CHAPTER 1 2

Resource Requirements of
Standard and Programmable Nets

J. L. McCLELLAND

In several places in this book we have examined the capabilities of
various models of parallel distributed processing. We have considered
models that are guaranteed to do one thing or another—to learn, say,
up to some criterion of optimality or to settle into global states with
probabilities proportional to the goodness of the states. In later
chapters, we describe various models of psychological or neurophysio-
logical processes and consider how well they account for the data. The
models, then, are held up against various criteria of computational,
psychological, and sometimes physiological adequacy.

In this chapter I raise another question about PDP models. I con-
sider the resources they require, in terms of units and connections, to
carry out a particular amount of work. This issue is touched on in vari-
ous other places in the book, particularly Chapter 3. There we showed
that a distributed mode! can often perform even an arbitrary mapping
with less hardware than a local model would require to do the same
task.

In this chapter I continue this line of thinking and extend it in vari-
ous ways, drawing on the work of several other researchers, particularly
Willshaw (1971, 1981). The analysis is far from exhaustive, but it
focuses on several fairly central questions about the resource require-
ments of PDP networks. In the first part of the chapter, I consider the
resource requirements of a simple pattern associator. 1 review the
analysis offered by Willshaw (1981) and extend it in one or two small
ways, and I consider how it might be possible to overcome some
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limitations that arise in networks consisting of units with limited con-
nectivity. In the second part of the chapter, I consider the resource
requirements of a distributed version of the dynamically programmable
networks described in Chapter 16.

THE STANDARD PATTERN ASSOCIATOR

In this section, we will consider pattern associator models similar to
the models studied by J. A. Anderson (e.g., Anderson, 1983) and
Kohonen (1977, 1984), and to the past-tense learning model described
in Chapter 18. A small pattern associator is illustrated in Figure 1. A
pattern associator consists of two sets of units, called input and output
units, and a connection from each input unit to each output unit. The
associator takes as input a pattern of activation on its input units and
produces in response a pattern on the output units based on the con-
nections between the input and output units.

Different pattern associators make slightly different assumptions
about the processing characteristics of the units. We will follow
Willshaw’s (1981) analysis of a particular, simple case; he used binary
units and binary connections between units. Thus, units could take on
activation values of 0 or 1. Similarly, the connections between the
units could take on only binary values of 0 and 1.

In Willshaw nets, processing is an extremely simple matter. A pat-
tern of activation is imposed on the input units, turning each one either
on or off. Each active input unit then sends a quantum of activation to
each of the output units it has a switched-on connection to. OQutput
units go on if the number of quanta they receive exceeds a threshold;
otherwise they stay off.

The learning rule Willshaw studied is equally simple. Training
amounts to presenting each input pattern paired with the corresponding
output pattern, and turning on the connection from each active input
unit to each active output unit. This is, of course, a simple variant of
Hebbian learning. Given this learning rule, it follows that when the
input pattern of a known association is presented to the network, each
of the activated input units will send one quantum of activation to all of
the correct output units. This means that the number of quanta of
activation each correct output unit will receive will be equal to the
number of active input units.

In examining the learning capacity of this network, Willshaw made
several further assumptions. First, he assumed that all of the associa-
tions (or pairs of patterns) to be learned have the same number of
active input units and the same number of active output units. Second,
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FIGURE 1. A pattern associator consisting of a set of input units (across the bottom)
and output units (along the right side), with a connection from each input unit to each
output unit.

he assumed that the threshold of each output unit is set equal to the
number of active input units. Given this assumption, only those out-
put units with switched-on connections from all of the active input
units will reach threshold.

Now we can begin to examine the capacity of these networks. In
particular, we can ask questions like the following. How many input
units-(n;) and output units (n,) would be needed to allow retrieval of
the correct mate of each of r different input patterns?

The answer to such a question depends on the criterion of correct
retrieval used. For present purposes, we can adopt the following cri-
terion: All of the correct output units should be turned on, and, on the
average, no more than one output unit should be turned on spuriously.
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Since the assumptions of the model guarantee that all the correct out-
put units will be turned on when the correct input is shown, the
analysis focuses on the number of units needed to store r patterns
without exceeding the acceptable number of spurious activations.

The answer to our question also depends on the number of units
active in the input and output patterns in each pattern pair and on the
similarity relations among the patterns. A very useful case that
Willshaw considered is the case in which each of the r associations
involves a random selection of m; input units and m, output units.
From the assumption of randomness, it is easy to compute the proba-
bility that any given junction will be turned on after learning all r asso-
ciations. From this it is easy to compute the average number of spuri-
ous activations. We will now go through these computations.

First we consider the probability p,, that any given junction will end
up being turned on, for a particular choice of the parameters n;, n,, m;,
m,, and r. Imagine that the r patterns are stored, one after the other,
in the n;n, connections between the »; input units and the n, output
units. As each pattern is stored, it turns on m;m, of the n;n, connec-
tions, so each junction in the network is turned on with probability
m;m,/n;n,. The probability that a junction is not turned on by a single
association is just 1 minus this quantity. Since each of the r associa-
tions is a new random sample of m; of the »; input units and m, of the
n, output units, the probability that a junction has not been turned
on—or 1 minus the probability that it has been turned on—after r pat-
terns have been stored is

mm
1 - = 1 _ 1 0
pon [ n,‘ no
Rearranging to solve for p,, we obtain
r
m;m
=1-}1- 2
Por [ n;n,

Now that we know p,,, it is easy to calculate the number of spurious
activations of output units. First, any output unit that should not be
activated will be turned on if and only if all of its junctions from the m;
active input units happen to be on. Given the assumption of random-
ness, this will occur with probability p,, ', since each junction is on
with probability p,,. Since there are n, — m, output units that are can-
didates for spurious activation, the average number of spuriously
activated units is

(no - m, )pon'"i-
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We want to keep this number less than 1. Adopting a slightly more
stringent criterion to simplify the calculations, we can set

1> np,,"
or
1 1™
Z = Don
mm, |’
51— [1_ ; I
nin,
Rearranging, we get
1 —”-'l— m;m, r
I-}— <|1-—
n, nn,

For small positive x, log(1—x) = —x. If we restrict ourselves to cases
where m;m,/n;n,<.1—that is, reasonably sparse patterns in the sense
that m < n/~/10—the approximation will hold for the right-hand side of
the equation, so that taking logs we get

g
mi i
logll—[l] ’ < - Dl
n nn,

We can solve this for r, the number of patterns, to obtain

ne
P ——e logll—[-l—] ""'l . )
m;m, n,
1

m;
Now, —log| 1— ni ranges upward from .69 for very sparse patterns
0

where m; = logyn,. Using .69 as a lower bound, we are safe if we say:

nn

r < .69—=

m;m,
or

nn, 2 1.45rm;m,.
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This result tells us that the number of storage elements (that is, con-
nections, n;n,) that we need is proportional to the number of associa-
tions we wish to store times the number of connections (m;m,)
activated in storing each association. This seems about right, intui-
tively. In fact, this is an upper bound rather greater than the true
number of storage elements required for less sparse patterns, as can be
seen by plugging values of m; greater than log,n, into Equation 1.

It is interesting to compare Willshaw nets to various kinds of local
representation. One very simple local representation would associate a
single, active input unit with one or more active output units. Obvi-
ously, such a network would have a capacity of only n; patterns. We
can use the connections of a Willshaw net more effectively with a dis-
tributed input if the input and output patterns are reasonably sparse.
For instance, in a square net with the same number » of input and out-
put units and the same number m of active elements in each, if
n = 1000 and m = 10, we find that we can store about 7,000 associa-
tions instead of the 1,000 we could store using local representation over
the input units. :

Another scheme to compare to the Willshaw scheme would be one
that encodes each pattern to be learned with a single hidden unit
between the input and output layers. Obviously a net that behaved per-
fectly in performing r associations between m; active input elements
and m, active output units could be handcrafted using r hidden units,
each having m; input connections and m, output connections. Such a
network can be economical once it is wired up exactly right: It only
needs r (m+m,) connections. However, there are two points to note.
First, it is not obvious how to provide enough hardware in advance to
handle an arbitrary r patterns of m; active input units and m, active
output units. The number of such patterns possible is approximately
(n,"i/ m;1) (n,™/ m,!), and if we had to provide a unit in advance for
each of these our hardware cost would get out of hand very fast.
Second, the economy of the scheme is not due to the use of local
representation, but to the use of hidden units. In many cases even
more economical representation can be achieved with coarse-coded hid-
den units (see Chapter 3 and Kanerva, 1984).

Randomly Connected Nets

Returning to the standard Willshaw net, there are several minor diffi-
culties with Willshaw’s scheme. First, it assumes that each input unit
sends one and only one connection to each output unit. In a neural
network, we might assume each input unit sends out a randomly
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distributed array of connections to the set of output units without any
guarantee that each output unit actually receives a connection. Second,
the analysis depends on a rather strict and sharp threshold for output
unit activation. In a random net rather than a fully connected net, we
could not actually guarantee that a given output unit would in fact
receive m; inputs; and in realistic nets, we would expect there to be
some inherent variability in the activations of the units. Thus, we
would not be able to guarantee that all correct units would exceed the
sharp threshold, nor that all incorrect units would fall below it.

However, it turns out that we can reformulate the problem just
slightly and get a handle on networks that have these properties.
Assume that we have a square network of » input and n output units
and that we wish to store associations between m active input units and
m active output units. Suppose each input unit has f output connec-
tions which fall where they may among the n output units so that the
output units have an average of f inputs each. Note again that the
connections are randomly distributed without restriction so that there is
no guarantee that input unit / projects to output unit j.

To study the performance of this net, imagine storing some number
r of patterns using the Willshaw learning scheme. During testing, we
will examine the number of active inputs each output unit that should
be turned on will receive and the number of active inputs each unit
that should not be turned on will receive, and we will then calculate the
signal-detection measure of sensitivity d’ (Green & Swets, 1966) as an
index of the ability of inputs reaching each output unit to distinguish
between units that should be on and units that should not be on. Since
d’ is independent of the threshold, this measure allows us to bypass the
question of the threshold itself.

Let us first consider what happens in our random network as we train
it with pairs of patterns using Willshaw’s scheme. Pick an arbitrary
connection in our net between an arbitrary input unit and an arbitrary
output unit. Now, consider learning an arbitrary pattern. The probabil-
ity that a particular input unit will be on is m/n. Similarly, the proba-
bility that a particular output unit will be on is m/n. The probability
that the units joined by the particular connection we are considering
will be one of the ones turned on in learning a particular pattern, then,
is m¥ n? just as before. The rest of the earlier analysis still applies, and
we get

m? |
pon=1_[l—7] .

This is exactly the same value that we had before in the original
Willshaw model, and it is independent of £, the number of connections
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each unit makes. This factor will become important soon, but it does
not affect the probability that a particular connection will be on after
learning r patterns.

Now consider what happens during the testing of a particular learned
association. We activate the correct m input units and examine the
mean number of quanta of activation that each output unit that should
be on will receive. The m active input units each have f outputs, so
there are mf total "active" connections. A particular one of these con-
nections reaches a particular output unit with probability 1/n, since
each connection is assumed to fall at random among the n output units.
Thus, the average number of active connections each output unit
receives will simply be mf/n. For output units that should be on, each
of these connections will have been turned on during learning, so
mf/n is the average number of quanta that unit will receive. Assum-
ing that n is reasonably large, the distribution of this quantity is
approximately Poisson, so its-variance is also given by mf/n.

Units that should not be on also receive an arbitrary connection from
an active input unit with probability 1/n, but each such connection is
only on with probability p,,. Thus, the average number of quanta such
units receive is (mf/n)p,,. This quantity is also approximately Pois-
son, so its variance is also equal to its mean.

Our measure of sensitivity, d, is the difference between these means
divided by the square root of the average of the variances. That is,

g mf/n(1— p,,)
Nmfin) A+ p, )2’

Simplifying, this becomes

1- Pon (2)

N+ p,/2°

We can get bounds on the true value of d’ by noting that the denomi-
nator above cannot be greater than 1 or less than /7. The largest
value of the denominator sets a lower bound on d’, so we find that

d’ 2 Nmf/n (1~ p,,).

d'=~mf/n

Substituting for 1 — p,,, we obtain

217
d'2~mf/n [1— —';:—’2—] : (3)
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Taking logs of both sides, invoking the log(1 — x) = —x approxima-
tion, and solving for r, we obtain

n2
r < .5—| log(mf/n) — 2log(d’)].
m

One of the first things to note from this expression is its similarity to
the expression we had for the case of Willshaw’s fully connected net.
In particular, if we let f = n, so that each unit sends an average of one
connection to reach another unit, we get

r<.5 n_22[ log(m) — 210g(d’)]. @
m

The expression in brackets on the right expresses the fact that the capa-
city of the net goes down as the sensitivity we want to achieve goes up
and captures the fact that there is a slight benefit as we increase m,
independent of its effect on the ratio of total connections to connec-
tions activated per association. This is due to the fact that the distribu-
tions of activations of correct and spurious units pull apart as m gets
larger. These are relatively small factors for moderate values of m and
d’. More important, as before, is the ratio of the number of connec-
tions (n?) relative to the average number of connections each pattern
takes up (m?).

Effects of Limited Fan-Out

A new result emerges when we consider other possible values for f:
Equation 3 indicates that d" is directly proportional to the square root of
S. Thus, we can achieve any degree of fidelity we require by increasing
S though returns diminish as f gets bigger and bigger. Alternatively,
the performance of our network will degrade gracefully as fan-out is
reduced.

We can also see that increases in n are no longer uniformly benefi-
cial. The term log(mf/n) decreases a n increases; we can no longer
increase the capacity indefinitely simply by increasing 7.

Figure 2 indicates-a discovery of Mitchison (personal communica-
tion, 1984) concerning the capacity » of a network as a function of »
for several values of m and f, with d'= 5. Capacity depends roughly
on n¥m? and is relatively insensitive to £ as long as Vmf/n >> d".
However, as n increases we reach a point where /mf/n approaches d”;


common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil


12. RESOURCE REQUIREMENTS 469

6.0

5.0 —

4.0 —

Log Capacity
5
!

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Log number of Units

FIGURE 2. Effects of limited fan-out in a randomly connected associative net as a func-
tion of the log of », the number of input and output units; for different values of m, the
number of active units in each input and output pattern indicated below each pair of
curves. The upper member of each pair of curves is for fan-out of 10,000; the lower
member is for fan-out of 1,000. In all cases, the y-axis reflects the log of the maximum
number of patterns that can be stored while maintaining a 4’ of 5. Calculations are based
on Equation 2 (Equation 3 gives misleading results for vmf/n near d).

here capacity levels off and further increases in » result in no further
increase in sensitivity. The maximal capacity achievable by increasing
n is invariant, regardless of the value of m, and depends only on d’ and
S . Thus, if we were to pick a fixed value of d’, we would find that the
maximum number of patterns we could store would be strictly limited
by f.

Biological limits on storage capacity of neural nets. With these ana-
lyses in mind, we can now consider what limits biological hardware
might place on the storage capacity of a neural net. Of course, we must
be clear on the fact that we are considering a very restricted class of
distributed models and there is no guarantee that our results will gen-
eralize. Nevertheless, it is reasonably interesting to consider what it
would take to store a large body of information, say, a million different
pairs of patterns, with each pattern consisting of a 1,000 active input
units and 1,000 active output units.

To be on the safe side, let’s adopt a d’ of 5. With this value, if the
units have an unbiased threshold, the network will miss less than 1% of
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the units that should be on and false alarm to less than 1% of the units
that should be off.!

How big would a net have to be to meet these specifications? -
Assuming a fully connected net, and consulting Equation 4, we find
that we need to set n equal to a value near about 10° to get r large
enough.

This number of units is not a serious problem since estimates of the
number of units in the brain generally range upward from 100 (see
Chapter 20). However, individual units are not generally assumed to
have enough connections for this scheme to work as stated. If there
are 1,000 to 10,000 connections per unit, as suggested in Chapter 20,
we are off by two to three orders of magnitude in the number of con-
nections per unit.

Given this limitation on fan-out, we had better consult Figure 2.
The figure indicates that the maximum capacity of a net with a fan-out
of 1,000 and a 4’ of § is only about 150 patterns. With f = 10,000 we
get up to a capacity of about 15,000 patterns, but we are still well short
of the mark. It seems, then, that the fan-out of neurons drastlcally
limits the capacity of a dlstnbuted network.

A simple method for overcoming the fan-out limitation. But all is
not completely lost. It turns out that it is a relatively simple matter to
overcome the fan-out limitation. The trick is simply to use multiple
layers of units. Let each input unit activate a set of what we might call
dispersion units, and let each output unit receive input from a set of col-
lection units. Let the f outgoing connections of each of the dispersion
units be randomly distributed among the "dendrites” of the collection
units. A miniature version of this scheme is illustrated in Figure 3.
Note that it is assumed that each dispersion unit is driven by a single
input unit, and each collection unit projects to a single output unit.
Collection units are assumed to be perfectly linear so that the net input
to each output unit is just the sum of the net inputs to the collector
units that project to it. Assuming each input unit and each dispersion
unit has a fan-out of f, the effective fan-out of the input and disper-
sion layers together becomes f2. Similarly, the set of collection units
feeding into each output unit collect an average of f? connections. To
construct an associator of 1 million input units by 1 million output
units assuming each unit has a fanout of 1,000, we will need 1 billion
dispersion units and 1 billion collection units. The number of connec-
tions between the dispersion units and the collection units would be on
the order of 102, or 1 trillion connections.

1 It should be pointed out that any intrinsic noise in the units would reduce the actual
observed sensitivity.
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FIGURE 3. A diagram of a multilayer network consisting of an input layer, a dispersion
layer, a collection layer, and an output layer. The network serves to square the effective
fan-out of each input unit, relative to the simple two-layer case.

The network would require about 20% of human cortex, based on
the estimate that there are 10° neurons under each square millimeter of
the brain and that there are about 10° square millimeters of cortical sur-
face. This might be a little tight, but if the fan-out were 10,000, the
network would fit handily. In that case, it would only require about 2
percent of the 1019 units.

There are, of course, a lot of reasons to doubt that these figures
represent anything more than a first-order estimate of the capacity of
real associative networks. There are several oversimplifications, includ-
ing for example the assumption that the dispersion units are each
driven by a single connection. We must also note that we have
assumed a two-layer net along with an extremely simple learning rule.
The intermediate layers postulated here merely serve to provide a way
of overcoming the fan-out limits of individual units. However, as has
been pointed out in Chapter 7, a multilayer net can often learn to con-
struct its own coding schemes that are much more efficient than the
random coding schemes used here. Even simple two-layer nets can
profit if there are some regularities in the network and if they use a
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sensible learning rule, as shown in Chapter 18. Thus random nets like
the ones that have been analyzed in this section probably represent a
lower limit on efficiency that we can use as a benchmark against which
to measure "smarter" PDP mechanisms.

Effects of Degradation and the Benefits of Redundancy

One virtue of distributed models is their ability to handle degrada-
tion, either of the input pattern or of the network itself. The 4
analysis allows us to tell a very simple story about the effects of degra-
dation. In this section I will just consider the effects of degradation by
removal, either of a random fraction of the pattern or of a random frac-
tion of the connections in the network; effects of added noise will be
considered later on. In the case of removal, we can think of it either in
terms of presenting an incomplete pattern or actually destroying some
of the input units so that parts of the pattern are simply no longer
represented. Consider the case of a network that has already been
trained with some number of patterns so that p,, can be treated as a
constant. Then we can write the equation relating d'to m, f, and n as

d' > k~/mf/n.

Now, suppose that during testing we turn on only some proportion p,
of the m units representing a pattern. The m in the above equation
becomes mp,, so we see that the sensitivity of the network as indexed
by d' falls off as the square root of the fraction of the probe that is
presented. Similarly, suppose some of the connections leading out of
each unit are destroyed, leaving a random intact proportion p; of the
mf active connections. Again, the sensitivity of the network will be
proportional to the square root of the number of remaining connec-
tions. Thus, performance degrades gracefully under both kinds of
damage.

Another frequently noted virtue of distributed memories is the
redundancy they tend naturally to provide. The ability of simple distri-
buted memories to cope with degraded input patterns is really just a
matter of their redundancy, as Wilishaw (1981) pointed out. For, if a
network is fully loaded, in the sense that it can hold no more associa-
tions and still meet some predetermined standard of accuracy with com-
plete patterns, it will not be able to meet that same criterion with degra-
dation. The only way to guard against this problem is to load the net-
work lightly enough so that the criterion can still be met after subject-
ing the network or the inputs to the specified degree of degradation.
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PROGRAMMABLE PATTERN ASSOCIATORS

In this section, I extend the sort of analysis we have performed on
simple associator models to the resource requirements of connection
information distribution (CID) networks of the type discussed in
Chapter 16.

The mechanism shown in Figure 4 is a distributed CID mechanism.
The purpose of this network is to allow connection information stored
in a central associative network to be used to set connections in several
local or programmable networks in the course of processing so that more

Central Output Units\ CA Units
BABASADASABADAD AR 8
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FIGURE 4. A connection information distribution (CID) network consisting of two
local, programmable networks; a central, standard network; and a set of connection
activation (CA) units. Each local input unit projects to the corresponding central input
unit, and each CA unit projects to the corresponding connection in both local networks.
Central output units turn on CA units relevant to processing the patterns they program
the local modules to process. The connections drawn in are a few examples of each type.
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than one input pattern can be processed at one time. The mechanism
works as follows: One or more patterns to be processed are presented
as inputs, with each pattern going to the input units in a different pro-
grammable network. The input pattern to each local net is also
transmitted to the input units of the central associative network. When
more than one pattern is presented at a time, the input to the central
network is just the pattern that results from superimposing all of the
input patterns. This pattern, via the connections in the central associa-
tive network, causes a pattern of activation over the central output
units. The central output pattern, of course, is a composite representa-
tion of all of the input patterns. It is not itself the desired output of
the system, but is the pattern that serves as the basis for programming
(or turning on connections) in the local, programmable networks. The
local networks are programmed via a set of units called the connection
activation (CA) units. The CA units act essentially as switches that
turn on connections in the programmable networks. In the version of
the model we will start with, each CA unit projects to the one specific
connection it corresponds to in each programmable network, so there
are as many CA units as there are connections in a single programma-
ble net. In the figure, the CA units are laid out so that the location of
each one corresponds to the location of the connection it commands in
each of the programmable networks.

To program the local networks, then, central output units activate the
CA units corresponding to the connections needed to process the pat-
terns represented on the central output units. The CA units turn on
the corresponding connections. This does not mean that the CA units
actually cause activation to pass to the local output units. Rather, they
simply enable connections in the programmable nets. Fach active local
input unit sends a quantum of activation to a given local output unit if
the connection between them is turned on.

The question we will be concerned with first is the number of CA
units required to make the mechanism work properly. In a later sec-
tion, we will consider the effect of processing multiple items simultane-
ously on the resource requirements of the central network.

Connection Activation Unit Requirements

Consider a CID mechanism containing programmable networks of »;
by n, units in which we wish to be able to associate each of s different
output patterns with each of s different input patterns arising at the
same time in different local networks. Input and output patterns con-
sist of m; by m, active units, respectively. Following the assumptions
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for Willshaw nets, we assume binary units and connections, and we
assume that output units are turned on only if they receive m quanta of
activation.

Now, let us consider how many CA units are needed to implement
this mechanism. For now we bypass the bottom-up activation of CA
units and assume instead that we know in advance which connections
need to be turned on. If each local network must be as complex as a
standard network capable of processing r different patterns, we are in
serious trouble. In the previous analysis of Willshaw networks, we
found that the number of connections we needed to process r associa-
tions of m by m active units was

n. = nn, = 1.45rm;m,

It looks as though the number of connections required in each local
network grows linearly with the number of known patterns times the
content of each. If we had one CA unit for each programmable con-
nection, a programmable version of our square 1-million-pattern associ-
ator would require 10'2 CA units, a figure which is one or two orders of
magnitude larger than conventional estimates of the number of units in
the brain. Just putting the matter in terms of the cost we must bear to
use programmable connections, it appears that we need n2 CA units
just to specify the connections needed for a standard net that could do
the same work with just the connections between n input and » output
units. 2

However, things are not nearly as bad as this argument suggests.
The computation I just gave misses the very important fact that it is
generally not necessary to pinpoint only those connections that are
relevant to a particular association. We can do very well if we allow
each CA unit to activate a whole cohort of connections, as long as (a)
we activate all the connections that we need to process any particular
pattern of interest, and (b) we do not activate so many that we give rise
to an inordinate number of spurious activations of output units.

The idea of using one CA unit for a whole cohort of programmable
connections is a kind of coarse coding. In this case, we will see that we
can reap a considerable benefit from coarse coding, compared to using
one CA unit per connection. A simple illustration of the idea is shown
in Figure 5. The figure illustrates CA units projecting to a single one

2 Many readers will observe that the CA units are not strictly necessary. However, the
specificity of their connections to connections in local networks is an issue whether CA
units are used as intermediaries or not. Thus, even if the CA units were eliminated, it
would not change the relevance of the following results. In a later section, the CA units
and central output units will be collapsed into one set of units; in that case , this analysis
will apply directly to the number of such units that will be required.
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FIGURE 5. A programmable network with 8 input units and 8 output units and 64 pro-
grammable connections. Each of the 16 connection activation units is assumed to project
to a random set of 4 programmable connections. These connections are only drawn in
for two of the CA units. The sets of connections are chosen without replacement so that
each connection is programmed by one and only one CA unit. Whenever a CA unit is
on it turns on all of the connections it projects to.

of two programmable networks. Note that a given CA unit must
activate the same connections in each programmable net when there is,
more than one.

One Pattern at a Time

To see how much this scheme can buy us, I will start by considering
the case in which we want to program some local nets to process a sin-
gle pattern. We ask, how small a number n,, of CA units can we get
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by with, assuming that each one activates a distinct, randomly selected
set of n;n,/n., connections?

First of all, the number of CA units that must be activated may have
to be as large as m;m,, in case each of the different connections
required to process the pattern is a member of a distinct cohort.
Second, for comparability to our analysis of the standard network, we
want the total fraction of connections turned on to allow no more than
an average of 1 output unit to be spuriously activated. As before, this
constraint is represented by

1
a)m
n; )

As long as m; > logyn;, .5 will be less than the right-hand side of the
expression, so we will be safe if we keep p,, less than or equal to .5.
Since we may have to activate m;m, CA units to activate all the right
connections and since we do not want to activate more than half of the
connections in all, we conclude that

Pon S

ng =2 2mym,.

From this result we discover that the number of CA units required
does not depend at all on the number of connections in each program-
mable network. Nor in fact does it depend on the number of different
known patterns. The number of known patterns does of course influ-
ence the complexity of the central network, but it does not affect the
number of CA units. The number of CA units depends on m;m,, the
number of connections that need to be turned on per pattern. Obvi-
ously, this places a premium on the sparseness of the patterns. Regard-
less of this, we are much better off than before.

Several Patterns at a Time

So far we have considered the case in which only one item is
presented for processing at a time. However, the whole point of the
connection information distribution scheme is that it permits simultane-
ous processing of several different patterns. There is, however, a cost
associated with simultaneous processing, since for each pattern we need
to turn on all the connections needed to process it. In this situation,
we will need to increase the total number of CA units to increase the
specificity of the set of connections each association requires if we are
to keep the total fraction of connections that have been turned on
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below .5. Formally, assume that we know which s patterns we want to
process. Each one will need to turn on its own set of m;m, CA units
out of the total number n, of CA units. The proportion of connec-
tions turned on will then be

mm, |5
=1-]1-—2] .
pO’l [ nca ]
This formula is, of course, the same as the one we saw before for the
number of connections activated in the standard net with s, the
number of different patterns to be processed simultaneously, replacing
r, the number of patterns stored in the memory, and with n,,, the
number of connection activation units, replacing n;n,, the total number
of connections. Using p,, = .5 and taking the log of both sides we get

l_w]

ca

—.69=slog

Invoking the lbg(l — Xx) = —x approximation, we obtain
ne = 1.45sm?,

This formula underestimates n,, slightly for s<3. With this caveat,
the number of CA units required is roughly proportional to the number
of patterns to be processed at one time, times the number of connec-
tions needed to process each pattern.

Overlapping the Programmable Networks

In Chapter 16, the CID scheme we have been considering thus far
was generalized to the case where the programmable networks over-
lapped with each other. This allowed strings of letters starting in any of
a large number of input locations to correctly activate units for the
corresponding word at the appropriate location at the next higher level.
Here 1 will consider a more general overlapping scheme using distri-
buted representations in the overlapping local networks. A set of three
overlapping local networks is illustrated in Figure 6. In this scheme,
both the input and the output units can play different roles depending
on the alignment of the input pattern with the input units. In conse-
quence, some of the connections also play more than one role. These
connections are assumed to be programmable by a number of different
CA units, one for each of the connection’s different roles. Obviously,
this will tend to increase the probability that a connection will be turned
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FIGURE 6. Three overlapping programmable networks of 8x8 units each. The net-
works overlap every four units, so the input and output units can participate in two dif-
ferent, partially overlapping networks.

on, and therefore will require a further revision of our estimate of the
number of CA units required.

Unfortunately, an exact mathematical analysis is a bit tricky due to
the fact that different junctions have different numbers of opportunities
to be turned on. In addition, input patterns in adjacent locations will
tend to cross-activate each other’s output units. If the patterns to be
processed are well separated, this will not be a problem. Restricting our
attention to the well-separated case, we can get an upper bound on the
cost in CA units of allowing overlapping modules by considering the
case where all of the connections are assumed to play the maximum
number of roles. This number is equivalent to the step size or grain,
g, of the overlap, relative to the size of the pattern as a whole. For
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example, for four-letter words, if the increments in starting places of

successive overlapping networks were one letter wide, ¢ would be 4.

Assuming that the connections turned on for each slice of a pattern are

independent of those turned on by each other slice, it is easy to show
that the formula for p,, becomes

m;m, |8

Pon <1-|1-— s

nCﬂ

and the number of CA units required to keep p,, less than .5 is approx-
imated by

Neg 2 1.45sgm,-mo.

The cost goes up with the number of patterns to be processed simul-
taneously times the grain of the overlap.

Summary of CA Unit Requirements

In summary, the number of CA units required to program a pro-
grammable network depends on different variables than the number of
connections required in a standard associator. We can unify the two
analyses by noting that both depend on the number of patterns the net
must be ready to process at any given time. For the standard associa-
tor, the number is r, the number of known patterns; for the program-
mable net, the number is sg, the number of patterns the net is pro-
grammed for times the grain of overlap allowed in the starting locations
of input patterns.

This analysis greatly increases the plausibility of the CID scheme.
For we find that the "initial investment” in CA units needed to pro-
gram a set of networks to process a single association is related to the
content of the association or the number of connections required to
allow each of the active input elements to send a quantum of activation
to each of the active output elements. Incorporating a provision for
overlapping networks, we find that the investment required for process-
ing one association is related to the content of the association times the
grain of the overlap. This cost is far more reasonable than it looked
like it might be at first, and, most importantly, it does not depend on
the number of patterns known.

An additional important result is that the cost of programming a set
of networks grows with the number of patterns we wish to program for
at one time. This cost seems commensurate with the linear speedup we
would get by being able to process several patterns simultaneously.
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The somewhat intangible benefit to be derived from mutual constraint
among the patterns would come over and above the simple linear
throughput effect. However, this benefit, as we shall see in the next
section, is balanced by the extra cost associated with the possibility that
there might be spurious patterns in the intersection of input elements
of the presented patterns.

The Cost of Simultaneous Access

So far, we have proceeded as though we already knew what patterns
to prepare each local module for. However, the CID mechanism was
intended to allow several inputs to access the central network simul-
taneously and thereby program the local networks in the course of pro-
cessing. This simultaneous access costs something; in this section we
consider how much. The discussion here is relevant to the general issue
of the costs of simultaneous access to a PDP network, as well as to the
specific question of the capacity requirements of CID.

For simplicity I will begin by considering local representations at the
central output level. That is, I will assume that each central output unit
represents a different pattern and that it is switched on only when all of
the central input units corresponding to its pattern are active.

Now, recall that a central input unit is switched on if the correspond-
ing unit is active in any of the programmable nets. Thus, what the cen-
tral output units actually see is the pattern of activation that results
from the superimposition of the input patterns presented for simultane-
ous processing. The effect of this is that there is some possibility that
ghosts of patterns not actually presented will show up in the result.
This is just the kind of situation that is described in Chapter 16 when
similar words such as SAND and LANE are presented to each of two
programmable networks for simultaneous processing. When the activa-
tion patterns of the two words are superimposed, the central word units
for LAND and SANE get turned on just as strongly as the central word
units for SAND and LANE. Thus, the programmable networks end up
being programmed to process any one of these four words, rather than
just any one of the two actually presented.

Is there anything that can be done to control the number of different
patterns that show up when several patterns are superimposed? In fact,
there is. If we increase the number of input units in each programma-
ble network or if we reduce the number of input units active in each
pattern, we will reduce the possibility of spurious patterns showing up
in the superposition.
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To get a quantitative grip on this matter, assume that the input pat-
terns are random selections of m out of the n input units as we have
been assuming throughout. The probability that a spurious pattern is
present in the superposition of s patterns can now be easily calculated.
First, we calculate the probability that a randomly selected unit will be
on,; this is just

1— (1—m/n)s.

The probability that a particular spurious pattern is fully represented in
the set of units activated by the s patterns is just this number to the
power m, and the average number of such patterns out of r known pat-
terns is just this probability times r — s. Thus, the average number of
spurious patterns present in the superposition is

r=s)1—-0-m/n) )"

Assuming r >> s, we can simplify by replacing r — s with r. If we
take acceptable performance to be an average of one or fewer spurious
patterns present and therefore of spurious CP units active, we get

l=rfl—= 0= m/n))m.

Rearranging and taking logs,

1
log[l— (—1—)'"] = slog (1— m/n).

Several things are apparent from this equation. First, the number of
patterns that can be processed at one time increases with the number of
input units. The effect is approximately linear as long as m/n < .1.
Second, though it is not quite as straightforward, s tends to increase
with a decrease in m. For example, suppose n = 5,000 and

= 10,000. In this case, when m drops from 1,000 to 500, s increases
from 21 to about 37; if m drops to 100, s goes up to about 120. Third,
for a fixed m and n, especially for large m, we can make very large
changes in r with only minimal impact on s. Thus, if we have, say,
n = 10,000 and m = 1,000 with r = 105, we get s = 43; if we reduce r
to 10°, we only get an increase of 2 in s, to 45.

If we allow overlapping local networks and we assume that the pat-
terns are random with independent subparts, we need only replace s in
the preceeding equation with sg. While this is a fairly steep cost, it is
still the case that reasonably moderate values of n (about 2.5x10%)
would be sufficient to process 10 out of 10° known patterns of size
1,000 simultaneously with a grain of 100.
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Simultaneous Access to Distributed Representations

The results just described, it must be remembered, depend on the
use of local representations at the central output level. What happens if
we consider simultaneously accessing distributed representations
instead? Obviously this question remains relevant to general questions
about simultaneous access, as well as to the situation that would arise
using distributed central output units in CID. Furthermore, we should
note that the central output units in Figure 4 simply mediate a mapping
from one distributed representation—on the central input units—to
another—on the CA units. The present analysis describes what would
happen if we simply collapsed these two sets of units into one, activat-
ing the connections directly from the central output units.

We consider a case exactly like the one we were just considering,
except that now the output representation is not a single unit per pat-
tern, but m, active units on out of n, central output units. We con-
sider two somewhat separate questions. First, if we superimpose
several input patterns, what effect does this have on d’ at the central
output level, relative to the case where only a single pattern is shown?
Second, what is the probability that ghosts of whole patterns not
presented will show up in the outpur of the central network?

To begin our analysis of the first question, recall from Equation 2 the
expression for d' in random nets with full fan-out (n = f):

1- Pon
d'=\/m —————m.
"1+ p )2
We first ask, what is the effect on 4’ of turning on spurious input units
with probability p, in addition to the m units representing a particular

pattern to be processed? The number M; of input units that will then
be on is

M, = m; + (n; — m;)p.

Consider first, output units that should not be on. These will receive
M; active inputs, and each of these connections will be on with proba-
bility p,,. The output units that should be on will receive m; inputs on
the input lines whose connections were turned on in learning the
presented pattern plus (n; — m;)p inputs to connections that will have
been turned on in learning other patterns with probability p,,. The
numerator for our revised expression will then simply reduce to its old
value, with the (n; — m;)p term canceling out. However, there will be
an increase in variance, and hence a decrease in d’. The denominator
is as before the square root of the average of the variances of the two


common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil


484 FORMAL ANALYSES

means, which are, also as before, equal to the means. The expression
for d’ therefore becomes
( 1- pon)

d'= ,
" T+ mipe, £ 2(n — m)p V2

We get a simpler expression if we approximate by replacing p,, in the
denominator with its maximum value of 1; this gives us a slight overes-
timate of the variance and therefore a slight underestimate of 4"

(l'—pon)
I> .
RN s T

The variance goes up with the mean number of spuriously activated
units, and d’ goes down with the effect of this on the square root of the
variance.

To determine the effect of presenting several patterns on 4’, we note
that from the point of view of the units that belong to one of the pat-
terns, all the units activated by the other patterns are spurious. The
number of such units is

1— (1= m/n)s"1

Inserting this for p in the previous equation gives

-m (l—pon)
mi+ (= m)[1— (1- m/n)s"1

Using this equation we can examine the effects of increasing s on the
value of d’. Not too surprisingly, d' does go down as s goes up, but
the effect is relatively benign. For example, with n = 10%, r = 106,
m= 1,000, and s = 1, d' is about 11.6. It drops to half that value at
s = 4, and drops much more gradually thereafter. With n = 2 x10°
units and the same values of r and m, we can get an acceptable value
of d’ (= 6) with s as high as 16.

The final issue we will consider is the possibility that new spurious
output patterns have been introduced in the superposition of the s out-
put patterns simultaneously activated in processing the s input patterns.
For simplicity, we will just consider the probability of a "ghost," given
that all and only the correct m, units are active for each of the s pat-
terns. The analysis is entirely the same as the one we gave before for
the probability of ghosts showing up in the input patterns. We get an
average of one ghost when

12 rl1- (11— m/n)s)m.

dl
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As before, the number of simultaneous patterns we can tolerate
increases with n and decreases with m and is relatively insensitive to
the value of r. : ‘

In general, it appears that the probability of ghosts occurring can be
kept small with sufficiently large dedication of resources, but these
trade off approximately linearly with s. With fixed n, we must simply
make the patterns sparser or tolerate some loss of .sensitivity.

Discussion

This analysis of the resource requirements of networks like the CID
model has discovered a number of basic results. In essence, the picture
is really a very simple one. The resource requirements of CID depend
on the number of programmable networks one wants to program for at
once. The number of connections needed in each local network
depends on the number of patterns to be programmed for and is
independent of r, the number of known patterns. In the central net-
work, the number of units required to keep spurious activations under
control grows with s, as does the number of units required to keep
ghosts from emerging in the input and output patterns. It is worth
noting, also, that the probability of ghosts increases as we increase m.

The fact that the resource requirements of the local networks are
independent of the number of patterns known is obviously important.
Relative to the central network, it means that the local networks are
very cheap. The number of distinct inputs that are needed to program
them is quite reasonabie, and, as T will explain, we can even get by with
far fewer units in the local networks than we need at the central level.

On the other hand, the results concerning the costs of simultaneous
access to the central network are much less encouraging for the CID
scheme. Using local or distributed representations in the central
module, the unit requirements grow with the product of s and r —a
very expensive proposition since the number of central connections will
then grow as sr2.

However, there are several important further observations. One is
that, at fixed numbers of units and patterns known, the degradation of
sensitivity as a function of s is rather gradual. And, given a lightly
loaded network, one can take s up to reasonable values without catas-
trophe. Simultaneous access by multiple patterns is very much like
degradation: a network can handle it without a noticeable decrement of
function if it is lightly loaded. A second observation concerns the lim-
its of coarse coding. For fixed n, the choice of m essentially amounts
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to a question of how coarse the code is: Large m corresponds to very
coarse coding, and small m corresponds to very fine coding. As we saw
in Chapter 3, the ability to represent several patterns at a time goes
down as the coding gets coarser. For simultaneous processing we need
sparse patterns, with each unit serving as a rather sharply tuned con-
junctive detector.

The final observation is that large costs are associated with simul-
taneous access to the central network. This fact has lead me to the
view that it is probably most reasonable to imagine that we must prob-
ably restrict simultaneous access, except perhaps in the case of small,
compact and well-differentiated subpatterns like letters. I incorporated
this idea of restricted access in the programmable blackboard model of
reading by assuming that we program successive parts of the program-
mable blackboard sequentially, using only the contents of the spotlight
of attention to access the central network; but that the local networks
so programmed continue to process and hold patterns of activation and
to allow those patterns to interact with one and other after the spotlight
of attention has moved on. In this way we get the best of both worlds:
sequential access to central knowledge, combined with interactive paral-
lel processing of several stimuli in the programmable nets. Another
point is that it may be a good idea to dissociate the inputs to the local
networks and the inputs to the central networks. Throughout this
chapter and Chapter 16, I have assumed that the units in each local net-
work would be isomorphic to units in the central network. However,
there is no reason for them to be. The central network needs much
higher "resolution" (n proportional to r) than the local networks (n
proportional to s). Thus, the units in the programmable modules need
only provide a few primitive clues to which of the s patterns are to be
represented in their outputs, while the units in the central network
would require a much higher-resolution representation.

CONCLUSION

This chapter has indicated how Willshaw’s fruitful analysis of simple
pattern associator models can be extended in several directions. These
extensions have lead to several interesting observations, particularly
into the effects of limited connectivity (Mitchison, personal communi-
cation, 1984) and into the capacity requirements of programmable net-
works. A large number of issues remain to be explored. I hope that
this discussion and elaboration of Willshaw’s analysis will aid in this
continuing exploration. '
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