nested loops. The first ranges over each member of
the cluster, and the next two range over each dimension of the
stimulus array. Inside these three nested loops is a single CONNECT
statement. The CONNECT statement has the job of initializing the
value of any terminal parameters. In our model we have a very impor-
tant terminal parameter, "W," the weight between a stimulus line and a
cluster unit, which we want to initialize to a2 random value which sums



496  FORMAL ANALYSES

to one for the whole input array. This is accomplished by setting the
initial value of "W" with a LISP function that evaluates to the required
quantity. In general, in a P3 plan wherever a number is required, a
function (in our case a LISP function) that evaluates to a number can
replace the number itself. The sum of the random numbers generated
by our simple LISP function is not exactly one, but only averages one.
This is satisfactory for the competitive learning algorithm because it is
self-normalizing and will force the sum to one in the course of learning.

The connections that link the members of a cluster are a bit more
complex. Each member of the cluster must receive input from all
other members except itself. The code for doing this in a completely
general way for clusters of any size is given below:

(for' (k 0 (+ 1K)
exit when (> k cluster-size) do
(for, GO (+ 1)
exit when (= j k) do
(connect unit cluster k output o-A
o unit cluster j input i-A))
(Jor G(+ kD (+1))
exit when (> j cluster-size) do
(connect unit cluster k output o-A
to unit cluster j input i-A)))

The idea here is that we first connect each unit to those units whose
subscripts are lower than it and then to each unit whose subscript is
higher than it. This requires two separate loops, each with its own
CONNECT statement, both nested within an outer loop that ranges
over all units in the cluster. Note that this is a case of making multiple
connections to a single input line. We don’t have to know how many
connections there are because within the method there is code that will
examine all connections on this line to decide if the unit has won. This
feature is very useful and can be applied whenever a method needs to
know the value of an input but not its originating unit.

We have now specified all the features of a plan that describes the
basic competitive learning network. Of course, this plan can only be
used to construct a running model if we have available the appropriate
method programs. Since these are ordinary computer programs written
in LISP, we won’t analyze them in detail. The code for the methods
used here is given in the appendix of this chapter, which shows a com-
plete plan for a simulation of competitive learning. It is worthwhile,
however, to see how the method language accesses the inputs and out-
puts of the units about which we have been saying so much in the
development of the plan.
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The only difference between the arguments to a P3 method and the
arguments to a normal LISP function is that the P3 arguments are
accessed by special access functions. For example, to get the value of a
parameter, the following form is used:

(read-unit-parameter flag)

This form returns the current value of flag. To read an input from an
array of input lines the following form can be used:

(read-input (Cij))

In this case the value of "i" and "j" must be bound at the point in the
program where an expression using them occurs. There are
corresponding forms for reading terminal parameters, setting outputs,
and setting parameter values.

The P3 Simu}ation System

The P3 simulation system is the environment in which models in P3
are simulated. It is highly interactive and makes extensive use of the
window system and the "mouse" pointer of the Symbolics 3600. The
first step in simulating a model is to compile the methods and construct
the plan. The constructor is a program similar in purpose to a compiler.
However, the input is a P3 description of a network, rather than a com-
puter language description of a program. The output of the constructor
is a data structure containing all the relevant information about the net-
work that can be used by the P3 simulation system to run a simulation
of the model. As with any form of computer programming, a model
must be debugged before it can be simulated. There are really two
levels of debugging for network models. First, the user wants to know
that the network that has been created is connected up in the way
intended. Once this has been established, the actual functioning of the
network can be debugged. P3 provides tools for both of these phases
of the debugging process.

To check the correctness of connections, P3 provides a display that
shows each unit in the model at its location in P3 space. The user
interacts with this display with a mouse pointing device. Clicking on a
particular unit provides a menu that enables the user to trace out any of
the connections emanating from that unit. This facility for tracing out
connections, one at a time, has proved much more useful than simply
presenting a user with the wiring diagram of the model. Once the user
is convinced that the constructed model corresponds to the envisioned
network, the job of analyzing the function of the model can begin.
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Analyzing the running of a complex simulation is a demanding task.
It is in this analysis that we have found that all the features of the P3
system come together and begin to justify their existence. Because
every object in the model has a location in P3 space that corresponds to
the user’s mental image of the network, the simulation system can
display values representing the state of the system at locations on the
screen that have meaning to the user. This means that during the
course of a simulation, meaningful patterns of P3 variables can be
displayed. This approach is widely used in analyzing the function of
parallel systems. What P3 has done is to standardize it and relieve the
user of the need to implement the details of this display strategy for
each new model.

In the current implementation of P3, each object in the model is
represented at its designated location by a small rectangular icon. By
the use of a mouse pointer driven menu system, the user can assign the
icon representing a unit the variable whose value is to be displayed.
Thus, for example, the icons representing the input terminals of a clus-
ter unit in our example can be assigned either the value of the input to
that terminal or the value of the weight on that terminal. These assign-
ments can be made or changed at any time during a simulation run.
They can be set to be updated continually as a simulation proceeds, or
they can be examined in detail when the simulation is temporarily
interrupted. The current P3 implementation displays the relevant state
values at two possible levels of precision. The approximate value of the
state value is indicated by the degree of darkening of the icon. There
are five levels of intensity. Their range is under user control and can
be changed at any time. This enables the user to adjust the range so
that the difference between the lightest and the darkest icons will
optimize the information content of the display. There is also a high
precision display that permits the exact value of any P3 variable to be
examined.

Figure 1 shows how the screen of the Symbolics 3600 looks after 588
P3 cycles of simulation of a competitive learning model with a 6 x6
stimulus array and a dipole stimulus. There are six windows displayed
and each shows a different aspect of the simulation. Window A shows
the three units in the model at their respective positions in P3 space.
The upper narrow rectangle is the pattern generator. It is not displaying
any value. The lower two rectangles represent the two cluster units.
They are displaying the approximate value of their outputs by the size
of the contained black rectangle. Clearly the unit on the left has a
lower output value than the one on the right. Window B shows the
output of the pattern generator unit, which was called "stimulus” in the
plan. The lines form a square array because that is the way they were
specified in the plan. The two dark rectangles show the current dipole
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FIGURE 1. Display of Symbolics 3600 during P3 session. The mouse arrow is pointing
to the "simulate” command in the upper left. Clicking a mouse button will start simula-
tion.

pattern. Windows C and D show the approximate values of the weights
on the input line arrays of each of the two cluster units. The fact that
competition has pretty well separated the weights along a horizontal line
is clearly visible from these two windows. Windows E and F are "strip
chart" records that produce a graphical record of any P3 variable. The
strip charts have been set up to record the value of a pair of
corresponding weights, one from each unit in the cluster. Time
increases to the right so the initial state is at the extreme left side of
the strip charts. It is interesting to note that one of the weights became
dominant for a while but at later times seems to have lost its
dominance.
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In addition to the special functions of P3, the user also has available
all the powerful program development tools of the Symbolics 3600.
For example, suppose that the user believes that an observed bug is
due to an error in the code of a method. It is possible to interrupt the
simulation, go directly to the editor buffer that contains the method
code, alter it, recompile the alteration, and then return to the simula-
tion at exactly the point at which it was interrupted. This facility has
proved invaluable in debugging.

As we work with the P3 simulation system, we constantly find new
features that are useful in the analytical process. We view the imple-
mentation of each of these new analytical techniques as analogous to
adding a new instrument to a laboratory. Thus, we call the features of
P3 that enable the user to analyze a functioning model "instruments."
Each of these instruments can be called up at any time. Every instru-
ment has a window that displays the results of the instrument’s
analysis. For example, one instrument is the "strip chart recorder"
used in Figure 1. The strip chart recorder has a probe that can be con-
nected to any particular state variable of any unit. Since multiple
instances of any instrument can be created, any number of strip charts
can be running at the same time. In addition to instruments that
display the values of variables, we also envision a class of instruments
that record these variables. Clearly, it is very important for a serious
modeler to be able to record the results of a simulation. The instru-
ment concept will enable the modeler to record just those variables
required. This is a very important feature since simply recording the
entire state of the model as it develops in time would produce an
overwhelming flow of data.

Performance

So far we have said nothing about the speed at which simulations
run. This is a problem of tremendous importance for PDP models. Big
models inherently run slowly on serial computers. Generally, parallel
programming systems like P3 stress ease of model definition and simu-
lation. How much penalty must we pay in model performance? There
is always some performance penalty for a general-purpose system. For
any given piece of computer hardware, it is generally possible to write a
specially tailored program that will run some particular model faster
than any general system will run it. However, this special tailoring
itself takes considerable time and makes it much harder to change the
details of the model structure. Thus, we envision that programs like P3
will be useful in the early stages of model development when the size
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of the models are modest and there is frequent need for changes in
structure. When the structure and parameters of a model have been
decided upon and it is necessary to scale the model up and have it run
extremely rapidly, it may in some cases be advantageous to write a spe-
cial program to implement the model.

The general-purpose systems, however, have several things going for
them with respect to model performance. First of all, since the data
structure has the same form for models, it is possible to put a lot of
effort into optimizing running speed for the particular hardware on
which the system is implemented. This optimization only has to be
done once rather than for each model. A second way in which general-
purpose systems can improve performance is through the use of
special-purpose hardware. The models generated by the P3 system are
inherently parallel models and map well to some parallel computer
architectures. The one way to get blinding speed from parallel models
is to implement real parallelism in parallel computers. In some cases,
array processors can also be highly beneficial. Since all the P3 models
are of the sarhe sort, a constructor can be made that will provide the
appropriate data structures to run any P3 model on these kinds of
hardware. This will make the hardware transparently available to the
user of systems like P3. This, we believe, is a significant plus, since it
is notoriously difficult to program any particular application for array
processors or truly parallel hardware.

In conclusion, the P3 system illustrates some of the general issues
that arise in any attempt to simulate PDP models, and provides a
number of useful tools that can greatly facilitate model development.
General-purpose systems like P3 have promise for speeding and facili-
tating the programming of parallel models and the ultimate ability to
run these models very fast using specialized hardware.
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APPENDIX A

o P3 Plan for Competitive Learning
555 (NOTE the use of the "plan constant" and "include" statements.)
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;3R Dipole pattern generator ******x
(unit type dipole
parameters flag il j1 j1 i2 j2
outputs (d array i j)
include dipole-generator) . . . (see code file on p. 506)

;;.’******** Leaming unlt 0 ok ok o ok 2 ok ok
(unit type competitor
parameters p q flag
inputs (C array i j terminal parameters W)
G-A)
outputs (0-A)
include comp-learn) . . . (code on p. 504)

o o o 300 o 3 ok ok e ke 3 ok o ke Sk e o ok k3 3K 3k o 4 3 3 ok Sk 3 3K oK 3k 3 e s 3 3 3 3 e o 3K e ke e 3 3k ok o ke 3 o ok ok ok e o ook ok ok ok ok koK ok
2

39 Unit instances

o o o 230000 3 o 0 2 o 3 3l e 3 3K 3 3 o 3B e 3 ok ok ke 2 o 3k k3 ok Sk 3K ok ok ok sk ke 3k o 3 3 3k 3 s ok o A ok ok ok ok ke o e o ok e o ok ok o ok o o e o ok ok
299

(plan constant stimulus-size = 6) (plan constant cluster-size = 2)

oy rEeserer Dipole pattern generator******+*
(unit stimulus of type dipole
at (@000
outputs(d array (i Ostimulus-size) (j Ostimulus-size) linesat (@ i j 0)))
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oo o SRR KK K Learning units o ok ok e o ok ook

(unit cluster array (k 0 (- cluster-size 1)) of type competitor
at (@ (*1 (+ cluster-size 4)) (+ cluster-size 10) 0)
initialize (q = 0.05)
inputs (C array (i 0 (- stimulus-size 1)) (j 0 stimulus-size)))

o oo 0k 3ok ok ok 3K 3 3k 3K ok ok oK 3 3 3K 3k 3 66 3 ok 3 Sk 3k sk e ok ok o ok 3 ok 2 ok 3 3k e ok 2k 3k 3 e e 3 o o 3k ok A ok Rk e ok e ok ok sk ok o ok ok ok kok ok ok sk
19

3 Connections

o o o MRk o ok oK 2k ke 2 e o A ok e e ok ol e 3k e 3k ok 3 3 0 3K 2 ok sk 3 ok 3k ok 3k ok 3 2k e 3 ok ok sk ko ok 3K o e 3 3 2K ok 3 3k e Sk 3K 3 ok o ok o o 3 ok 3 ok ok
199

35 Frrreex Stimulus to both clusters ********
(for (k 0 (+ 1 k))
exit when (= k cluster-size) do
(for GO (+ 11)
exit when (= i stimulus-size ) do
(for GO (+ 1))
exit when (= j stimulus-size) do
(connect unit stimulus output d i j
to unit cluster k input Cij
terminal initialize
(W = (si:random-in-range
0.0 (// 2.0 (expt (+ stimulus-size 1) 2))))))))

s e Interconnect the clusters to implement competition *******x
(for (k0 (+ 1k))
exit when (= k cluster-size 1) do
(for GO (+ 1))
exit when (= j k) do
(connect unit cluster k output 0-A
to unit cluster j input i-A))
forG(+ k1D (+1}))
exit when (= j cluster-size 1) do
(connect unit cluster k output 0-A
to unit cluster j input i-A)))
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APPENDIX B

Competitive Learning: Methods

« oo 33k ok ke ok ok 3 3K s 2k b ok e ok ok e 3k ok %k 3K 3k 3k 3 2 3k ok 3 3k 3 o ok o o o oK ok 3k ok 3k 3k ok ok Sk 2K 3K ok ok e ok 3K ok ok 3k ok 3 3K ok 3k ok 3K 3K oK 3 ok ok oK oK ok ok

ERR]

999

Method for unit in cluster of competitive learners

» o o T2k 2 e o ok 3 o 2k ok 3 3 ok o sk 3 ok 3k 2k i ke 3 ok k3 3K ok 3K 3 3k 3 3 e e ok 3 3k sk i o ok ke e o ok ok o 3k ok ok ok ok ok ok ok ok ok ke ok ok 3k 3k 3K ok

77

method

(let ((imax-(input-dimension-n C 1))
(max (input-dimension-n C 2))
(win t)

(N 0))

;; FrrEeexk Is this a learning iteration? ********
(cond

o ok ok ok ook ok K 2 25 20 e o o ok ok
W No

;» Accumulate the weighted sum of the pattern inputs into
;; unit parameter p, and set the competition output p-A to
;» that value
((> (read-unit-parameter flag) 0)
(loop initially (set-unit-parameter p 0)
for i from 0 below imax do
(loop for j from 0 below jmax do
(set-unit-parameter p
(+ (read-unit-parameter p)
(* read-terminal-parameter (Cij) W)
(read-input (Cij))))))
finally (set-output o-A (read-unit-parameter p)))

;y ¥+ Elip the iteration-parity flag ********
(set-unit-parameter flag 0))
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o o 9k ok ok ok o 2k ok ek ook ok Rk
- Yes

;> Figure out whether this unit wins on this cycle. Winning
;; requires that this unit’s parameter p be greater than those
;; for the other units of this type. Those values are available
;; on the terminals of input i-A.

;; NOTE: On iteration 0, everything is 0, so no unit thinks it
;; wins, and hence all avoid learning.

(t

3, *reeexx Bind out whether we won ********
;; Win was initialized to t in the let at the top level of this method.
(for-terminals k of input i-A
(if (< = (read-unit-parameter p)
(read-input (i-A terminal k)))
(setq win nil)))
{when win

;3 Freeeerr Accumulate sum of all inputs into N ****ksx
;; This will become a normalizing constant.
(toop for i from 0 below imax do
(loop for j from 0 below jmax do
(setg N (+ N (read-input (Cij)))))

;; ********Compute new Weigh[s 33 3 2k ok K koK
;; But only if the total input was greater than 0.
Gf > NO0)
(loop with g-factor = (read-unit-parameter g)
for i from 0 below imax do
(loop for j from 0 below jmax do

33 ¥FFrexx Compute one new weight ********
(let* (old-weight
(read-terminal-parameter
(Cij) W)
(new-weight
(+ old-weight
(* g-factor
(- (// (read-input (Cij)) (float N))
old-weight)))))
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;» Update the terminal parameter to the new weight
(set-terminal-parameter

(Cij) W

new-weight))))))

s #Fekkees Lo the iteration-parity flag LTI ETS
(set-unit-parameter flag 1))))

v o 03K 2 ok 2K 3 e 3 0 3K 3k 3 ok ok S 3 ok ok 3 3 2 3 ok 38 3k 3k 3k 24 o ke 3k ¢ o 3k 3k 3 2 3K k3 3K o oK 3k ok el ok 3 ok o sk o 3k e ok e 3K ok 3k o ok o ok oK ok 3k oK
999

3 Dipole pattern generator method

o oo 305k 3 ok 2k 3k 3k ok 2k 3 ok e S 3k 3k 3k ke oK 3 o o 2 3k ke ok 3k 3k 3K ok ke e e o 3 3k 3 3 3K 3k 3 3k 3k 3K 3k 3 38 3 ok 3K ok 3 3 2 2 3 e 3k R 3k ok 3 ok ke ok ok oK 3K oK
299

method

¥rxeerxx Do we need a new pattern on this iteration? ****e***
(cond

5, ¥*¥xexir Yes. Erase old dipole and make new one. ********
((< (read-unit-parameter flag) 1) :
(let (( imax (- (output-dimension-n d 1) 2))
( jmax (- (output-dimension-n d 1) 2)))
(set-output (d (read-unit-parameter i1) (read-unit-parameter i1)) 0)
(set-output (d (read-unit-parameter i2) (read-unit-parameter i2)) 0)
(set-unit-parameter i1 (+ (random imax) 1))
(set-unit-parameter j1 (+ (random jmax 1))
(cond ((> (random 2) 0.5
(cond ((> (random 2 0.5)
(set-unit-parameter i2 (+ (read-unit-parameter i1) 1)))
(t
(set-unit-parameter i2 (- (read-unit-parameter il 1))))
(set-unit-parameter i2 (read-unit-parameter j1)))
(t
(cond ((> (random 2) 0.5)
(set-unit-parameter i2 (+ (read-unit-parameter j1) 1)))
(t
(set-unit-parameter i2 (- (read-unit-parameter j1) 1))))
(set-unit-parameter i2 (read-unit-parameter i1))))
(set-output (d (read-unit-parameter i1) (read-unit-parameter j1)) 1)
(set-output (d (read-unit-parameter i2) (read-unit-parameter j2)) 1)
(set-unit-parameter flag 1)))
(t

(set-unit-parameter flag 0)))



