CHAPTER 1 1

An Analysis of the Delta Rule
and the Learning of Statistical Associations

G. O. STONE

The development of parallel distributed processing models involves
two complementary enterprises: first, the development of complete
models with desired operating characteristics; and second, the in-depth
analysis of component mechanisms and basic principles. The primary
objective in modeling is the development and testing of complete sys-
tems. In general these models are complex and their behavior cannot
be fully deduced directly from their mathematical description. In such
cases, simulation plays an important role in understanding the proper-
ties of a model. Although simulations are useful in determining the
properties of a specific model, they do not, on their own, indicate how
a model should be modified when a desired behavior is not achieved.
An understanding of basic principles and a collection of potential
mechanisms with known properties provide the best guides to the
development of complex models.

This chapter provides an analysis of one of the most popular
components—namely, the error correction learning rule developed by
Widrow and Hoff (1960). This learning rule which has been analyzed
and employed by a number of authors (Amari, 1977a, 1977b;
Kohonen, 1974, 1977, Sutton & Barto, 1981), has been called the
Widrow-Hoff rule by Sutton and Barto (1981) and is generally referred
to as the delta rule in this book. This rule is introduced in Chapter 2,
discussed extensively and generalized in Chapter 8, and employed in
models discussed in a number of chapters—most notably Chapters 17
and 18. In the present chapter I show how concepts from linear algebra
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and vector spaces can provide insight into the operation of this learning
mechanism. I then show how this mechanism can be used for learning
statistical relationships between patterns, and finally show how the delta
rule relates to multiple linear regression. Concepts from linear algebra
are used extensively;, for explanation of these concepts, especially as
applied to PDP models, the reader is referred to Chapter 9.

The Delta Rule in Vector Notation

The delta rule is typically applied to the case in which pairs of pat-
terns, consisting of an input pattern and a target output pattern, are to
be associated so that when an input pattern is presented to an input
layer of units, the appropriate output pattern will appear on the output
layer of units. It is possible to represent the patterns as vectors in which
each element of the vector corresponds to the activation value of a
corresponding unit. Similarly, we can represent the connections from
input units to the output units by the cells of a weight matrix. For
linear units, the output vector can be computed by multiplying the
input vector by the weight matrix. In the present chapter our analysis
is restricted to linear units. (See Chapter 8 for a discussion of the delta
rule for nonlinear units.)

Now we imagine a learning situation in which the set of input/output
pairs are presented (possibly repeatedly) to the system. If the set of
input vectors are orthogonal (i.e., at right angles to each other), a sim-
ple pattern associator can be constructed using a product learning rule
in which the change in weight w; following the presentation of pattern
p is given by the product of the ith input element and the jth target
element, that is,

A w

pWii = Lpjlpi

where 1,; represents the value of the desired or target output for the
Jjth element of pattern p and Ip; is the activation value of the ith ele-
ment of the input for that pattern.! In vector notation, we can write the
change for the entire weight matrix as

A, = tpipT

! Note this is essentially the Hebbian learning rule. In the Hebbian rule it is assumed
that the product of the activation levels of the input and output units determine the
weight change. If we assume that the activation of the output unit is entirely determined
by the target input the product rule described here is identically the Hebbian rule.
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where, as usual, bold letters indicate vectors, uppercase indicates
matrices and the superscript T indicates the transpose of a vector or
matrix. This learning rule was described in some detail in Chapter 9°
and that discussion will not be repeated here. It was shown there that
if the input vectors are normalized in length so that I, i, =1 and are
orthogonal, the product rule will, after the presentation of all of the
input/output patterns, lead to the following weight matrix:

P
W=2t,il
p=1
If the input vectors are orthogonal, there will be no interference from

storing one vector on others already stored so that the presentation of
inputi, will lead to the desired output t - that is,

Wi, =t,

for all patterns p from 1 to P. Unfortunately, we cannot always insure
that the input vectors are orthogonal. Generally, the storage of one
input/output pair can interfere with the storage of another and cause
crosstalk. For this case a more sophisticated learning rule is required.
Fortunately, as we saw in Chapter 8, the delta rule is a rule that will
work when the input patterns are not orthogonal. This rule will pro-
duce perfect associations so long as the input patterns are merely
linearly independent (see Chapter 9) and will find a weight matrix which
will produce a "least squares" solution for the weight matrix when an
exact solution is not possible (i.e., the input patterns are not linearly
independent). In matrix notation the rule can be written as

W(n)=W(n—1) +n8(n)i’ (n) (1

where W (1) is the state of the connection matrix after n presentations,
i(n) is the input presented on the nth presentation, n is a scalar con-
stant which determines the rate of learning, and & (n) is the difference
between the desired and actual output on trial n, such that

8(n)=t(n)—W(n——1)li(n) 2

where t(n) is the desired output (or targer) for presentation n and
W(n—1)i(n) =o0(n) is the output actually produced on that presenta-
tion. W(0) is assumed to be the matrix with all zero entries. In other
words, the weight matrix is updated by adding the outer product of the
response error and the input. (See Chapter 9 for discussion of outer
product.) Proofs concerning the convergence of this recursion to the
optimum weight matrix (in the sense outlined above) are provided by
Kohonen (1974, 1977, 1984).
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The Delta Rule in Pattern-Based Coordinates

To this point we have discussed the delta rule for what Smolensky
(Chapter 22) has called the neural or unit level of representation.
Before proceeding, it is useful to consider the form that the rule takes
in the conceptual level of representation in which there is one vector
component for each concept. In general, the input and output patterns
correspond to an arbitrary set of vectors. Interestingly, it is possible to
show that the delta rule applies only to the "structure" of the input and
output vectors and not to other details of the representation. In a
linear system, it is only the pattern of correlations among the patterns
that matter, not the contents of the specific patterns themselves.

We can demonstrate this by deriving the same learning rule following
a change of basis from the unit basis to the pattern basis. Since a detailed
discussion of the process whereby bases can be changed is given in
Chapter 9 and, in more detail, in Chapter 22, I will merely sketch the
concept here. Each pattern over a set of units corresponds to a vector.
If there are N units, then the vector is of dimension N. In the unit
basis, each element of the vector corresponds to the activation value of
one of the units. Geometrically, we can think of each unit as specify-
ing a value on a dimension and the entire vector as corresponding to
the coordinates of a point in N-dimensional space. Thus, the dimen-
sions of the space correspond directly to the units (this is why it is
called the unit basis). Now, a change of basis amounts essentially to a
change in coordinate system. This can be accomplished through rota-
tion, as well as other linear transformations. Converting to the pattern
basis merely involves transforming the coordinate system so that the
patterns line up with the axes. Figure 1 illustrates a simple case of this
process. In Figure 1A we give the geometric representation of the pat-
terns. Pattern 1, p;, involves two units, each with activation value +1.
Pattern 2, p,, has activation values <+1,~1>. The patterns described
in the unit basis are

Figure 1B shows the same two vectors, but now expressed with respect
to a new coordinate system, the partern coordinate system. In this case
the axes correspond to the patterns not the units. The vectors
corresponding to patterns 1 and 2 now become

S
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Key-target pairs and the key correlation structure /
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FIGURE 1. An example of conversion from unit-based coordinates into pattern-based
coordinates.

In general, conversion to a new basis requires a matrix P which
specifies the relationship between the new and old coordinate systems.
For each vector, p;, we write the new vector p*; as p*; = Pp,. If all of
the vectors and matrices of the original system are converted into the
new basis, we simply have a new way to describe the same system. For
present purposes we have two transformation matrices, one that
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transforms the input patterns into a coordinate space based on the input \

patterns, which we denote P;, and one that transforms the target pat-
terns into a coordinate space based on the target patterns, P,. In this
case, we have i*; = P,i; for the input vectors and t*;, = Pt; for the
target vectors. Moreover, since the output vectors must be in the same
space as the target vectors we have o*, =Pro,. We must also
transform the weight matrix W to the new basis. Since the weight
matrix maps the input space onto the output space, both transforma-
tions must be involved in transforming the weight matrix. We can see
what this transformation must be by considering the job that the weight
matrix must do. Suppose that in the old bases Wi = o for some input i
and output 0. In the new bases we should be able to write W*i* = o*.
Thus, W*P,;i =Pro and P7!W*P,;i =0 =Wi. From this we can
readily see that P7'W*P, = W and finally, we can write the appropriate
transformation matrix for W as

*=P,WP[L

We can multiply both sides of Equation 1 by P on the right and P!
on the left. This leads to

PrWP;!(n) =PrWP;1(n—1) + Prnd ()i (m)P7 |
which, by substitution, can be written as ' |

W# () = W* (1= 1) + m8* () P71 ()] P77, |
where

8*(n) =t*(n) — W*(n—1)i*(n). | (3

Finally, by rearranging we have

W*(n) = W*(n— )45 8* (n)i* (n)TC | 4

where the matrix C, given by C = (P;!)TP;!, is a matrix which holds
the correlational information among the original input patterns. To see
this, recall that we are changing the input patterns into their pattern
basis and the target patterns into their pattern basis. Therefore, the
vector i*; consists of a 1 in the jth cell and zeros everywhere else.
Thus, since i; = P7'i*;, we see that P;'! must be a matrix whose jth
column is the jth original input vector. Therefore, C is a matrix with
the inner product of the input vectors i; and i j occupying the ith row
and jth column. This inner product is the vector correlation between
the two patterns.
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We have finally constructed a new description which, as we shall see,
allows many insights into the operation of the delta rule which are nor-
mally obscured by the internal structure of the patterns themselves.
Instead, we have isolated the critical interpattern structure in the
matrix C.

One advantage of this new description is that the output the system
actually produces—even when it does not match any target exactly—can
easily be interpreted as the weighted average of the various target pat-
terns. The value in each cell of the output vector is the coefficient
determining the amount of that target in the output. In this case the
sum squared error for input/output pattern p, given by

Ep = z(t*_/ - 0‘])21
J

measures the error directly in terms of the degree to which each target
pattern is present in the output, rather than the degree to which each
unit is present. It should be noted, of course, that this new pattern-
based error function is related to the old unit-based error by the same
change of basis matrices discussed above.

It might be observed further that under this description, the perfect
associator—which results when the input and output patterns are
linearly independent—will be the identity matrix, I, in which the main
diagonal has a 1 in each entry and all other entries are 0. It should be
noted, however, that the preceding analysis of this new description has
assumed the input and target output patterns were linearly independent.
If they are not, no such pattern basis exists. However, there is an
analogous, but somewhat more complex, development for the case in
which these vectors cannot form a legitimate basis.

I will now demonstrate some of the useful insights which can be
gained through this analysis by comparing the unit and pattern basis
descriptions for a sample learning problem. Figure 2A gives the
representations of the four input/output patterns to be learned in the
unit basis. Figure 2B gives the representations in the pattern basis
along with the correlation matrix C required in the new description.
These patterns are all linearly independent and were generated under
the constraint that each pattern has unit length and that the input pat-
terns have the correlation structure given in Figure 2B. Clearly the
description given in the pattern basis is simpler.

Figure 3 shows thé states of W and W* after one, four, and eight
sweeps through the four input/output patterns. While inspection of the
unit-based representations gives no direct information about the degree
of learning and crosstalk between targets, this information is explicit in
the pattern-based representation. For example, one can discern that
the error for the pairs with highly correlated inputs (pairs 1 and 2) is



11. THEDELTA RULE 451
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FIGURE 2. Comparison of the unit-based and pattern-based descriptions of a sample
learning problem.

greater at each stage than that for the pairs with slightly correlated input
patterns (pairs 3 and 4). Moreover, there is no intrusion of targets
associated with orthogonal inputs. In addition, the intrusion of targets
from correlated pairs is least for the pair most recently learned, pairs 2
and 4. (The patterns were presented in order 1-2-3-4 on each sweep.)
Finally, it is clear from inspection of the pattern-based weight matrix
that after eight sweeps the patterns have been almost perfectly learned.

The pattern-based formulation also allows a more detailed analysis of
the general effect of a learning trial on the error. We can define the
"potential error” to pattern j, §;* as
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Pattern Based:
039 -0.18
0.90 1.20
0.00 0.00
0.00 0.00
Pattern Based:
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0.00 0.00
0.00 0.00
Pattern Based:
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FIGURE 3. Comparison of unit-based and pattern-based weight matrices after one,

msec=0.09
0.00 0.00
0.00 0.00
111 -0.06
0.30 1.20

msec=0.00
0.00 0.00
0.00 0.00
1.00 0.00
0.00 1.00

msec =0.00
0.00 0.00
0.00 0.00
1.00 0.00
0.00 1.00

and eight learning cycles.

Learning with g = 1.20

AFTER 1 Leaming Cycle

-0.12
-0.03
0.57
-0.04
0.30
0.05

Unit Based:
002 010
-0.59  0.00
0.08 035
-023 007
0.17 -0.59
-0.17 020

AFTER 4 Learning Cycles

-0.15
-0.07
0.59
-0.05
0.36
0.06

-0.18
0.02
0.13
0.16

-0.42
0.66

Unit Based:
0.07 0.01
-0.57 -0.08
-0.30 0.11
-0.10 0.14
-0.47 -081
016 0.53

AFTER 8 Learning Cycles

-0.15
-0.07
0.59
-0.05
0.35
0.06

-0.18
0.02
0.13
0.16

-0.43
0.66

8','*(71) = t*j —W*(n)i*j.

Unit Based:
0.07 0.01
-0.57 -0.08
-0.32 0.10
-0.10 0.14
-0.49 -0.82
0.17 0.54

Substituting for W* (n) from Equation 1, gives

msec=0.049
<001 -0.42
012 -0.29
0.10 0.52
0.05 -0.14
-0.04 0.94
0.06 0.20
msec=0.00
-0.04 -034
0.10 -0.28
0.16 0.50
002 -0.15
0.08 0.86
0.02 0.09
msec=0.00
-0.04 -0.34
0.10 -0.28
0.16 0.50
002 -0.15
0.08 0.85
0.02 0.10

8;*(n) = t*% — W*(n—1)i; — n8, **[Ci*

-0.35
-0.18

0.10
-0.13
0.81

-0.31
-0.20
-0.29
0.17
-0.53
101

-0.31
-0.20
-0.30
0.18
-0.54
1.01

0.12
-0.40
0.33
-0.23

-0.42

0.13
-0.41
0.13
-0.16
-0.12
-0.19

0.13
-0.41
0.12
-0.15
-0.13
-0.18

four,

&)

where k is the index of the pattern presented on trial n — 1. Simplify-
ing further, we have the recursive form:

8;*(n) =8;*(n—1) — 18, * (n — Di*/Ci*,.

(6)

s — e,
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Since the vectors i*; and i*J consist of a 1 and the rest zeros, the
entire expression i*/Ci* ;j reduces to ¢;, the entry in the kth row and ;
Jth column of matrix C. Thus, Equation 6 becomes simply

8;*(n) —8;*(n—1) = =8, *(n—1). @)

In other words, the decrease in error to the jth input/output pair due
to a new learning trial is a constant times the error pattern on the new
learning trial. The constant is given by the learning rate, 7, times the
correlation of the currently tested input and input from the learning
trial. Thus, the degree to which learning affects performance on each
test input is proportional to its correlation with the pattern just used in
learning. Note that if 5 is small enough, the error to the presented pat-
tern always decreases. In this case Equation 7 can be rewritten

ak*(n)=6k*(n_1)(l_77ckk)-

Recalling that ¢, is given by i]i,, the length of the kth input vector,
we can see that the error will always decrease provided |1 — »i/i,| < 1.

To summarize, this exercise has demonstrated that a mechanism can
often be made more conceptually tractable by a judicious transforma-
tion. In this case, expressing the possible input and output representa-
tions in the appropriate pattern bases clarified the importance, indeed
the sufficiency, of the input "structure” (i.e., the pattern of inner pro-
ducts among the input vectors) in determining the role of the input
representations in learning. Furthermore, converting the weight matrix
into a form from which the errors at any stage of learning can be read
directly allowed us to "see" the learning more obviously. The result
has been a clearer understanding of the operation of the delta rule for
learning.

STATISTICAL LEARNING

In this section we extend our analysis of the delta rule from the case
in which there is a fixed target output pattern for each input pattern to
the case in which sets of input patterns are associated with sets of out-
put patterns. We can think of the sets as representing categories of
input and outputs. Thus, rather than associate particular input patterns
with particular output patterns, we analyze the case in which categories
of input patterns are associated with categories of output patterns. This,
for example, might be the case if the system is learning that dogs bark.
The representation for dog might differ on each learning trial with
respect to size, shagginess, etc. while the representation for the bark
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might vary with regard to pitch, timbre, etc. In this case, the system is
simultaneously learning the categories of dog and bark at the same time
it is learning the association between the two concepts.

In addition, when we have category associations, statistical relation-
ships between the input and output patterns within a category can be
picked up. For example, the system could learn that small dogs tend to
have high-pitched barks whereas large dogs may tend to have low-
pitched barks.

In order to analyze the case of statistical learning, we now treat the
input/output pairs of patterns as random variables. In other words,
each time pattern j; is selected as input, its entries can take different
values. Similarly, the target output for pair j, ¢ will have variable
entries. The probability distributions of these random variables may
take any form whatsoever, but they are assumed not to change over
time. Moreover, we can consider the entire set of input/output pairs to
form a single probability distribution. We then assume that on each
trial an input/output pair is randomly sampled from this overall proba-
bility distribution.

We proceed with our analysis of statistical learning by computing the
expected or average change in the weight matrix following a presenta-
tion. From Equations 1 and 2 we get the following form of the delta
rule:

Wn)=Whr-1)+qltl) —Whr-1iMkx)]iT k).
Simplifying and taking the expected value of each side we have
|
EW@)]=E[W&—~DIA - nEl[iT (1)) + nElt(n)i (n)].1(8)

Note, we may take

4

EWrn=1im)iT(n)] = EIW@—DIEL(M)iT (1)) \

since each trial is assumed to be statistically independent of all preced-
ing trials, upon which W(n— 1) depends. Letting R; = E[ii” ] be the
pattern of statistical correlations among the input patterns and
R;o = E[ti” ] be the statistical correlations between the input and tar-
get patterns, we can rewrite Equation 7 as

EIWm)]1=EWm-1DIT-7nR;) + nR .

If we solve the recursion by replacing W (n — 1) with an expression in
terms of W(n — 2) etc. down to W (0) and assuming that W (0) = 0, the
matrix of all 0 entries, we can write the expected value of the weight
matrix after n trials as
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EIW() 1= 1R, 3 (1 - nR, ). ©)

j=0

Fortunately, in the limit, this matrix reduces to a simpler form. To see
this, we must introduce the concept of the pseudo-inverse of a matrix.
This is a matrix which, unlike the inverse, is certain to exist for all
matrices, but which has a number of properties in common with an
true inverse. (See Chapter 9 for a discussion of matrix inverses and the
conditions under which they exist.) In particular, it is the true inverse,
if the true inverse exists. The pseudo-inverse of a matrix B, designated
BT, is given by

B*=7BTY (I1-nBBT)
i=1
provided n is sufficiently small. (See Rao & Mitra, 1971, and
Kohonen, 1977, 1984, for a full discussion of the pseudo-inverse.)

In order to convert Equation 9 into a form that includes the expres-
sion for the pseudo-inverse, we observe that since the square matrix
R, = E[ii7] has independent rows and columns, we can select a
matrix P such that PPT = R, and P also has linearly independent rows
and columns. Since the generalized inverse of P, P*, is also the true
inverse of P, it satisfies (P7)"'PT =1. Thus, taking the limit as
n—oo of Equation 9 and substituting P, we can write

ImE[W@)]1=E[W,1=R;p(PT) IPTY. (1 — nPPT )/]. 10
n—oe "’1

Now, by substituting in for the pseudo-inverse of P and simplifying we
get

E[ww]=R10(PT)—1P+=R10(PPT)_1=R10R1_I- an

Since the rows and columns of R; are linearly independent, R;! = Rf.
So we finally get

EIW.1=RyR}. 12)

Now we wish to show that, after training, the system will respond
appropriately. Without further restrictions, we can demonstrate a
minimal appropriateness of the response, namely, we can show that
E[W.i]l= E[t]. In other words, we can show that the mean output
of the system, after learning, is the mean target. Since the test trials
and learning trials are statistically independent we can write

E[W.il=E[W,IE[i]
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Now, substituting in from Equation 9 we have
EW.il=R,R}EL]=EtiTGIT)TIEL ]

Although it is not generally true that (BC )* = C*B™, this relation does
hold forB =i and C =i, wherei is a column vector. Thus, we have

ElW. il=E[tG*)T3{4))

Finally, since i has only one column, its columns are linearly indepen-
dent andifi = 1. We have therefore obtained the desired result.

Thus far we have only shown that the mean response to inputs is
equivalent to the mean of the target patterns. This result says nothing
about the appropriateness of the response to a particular pattern.
Ideally we would want the expected response to a particular pattern to
yield the expected value of our target given the input. We can show
that the input will produce this result as'long asi and t are distributed
normally with zero means. Although this seems to be a strong assump-
tion, it is not a difficult situation to obtain. First, we can easily arrange
that the input patterns have zero means by simply having a bias feeding
into each unit equal to minus the mean of the value for that cell of the
pattern. This is not especially difficult, but we will not dwell on the
process here. (See Chapter 8 for a discussion of biases and the learning
of biases.) Suffice it to say that it is not very difficult to convert a set of
input vectors into a set of patterns with zero mean.

The requirement of normal distributions is often not as restrictive as
it appears. When input patterns being associated are themselves the
output of a linear system, each entry in the pattern will be a linear com-
bination of the original input’s entries. If the patterns have large
dimensionality (i.e., there are many components to the vectors), one
obtains an approximation to an infinite series of random variables. A
powerful central-limit theorem due to Lyapunov (Eisen, 1969, Ch. 13)
shows that such a series will converge to a normal distribution so long
as several weak assumptions hold (most importantly, the means and
variances of each random variable must exist and none of the random
variables may be excessively dominant).

Under these conditions, it can be shown that the expected value of
the target t given the input i, takes the form E[t]i]l=R,oR;!i
(Meditch, 1969, chap. 3). Since E[W. ]=R;oR;”!, we have shown
that

EIW.il=Elt|i], 13)

so that after a sufficient number of learning trials, the law of large
numbers and the convergence of the delta rule learning process imply
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that, given a particular input, the system will produce an output equal
to the average of the targets paired with that input. In this sense, sys-
tematic covariation of input/output pairs will be learned.

The Delta Rule and Multiple Linear Regression

Some readers may have already noticed the similarity of the learning
task we have been analyzing to the problem encountered in multiple
linear regression. In a linear regression problem the objective is to
predict, to the degree possible, one variable, say y, from a set of vari-
ables x. In these problems we typically wish to find a set of coeffi-
cients, b, such that

_f’j = b0x0j+b1x1j+b2x2j R b,,x,,j = bTXj

(where x; is taken to be 1) and the sum-squared error

30, - 3)?

Jj=1

is minimized. This is precisely the problem that the delta rule seeks to
solve. In this case, each element of the target vector for input/output
pair (p t,) is analogous to a to-be-predicted observation y;; our predic-
tion variables x; are analogous to our input vectors i,; our regression
coefficients b correspond to a row of the weight matrix W; and the
intercept of the regression line, b,, corresponds to the bias often
assumed for our units (cf. Chapter 8). In our typical case the target
vectors have many components, so we are simultaneously solving a
multiple regression problem for each of the components of the target
vectors. Now, the standard result from linear regression, for zero-mean
random variables, is that our estimate for the vectorb, b is given by

A

b= (XTX) X7y
where X is the matrix whose columns represent the values of the pred-
ictors and whose rows represent the individual observations. (Again,

we take the first column to be all 1s.) Now, note from Equation 12
that the delta rule converges to

EIW, 1= (ELTiDYELTt].
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This equation is the strict analog of that from linear regression theory.?
If we assume that each output unit has a bias corresponding to the
intercept by of the regression line, we can see that the delta rule is, in-
effect, an iterative method of computing the best, in the sense of least
squares, linear regression coefficients for our problems.

SUMMARY

To summarize, this chapter has shown that close examination of the
delta rule reveals a number of interesting and useful properties. When
fixed patterns are being learned, the rule’s operation can be elucidated
by converting from a unit-based description to a pattern-based descrip-
tion. In particular, the analysis showed that the correlations between
the input patterns, and not the specific patterns used, determined their
effect on the learning process. Thus, any alteration of the specific
input patterns that does not alter the correlations will have no effect on
learning by a linear delta rule. It was also shown that expressing the
inputs and outputs in terms of the patterns being learned facilitated
analysis of the learning process by allowing one to read directly from
the output produced the degree to which each target was present in the
output generated by a given input pattern.

When the patterns being learned are variable, it was noted that the
final weight matrix could be expressed simply in terms of the inter-
correlations among the input patterns, R;, and the correlations between
the ‘input and output patterns, R,,. It was also shown that when
several reasonable requirements for the distribution of the input/output
random variables are met, the delta rule will learn the pattern of covari-
ation between the inputs and targets. Finally, we showed that the delta
rule carries out the equivalent of a multiple linear regression from the
input patterns to the targets. Those familiar with linear regression
should conclude from this both the power of the rule and its
weaknesses. In particular, wherever a linear regression is insufficient to
provide a good account of the relationship between input and target pat-
terns, the system will perform poorly. The solution to this problem is
to have nonlinear units and intermediate layers of hidden units.
Chapter 8 is a detailed discussion of the generalized delta rule and its
application to these situations.

2 Actually, there is a slight difference in convention between our development and that
typical of linear regression. In our case, the stimulus vectors are the column vectors,
whereas in linear regression the predictor variables are the rows of the matrix X . Thus
this equation differs by a transposition from Equation 12. This has no consequences for
the points made here.
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The preceding discussion does not, by any means, provide a com-
plete analysis of the delta rule. Rather, it illustrates two important
ideas. First, that a basic principle (in this case, the use of pattern-
based, rather than unit-based representations) can provide valuable
insights into the operation of a useful mechanism; and second, that the
analysis of component mechanisms which were designed for one use
can often reveal new applications.



