/
CHAPTER]. O

The Logic of Activation Functions

R. J. WILLIAMS

The notion of logical computation, in some form or other, seems to
provide a convenient language for describing the operation of many of
the networks we seek to understand. Digital computers are built out of
such constituents as AND and OR gates. Feature-detecting neurons in
biological sensory systems are often idealized as signaling the presence
or absence of their preferred features by becoming highly active or
inactive, respectively. It seems a relatively simple extension of this
concept to allow the activity of units in the network to range over some
interval rather than over just two values; in this case the activity of a
unit is regarded as signaling its degree of confidence that its preferred
feature is present, rather than just the presence or absence of this
feature. There are several ways one might attempt to formalize this
degree-of-confidence notion. For example, if the activation values
range over the closed unit interval [0,1], one might treat such an
activation value as a conditional probability; alternatively, it might be
viewed as a measure of truth in some unit-interval-valued logic, such as
fuzzy logic (Zadeh, 1965).

There is at least one alternative to the notion of activation as degree
of confidence which sometimes provides a convenient language for dis-
‘cussing the role of, for example, neural feature detectors in sensory
systems. In this view, the activation of a unit encodes (within finite
limits) the amount of its preferred feature present. This rival view
seems advantageous particularly when the computation performed is
described in the language of linear systems or linear signal processing;

424 FORMAL ANALYSES

examples of this are the concepts of spatial filtering and spatial Fourier
analysis in the visual system and the concept of correlational processing
in matrix models of associative memory (Kohonen, 1977). Chapter 9
describes the relevant mathematics for this approach, that of linear
algebra. ‘

This chapter explores some ideas motivated by the first of these two
views of a PDP unit’s computation (i.e., as some generalization of the
notion of a Boolean function), but the approach is implicitly based on a
very liberal interpretation of what this means. Essentially, the only
structure assumed for the set of confidence values is that it be a totally
ordered set with a Boolean interpretation of its endpoints. While a fully
developed mathematical theory along these lines would deal with those
properties that are invariant under any transformations preserving this
structure, the ideas presented here do not go this far.

The specific program to be embarked upon here is probably best
described as an exploratory interweaving of several threads, all related
to these notions of logical computation and their potential applicability
to the study of activation functions. First, the point of view is taken
that any function whatsoever is a candidate for being an activation
function. From this perspective, the traditional linear and thresholded
linear activation functions may be viewed as very isolated examples
from a much larger range of possibilities. Next, several ways to shrink
this vast space of possibilities are suggested. One way proposed here is
the imposition of a constraint based on the requirement that the notion
of excitatory or inhibitory input be meaningful. Another way is the
introduction of an equivalence relation on activation functions based on
invariance under transformations preserving the logical and ordinal
structure. Finally, an investigation is carried out to determine just
where certain familiar types of activation functions, built out of the
more traditional ingredients such as additive, subtractive, and multipli-
cative interactions among input values and weights, fit into this
scheme. As a by-product of this development, some elementary results
concerning implementation of Boolean functions via real-valued func-
tions are also obtained.

This last aspect is closely related to what is historically one of the
oldest formal approaches to the theory of neural computation, in which
neurons are treated as Boolean devices. This approach was pioneered
by McCulloch and Pitts (1943); an introductory overview of this whole
subject can be found in the text by Glorioso and Coldn Osorio (1980).
An important influence on much of the work done in this area has
been the perceptron research of Rosenblatt (1962; Minsky & Papert,
1969).

In what follows, several simplifying assumptions will be made. The
first is that the range of values over which each input to a unit may

10. ACTIVATION FUNCTIONS 425

vary is the same as the range of values over which the output of the
unit (its activation) may vary. Another is that time may be ignored as a
variable. The activation function of a unit will be taken to be a func-
tion that computes the output of the unit (at a fixed but unspecified
time) as a function of its inputs (at a presumably slightly earlier but
unspecified time). Thus, given a unit with 7 inputs whose activation
values range over the set A, the activation function « for this unit is
just a function from A" (the set of ordered n-tuples of elements of A)
to A, denoted o :A"—A..

In order to avoid cluttering the presentation, detailed proofs of the
results have been omitted; in their place are short sketches indicating
the key steps. A more rigorous and abstract formulation of the basic
concepts introduced here, along with detailed proofs of the results, may
be found in Williams (1983)-

EXAMPLES OF ACTIVATION RULES

The following are some examples of activation functions from which
models have been constructed.

Example 1. A = {0,1} (the two-point set), a= fog, where g is
linear into R and f:R—A is a thresholding function. (The operator o
between two functions here denotes composition in a right-to-left
manner.) A unit using this activation function is called a threshold logic
unit or a linear threshold unit and is the basis of the simple perceptron
(Rosenblatt, 1962; Minsky & Papert, 1969).

Example 2. A = R, « linear (Kohonen, 1977).

Example 3. A =1 (the closed unit interval [0,1]), = fog, where
g is linear into R and f is nondecreasing into I. This is a commonly
used variant of Example 1. Let us call this a quasi-linear activation func-
tion. The function f is sometimes called a squashing function for obvi-
OUS reasors.

Example 4. A =1, a=fog, where f is nondecreasing into I and g
is a multilinear function into R of the form

g(xl, e ,x,,) = X1X3F X34+ - - +x,,_1x,,

(where n is assumed to be even). Such an activation function is sug-
gested by Hinton (1981b). Note that this is similar to Example 3

426 FORMAL ANALYSES

except that the coefficients have now become explicit inputs. This type
of activation function will be called a gating activation function because
the odd-numbered inputs gate the even-numbered ones (and vice-
versa).

Example 5. A =1, a=fog, where f is nondecreasing into I and g
is an arbitrary multilinear function into R. That is, g is of the form

gy ..o x) =2 w JIx,

SjEP iESj

where P is the power set (i.e., set of subsets) of {1,...,n}. Such an
activation function is called a sigma-pi activation function, with the coef-
ficients w; being called weights. (We might also call this a quasi-
multilinear activation function to emphasize its relationship to Example
3.) Note that Examples 3 and 4 are just special cases of this activation
function.

THE MAIN CONCEPTS

Henceforth in this chapter the set of activation values will be
assumed to be the closed unit interval [0,1], denoted I. An activation
Junction is then simply a function «:I"—1. It will be convenient to
identify 0€ I with the Boolean value fzlse and 1€ with the Boolean
value true.

Now we introduce a key concept of this chapter by considering the
extension of the familiar notion of a monotonic function to the multi-
dimensional case in two different ways. In order to get a feeling for the
precise definitions to be given below, first consider what it means for
an input to a unit to have an excitatory influence on the output of that
unit. Such an input must have the property that an increase in its value
must result in an increase in the output of the unit, as long as all other
inputs are held constant. Furthermore, this should be true regardless
of the values of the other inputs. A similar property should hold for an
inhibitory input, where the output of the unit must decrease as the
value of the input is increased in this case. This is the basic idea
behind the notion of wuniform monotonicity, as defined below. The
weaker notion of monotonicity-in-context corresponds to the situation in
which an input may be sometimes excitatory and sometimes inhibitory,
depending on the values taken on by the other inputs.

Now we make these concepts rigorous. Let @ :I"—I. Pick one of
the coordinates, say the kth, and fix all coordinates but this one, which
is allowed to vary. This defines a function of a single variable which is

”~

10. ACTIVATION FUNCTIONS 427

parameterized by the remaining coordinates. Such a function is called a
section of the original function « along the kth coordinate. Note that
there is one such section along the kth coordinate for each possible
combination of values for the remaining n—1 coordinates. Now make
the following definitions: !

1. « is monotonic-in-context along the kth coordinate if all its sec-
tions along the kth coordinate are monotonic.

2. « is uniformly monotonic in the kth coordinate if all sections
along the kth coordinate are monotonic and have the same
sense (i.e., all are nondecreasing or all are nonincreasing).

3. a is monotonic-in-context if it is monotonic-in-context along all
its coordinates. .

4. « is uniformly monotonic if it is uniformly monotonic along all
its coordinates.

One special case of a uniformly monotonic function is a uniformly
nondecreasing function, which has the property that all its sections along
all coordinates are nondecreasing. This special case will be used later.

Note that if « is uniformly monotonic then it is monotonic-in-
context, but the converse need not be true, unless « is a function of a
single variable, in which case both definitions collapse onto the usual
notion of monotonicity. The key distinction between uniformly mono-
tonic and monotonic-in-context is that the sense of monotonicity of the
sections of a along the kth coordinate must be fixed for each k in
order for « to be uniformly monotonic.

It is important to emphasize the significance of these monotonicity
concepts for activation functions. An activation function is uniformly
monotonic if and only if each input may be classified as solely excita-
tory or solely inhibitory, independently of the values actually taken on
by any other inputs. Thus the usual sense of excitatory or inhibitory
input to a unit is meaningful exactly when the unit’s activation function
is uniformly monotonic. If a unit’s activation function is monotonic-
in-context, then it may not be possible to categorize its inputs as solely
excitatory or solely inhibitory, but the following may be a useful con-
ceptualization of such a unit’s operation: Certain inputs to the unit are

! The reader should be warned that the names introduced here for these concepts are
not standard; these terms were chosen because it was felt that they helped to clarify the
important distinctions being made in the current context.

428 FORMAL ANALYSES

used to set the context for the computation of its output as a function
of the remaining inputs, and each input in this latter group has purely
excitatory or purely inhibitory effect on the unit’s output in this partic-
ular context. Whether this turns out to be a useful way to view the
monotonic-in-context activation function and its possible role in activa-
tion models will not be explored here. The main reason for introducing
the concept is simply that it appears to be the strongest variant on
monotonicity satisfied by any activation function capable of computing
an arbitrary Boolean function (such as the multilinear and sigma-pi
activation functions, as will be seen later).

In order to capture the notion of an activation function being simply
an extension of a Boolean function, define an activation function
a :I"—I to be Boolean-like if a(x,, ...,x,) = 0 or 1 whenever all the
x; are 0 or 1. In other words, an activation function is Boolean-like if
and only if it can be viewed as a Boolean function when restricted to
the vertices of I”. It is also useful to say that such an activation func-
tion realizes the Boolean function obtained by restricting to vertices.

In order to capture the notion of two activation functions agreeing
for Boolean input values, define two activation functions a,a,:I1"—1 |
to be vertex-equivalent if a1 (xy, . .. ,x,) = ay(xy, . .. ,x,) whenever all
the x; are 0 or 1. In other words, two activation functions are vertex-
equivalent if and only if they agree on the vertices of I”. It is clear that
vertex-equivalence is indeed an equivalence relation.

The reason for introducing this notion is the suggestion that there
may be a certain interchangeability between different activation func-
tions that are vertex-equivalent, in that the logic of a unit’s computa-
tion might be considered to reside solely in what it does when all input
lines are set to their extreme values (corresponding to true or false). If
two vertex-equivalent activation functions are additionally monotonic-
in-context and continuous, then an even stronger case can be made for
their interchangeability in certain models, but these ideas will not be
pursued here.

ILLUSTRATION OF THESE CONCEPTS

|

A number of examples of activation functions « :I12—1 will now be'
presented to clarify the definitions given in the previous section. Thc%
figure corresponding to each example consists of three different graphi- t
cal representations for that particular function: (a) a three-dimensional .
plot of a(x;,x;) versus (x;,x;); (b) a contour plot showing at which |

points (x,x;) certain values of «(x;,x,) are attained; and (c) various i

10. ACTIVATION FUNCTIONS 429

sections of « along x; superimposed on a single two-dimensional plot.
The activation function being displayed in each figure is defined in the
caption of that figure.

Figures 1, 2, and 3 show three different activation functions that
realize the Boolean AND function at the vertices, while Figures 4, 5,
and 6 show three different activation functions realizing the Boolean
OR function at the vertices. These functions are all Boolean-like and
uniformly monotonic.

Figure 7 shows a realization of the Boolean XOR (exclusive or) func-
tion. The activation function depicted is Boolean-like and monotonic-
in-context, but not uniformly monotonic. In fact, no realization of
XOR can be uniformly monotonic. Figure 8 shows an activation func-
tion that is uniformly monotonic but not Boolean-like. Its restriction to
vertices thus does not have a straightforward Boolean interpretation;
this activation function might be viewed as a unit-interval confidence
measure based on the number of active inputs. Finally, Figure 9 shows
a rather pathological example of an activation function. It is Boolean-
like and vertex-equivalent to the constant function 1, but intuition sug-
gests that any unit in a PDP network which performs such a computa-
tion will behave very differently from one which puts out the constant
value 1. This essential difference in behavior is formalized here in
terms of the observation that such an activation function fails to be
monotonic-in-context while the constant function 1 is uniformly mono-
tonic.

SOME RESULTS

Before stating the main results, it will be helpful to define two func-
tions, the first of which maps vertices of I” to Boolean expressions in
formal variables X, ..., X,, and the second of which maps such
Boolean expressions to real algebraic expressions in formal variables
X1, .. .,X,. In our notation for Boolean expressions we will use "+"
to denote disjunction and juxtaposition to denote conjunction but it will
always be clear from the context whether Boolean or real operations are
intended.

The mapping from vertices to Boolean expressions is defined by
assigning to a vertex (v, ...,v,) the conjunction in which each X;
appears once, with the negation operator applied to X; if and only if
v;=0. For example, applying this function to the vertex (0,1,1,0) of I*
yields the expression X1 X,X3X,.

430 FORMAL ANALYSES

FIGURE 1. a{x},x;) = xyx;. A: Three-dimensional plot. The cube is bounded by the
planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along xq.
Note that each section along x| is a linear function with nonnegative slope; by symmetry
the same is true of each section along x;. Thus this function is uniformly nondecreasing.

10. ACTIVATION FUNCTIONS 431

FIGURE 2. a(x}x;) = min(x;,x;). A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along
x). Note that the three-dimensional plot of this function consists of two planar surfaces.
Evidently, each section along X is a nondecreasing function; by symmetry the same is
true of each section along x,. Thus this function is uniformly nondecreasing.

432 FORMAL ANALYSES

ARANNNINNYNNNAY
TUTTTTUNUNUUNN N NN UNNNNNNNN NN AN AN

(<]

B C

FIGURE 3. a(x},x;) = max(0x;+x,~1). A: Three-dimensional plot. The cube is
bounded by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sec-
tions along x;. Note that the three-dimensional plot of this function consists of two
planar surfaces. Clearly, each section along x; is a nondecreasing function; by symmetry
the same is true of each section along x,. Thus this function is uniformly nondecreasing.

——

10. ACTIVATION FUNCTIONS 433

A
s 4
Xz
X

5 i

J i

] a =1 ‘] 1' X2 =1 l
1
! 5
L [xe2l {
_ 5 |
! *2 |
; % |
: Z [
i +2 |
| 45 !
LY ;
{

=X, e
1 7 % 1 Xy
|
B C

FIGURE 4. a(x) x,) = x;+x;~xx;. A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along
x;. Note that each section along x, is a linear function with nonnegative slope; by sym-
metry the same is true of each section along x,. Thus this function is uniformly non-
decreasing.

434 FORMAL ANALYSES

A
a
X
X
X, o
A a =1 1\ X, =1
1 1 2
1540
z I
a =75 +2 |
& |
7
a =5 2 {
4?’6 |
a= 25 %2 }
© |
s |
=0 +1
oo ” rX1 oo , ’x1
B C |

I

FIGURE 5. a(x;,x;) = max(xy,x;). A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along
x1. Note that the three-dimensional plot of this function consists of two planar surfaces.
Note also that each section along x, is a nondecreasing function; by symmetry the same
is true of each section along x,. Thus this function is uniformly nondecreasing.

10. ACTIVATION FUNCTIONS 435

A
(s 3
X
X
!)
| 8.4
|, IIX2 =1
y : /,.‘\b J
N =. v, l
N i /o |
NN q, V
N 5 Vo !
N +/ S l
N 1 +2 }
| | |
| ‘\ i
— i o B
1 X1 \ 0 1 X1
B C

/
FIGURE 6. « (x),x,) = min(l,x;+x;). A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along
x1. Note that the three-dimensional plot of this function consists of two planar surfaces.
Evidently, each section along x, is a nondecreasing function; by symmetry the same is
true of each section along x,. Thus this function is uniformly nondecreasing.

436 FORMAL ANALYSES

B | C

%

FIGURE 7. a{x},x;) = x1+xy-2x)x,. A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along
xy. Note the saddle shape of the three-dimensional plot of this function. Also note that
the sections along x, are linear functions with slopes ranging from 1 to —1; by symmetry
the same is true of the sections along x,. Thus this function is monotonic-in-context but
not uniformly monotonic.

10. ACTIVATION FUNCTIONS 437

B | C

FIGURE 8. a(x;,x;) = %(x\+x;). A: Three-dimensional plot. The cube is bounded by
the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along x,.
Note that the three-dimensional plot of this function consists of a single planar surface.
Each section along x; is a linear function with slope %, as is each section along x,, by
symmetry. Thus this function is uniformly nondecreasing.

438 FORMAL ANALYSES

X

N\
|
|
|
|
]

'/

R R

oy

B\ C |

FIGURE 9. a(x;,x;) = (2x—1)2(2x,—1)2. 4: Three-dimensional plot. The cube is
bounded by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sec-
tions along x;. Note that the sections along x, are parabolas of varying widths. Evi-
dently, this function is not monotonic-in-context since, for example, when x,=0, a first
decreases and then increases as x; increases.

10. ACTIVATION FUNCTIONS 439

The mapping from Boolean expressions to real algebraic expressions
is defined by replacing:

True by 1.

False by 0. v

The disjunction operator by addition.

The conjunction operator by multiplication.
The negation operator by subtraction from 1.
X; by x;, for each i.

Sk LN

For example, applying this function to the Boolean expression
X X,+ X, yields the real expression x;(1—x,)+ (1—x;). It should be
emphasized that this is a function defined only on formal expressions;
two expressions that are equivalent under Boolean algebra will not, in
general, be mapped to the same real algebraic expression or even
equivalent real algebraic expressions. In other words, it is not a map-
ping from Boolean functions to real functions.

A standard -result from Boolean algebra is that any Boolean function
may be expressed in a certain canonical form, called the disjunctive nor-
mal form. A simple prescription for this form is as follows: Form a dis-
junction of terms, each of which is the result of applying the vertices-
to-Boolean-expressions function described above to those vertices of I”
for which the function takes on the value frue. For example, the dis-
junctive_normal form for the Boolean function (X ,X;) = X|+ X, is
X X+ XX+ X1 X,

A closely related result for multilinear functions is the following:

Lemma. For any function assigning arbitrary real numbers to the
vertices of I” there is a unique multilinear function agreeing with
the given function on these vertices.

This function is formed in a manner generalizing the prescription
given above for the disjunctive normal form: For each vertex of 17,
form the corresponding Boolean conjunct; then apply the other function
described above to turn each of these conjuncts into a real expression;
finally, form the sum of these individual expressions with each one
weighted by the value of the given function at the corresponding ver-
tex. It will be convenient to dub the result the vertex normal form for
the given function. For example, the vertex normal form for a multi-
linear function « of two variables is

o (xy,00) = «(0,0) (1—x) (1-x,) + « (0,1) (1~x Dx,
+a (1,0)x1(1—x2)+a (l,l)xle.

440 FORMAL ANALYSES

This lemma has the following immediate consequence:

Theorem 1. Given any Boolean function, there is a unique multi-
linear activation function realizing it.

In contrast, not every Boolean function can be realized by a quasi-
linear activation function. Those Boolean functions that can be so real-
ized are called linearly separable. 1t is easily shown that any linearly
separable Boolean function is necessarily uniformly monotonic, but the
converse is not true. A simple example of a function that is not
linearly separable is the XOR function 8,(X},X,) = X X+ X, X,. The
easiest way to see that it is not linearly separable is to observe that it is
not uniformly monotonic. An example of a function that is uniformly
monotonic but not linearly separable is

B2(X1,X2,X3,X) = X\ X5+ X3X,.

Our next result, also a consequence of the lemma, shows that the
very general class of all activation functions may be represented up to’

vertex-equivalence by the narrower class of multilinear activation %

functions.

Theorem 2. Every activation function is vertex-equivalent to a
unique multilinear activation function.

The next result suggests that monotonicity-in-context is enjoyed by a
fairly wide variety of activation functions.

Theorem 3. Every sigma-pi activation function is monotonic-in-
context.

This is an easy consequence of three facts: (a) that a multilinear
function is linear in each variable when the other variables are held
constant; (b) that a linear function is monotonic; and (c) that the com-
position of monotonic functions is monotonic.

The following result characterizes uniform monotonicity for multi-
linear activation functions.

Theorem 4. A multilinear activation function is uniformly mono-
tonic if and only if its restriction to vertices is uniformly monotonic.

The key step in the proof of this result is the observation that a
multilinear function may be built up inductively through linear interpo-
lation, starting with the values at the vertices. This follows from the
fact that a multilinear function is linear in each variable when the other
variables are held constant. The remainder of the proof consists of ver-
ifying that each step of this inductive construction preserves uniform

10. ACTIVATION FUNCTIONS 441

monotonicity. This result may be extended to the sigma-pi case as
well, under certain mild restrictions, using the fact that a strictly
increasing function has a monotonic inverse.

Corollary. Let = fog be a sigma-pi activation function, where g is
multilinear and f is a squashing function. If f is strictly increasing,
then « is uniformly monotonic if and only if its restriction to ver-
tices is uniformly monotonic.

The results presented up to this point would seem to suggest that the
class of multilinear activation functions provides us with sufficient
power that we need not consider the more general class of sigma-pi
activation functions. However, from the standpoint of uniform mono-
tonicity, there may be some drawbacks in restricting ourselves to multi-
linear activation functions. One such potential drawback is that a uni-
formly nondecreasing multilinear activation function may have some
negative weights. For example, the Boolean function
B(X1,X;) = X{+ X, corresponds, by Theorem 1, to the multilinear
activation function & (x,x,) = x+ x,~ x,x,, which requires a negative
weight even though it is uniformly nondecreasing. But what if a more
general sigma-pi activation function were to be used? Is there a
sigma-pi realization of this same Boolean function for which all weights
are nonnegative? Of course there is in this case: The sigma-pi activa-
tion function a (x;,x,) = min(x;+x,,1) is one such realization; many
others could be devised. (These two realizations of the OR function
are displayed in Figures 4 and 6.) It seems reasonable to suspect that
the following is true:

Conjecture. Every uniformly nondecreasing activation function is
vertex-equivalent to a sigma-pi activation function with nonnegative
weights.

Note that any sigma-pi activation function with nonnegative weights
is certainly uniformly nondecreasing. The conjecture is that the con-
verse is true (up to vertex equivalence). Under the assumption that
the uniformly nondecreasing activation function is Boolean-like (as in
the preceding example), the conjecture is indeed valid, as the following
theorem shows. In fact, the conclusion may be made even stronger in
this case.

Theorem 5. Every uniformly nondecreasing Boolean-like activation
function is vertex-equivalent to a sigma-pi activation function whose
weights are all 0 or 1.

The essential step in the proof of this result is showing that any uni-
formly nondecreasing Boolean function may be expressed as a

442 FORMAL ANALYSES

disjunction of conjunctions containing no negated factors. Once such
an expression is available, the desired sigma-pi activation function is
obtained by converting this Boolean expression to a real expression and
then composing this with the function f (z) = min(z,1).

This theorem may be generalized to cover arbitrary senses of uni-
form monotonicity by running any inputs for which the activation func-
tion is nonincreasing through the "inverter" f(x) = l—x. Thus the
general class of all uniformly monotonic Boolean-like activation func-
tions may be represented up to vertex-equivalence by a narrower class
of sigma-pi activation functions of a certain form.

It is instructive to contrast the sigma-pi activation functions which
result from applying Theorems 1 and 5 to a particular uniformly mono-
tonic activation function. Consider the Boolean function of six vari-
ables ﬁ(Xl,Xz,X3,X4,X5,X6) = X1X2+X3X4+ XsXs. Theorem 1 real-
izes this using the vertex normal form, which, after simplification,
becomes

01 (6 1,%2,X3,%4,%5,%6) = X1+ X e+ x5x¢
XXX I XXX 5X 6 X 3X 4X sX g
+ XXX 304X 5X6 .

In contrast, Theorem 5 implies a realization of this same function by
the gating activation function

0y (x1,X2,%3,X4,X5,%6) = min(xyx,+ X x4+ Xs5xg,1).

CONCLUSION

As suggested in the introduction, the ideas and results presented
here represent an exploratory set of concepts intended to help in under-
standing PDP networks. There is a clear need for a general language
and set of concepts for describing and understanding PDP computation,
both at the local, individual unit level, as explored here, and at the
level of whole networks. (In fact, the greatest need is for a means of
describing and understanding the relationship between computation at
these two levels.). Whether the ideas contained in this chapter can
extend naturally to become a useful framework for understanding the
behavior of whole networks is difficult to foresee. One way that this
gap between local and global computation might be bridged is by deal-
ing with questions of learning in such networks. The goal of learning is
generally to cause the network to have a particular global behavior, but

10. ACTIVATION FUNCTIONS 443

the learning should be implemented locally. An example of how the
requirement that the network be capable of learning might interact with
the ideas explored here can be found by considering the recently
discovered back-propagation learning algorithm, described in Chapter 8.
To be able to apply such a learning algorithm requires imposing the
constraint on activation functions that they be differentiable, a property
not satisfied by all the examples considered here. As our understand-
ing of learning in PDP networks progresses, we may find still further
restrictions useful or even necessary.

ACKNOWLEDGMENTS

This research was supported by a grant to David Zipser from the Sys-
tem Development Foundation. I am also grateful to James McClelland
and David Zipser for their many helpful comments and suggestions.

