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CHAPTER 

The Appeal of
Parallel Distributed Processing

J. L. McCLELLAND , D. E. RUMELHART , and G. E. HINTON

What makes people smarter than machines? They certainly are not
quicker or more precise. Yet people are far better at perceiving objects
in natural scenes and noting their relations , at understanding language
and retrieving contextually appropriate information from memory, at
making plans and carrying out contextually appropriate actions , and at a
wide range of other natural cognitive .tasks. People are also far better at
learning to do these things more accurately and fluently through pro-
cessing experience.

What is the basis for these differences? One answer, perhaps the
classic one we might expect from artificial intelligence , is " software." If
we only had the right computer program, the argument goes , we might
be able to capture the fluidity and adaptability of human information
proceSSIng.

Certainly this answer is partially correct. There have been great
breakthroughs in our understanding of cognition as a result of the

development of expressive high- level computer languages and powerful
algorithms. No doubt there will be more such breakthroughs in the
future. However , we do not think that software is the whole story.

In our view, people are smarter than today s computers because the

brain employs a basic computational architecture that is more suited to
deal with a central aspect of the natural information processing tasks

that people are so good at. In this chapter, we will show through exam-
ples that these tasks generally require the simultaneous consideration of
many pieces of information or constraints. Each constraint may be
imperfectly specified and ambiguous, yet each can playa potentially
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THE POP PERSPECTIVE

decisive role in determining the outcome of processing. After examin-
ing these points, we will introduce a computational framework for
modeling cognitive processes that seems well suited to exploiting these
constaints and that seems closer than other frameworks to the style of
computation as it might be done by the brain. We will review several
early examples of models developed in this framework , and we will !
show that the mechanisms these models employ can give rise to power- \
ful emergent properties that begin to suggest attractive alternatives to !
traditional accounts of various aspects of cognition. We will also show
that models of this class provide a basis for understanding how learning \
can occur spontaneously, as a by-product of processing activity. 

Multiple Simultaneous Constraints

Reaching and grasping. Hundreds of times each day we reach for
things. We nearly never think about these acts of reaching. And yet
each time , a large number of different considerations appear to jointly
determine exactly how we will reach for the object. The position of the
object , our posture at the time, what else we may also be holding, the 

size , shape , and anticipated weight of the object , any obstacles that may
be in the way-all of these factors jointly determine the exact method
we will use for reaching and grasping.

Consider the situation shown in Figure 1. Figure lA shows Jay
McClelland' s hand, in typing position IJ.t his terminal. Figure IB indi-
cates the position his hand assumed in reaching for a small knob on the
desk beside the terminal. We will let him describe what happened in
the first person:

On the desk next to my terminal are several objects-a chipped
coffee mug, the end of a computer cable , a knob from a clock
radio. I decide to pick the knob up. At first I hesitate , because
it doesn t seem possible. Then I just reach for it, and find
myself grasping the knob in what would normally be considered
a very awkward position- but it solves all of the constraints.
I'm not sure what all the details of the movement were, so I let
myself try it a few times more. I observe that my right hand is
carried up off the keyboard, bent at the elbow, until 
forearm is at about a 300 angle to the desk top and parallel to
the side of the terminal. The palm is facing downward through
most of this. Then , my arm extends and lowers down more or
less parallel to the edge of the desk and parallel to the side of
the terminal and, as it drops , it turns about 900 so that the
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1. THE APPEAL OF POP

FIGURE 1. A: An everyday situation in which it is necessary to take into account a large
number of constraints to grasp a desired object. In this case the target object is the small
knob to the left of the cup. B: The posture the arm arrives at in meeting these
constraints.
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palm is facing the cup and the thumb and index finger are
below. The turning motion occurs just in time, as my hand
drops, to avoid hitting the coffee cup. My index finger and
thumb close in on the knob and grasp it , with my hand com-
pletely upside down.

Though the details of what happened here might be quibbled with
the broad outlines are apparent. The shape of the knob and its position
on the table; the starting position of the hand on the keyboard; the
positions of the terminal , the cup, and the knob; and the constraints
imposed by the structure of the arm and the musculature used to con-
trol it-all these things conspired to lead to a solution which exactly
suits the problem. If any of these constraints had not been included
the movement would have failed. The hand would have hit the cup or
the terminal-or it would have missed the knob.

The mutual influence of syntax and semantics. Multiple constraints
operate just as strongly in language processing as they do in reaching
and grasping. ' Rumelhart (1977) has documented many of these multi-
ple constraints. Rather than catalog them here , we will use a few
examples from language to illustrate the fact that the constraints tend
to be reciprocal: The example shows that they do not run only from
syntax to semantics-they also run the other way.

It is clear, of course , that syntax constrains the assignment of mean-
ing. Without the syntactic rules of English to guide us, we cannot
correctly understand who has done what to whom in the following sen-
tence:

The boy the man chased kissed the girl.

But consider these examples (Rumelhart , 1977; Schank , 1973):

I saw the grand canyon flying to New York.
I saw the sheep grazing in the field.

Our knowledge of syntactic rules alone does not tell us what grammati-
cal role is played by the prepositional phrases in these two cases. In the
first

, "

flying to New York" is taken as describing the context in which
the speaker saw the Grand Canyon-while he was flying to New York.
In the second

, "

grazing in the field" could syntactically describe an
analogous situation , in which the speaker is grazing in the field, but this
possibility does not typically become available on first reading. Instead
we assign grazing in the field n as a modifier of the sheep (roughly,
who were grazing in the field"). The syntactic structure of each of
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1. THE APPEAL OF POP

these sentences, then , is determined in part by the semantic relations
that the constituents of the sentence might plausibly bear to one
another. Thus, the influences appear to run both ways , from the syn-
tax to the semantics and from the semantics to the syntax.

In these examples, we see how syntactic considerations influence
semantic ones and how semantic ones influence syntactic ones. We
cannot say that one kind of constraint is primary.

Mutual constraints operate , not only between syntactic and semantic
processing, but also within each of these domains as well. Here we
consider an example from syntactic processing, namely, the assignment
of words to syntactic categories. Consider the sentences:

I like the joke.
I like the drive.
I like to joke.
I like to drive.

In this case it .looks as though the words the and to serve to determine
whether the following word will be read as a noun or a verb. This , of
course , is a very strong constraint in English and can serve to force a
verb interpretation of a word that is not ordinarily used this way:

I like to mud.

. --~ -

On the other hand, if the information specifying whether the function
word preceding the final word is to or the is ambiguous , then the typical
reading of the word that follows it will determine which way the func-
tion word is heard. This was shown in an experiment by Isenberg,
Walker, Ryder, and Schweikert (1980). They presented sounds halfway
between to (actually If!) and the (actually IdA!) and found that words
like joke which we tend to think of first as nouns , made subjects hear
the marginal stimuli as the while words like drive which we tend to
think of first as verbs , made subjects hear the marginal stimuli as to.
Generally, then , it would appear that each word can help constrain the
syntactic role , and even the identity, of every other word.

Simultaneous mutual constraints in word recognition. Just as the

syntactic role of one word can influence the role assigned to another in
analyzing sentences , so the identity of one letter can influence the iden-
tity assigned to another in reading. A famous example of this , from
Selfridge , is shown in Figure 2. Along with this is a second example in
which none of the letters, considered separately, can be identified
unambiguously, but in which the possibilities that the visual
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FIGURE 2. Some ambiguous displays. The first one is from Selfridge, 1955. The
second line shows that three ambiguous characters can each constrain the identity of the
others. The third, fourth, and fifth lines show that these characters are indeed ambigu-
ous in that they assume other identities in other contexts. (The ink-blot technique of
making letters ambiguous is due to Lindsay and Norman, 1972).

information leaves open for each so constrain the possible identities of
the others that we are capable of identifying all of them.

At first glance, the situation here must seem paradoxical: The iden-
tity of each letter is constrained by the identities of each of the others.
But since in general we cannot know the identities of any of the letters
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I. THE APPEAL OF POP

until we have established the identities of the others , how can we get
the process started?

The resolution of the paradox, of course , is simple. One of the dif-
ferent possible letters in each position fits together with the others. It
appears then that our perceptual system is capable of exploring all these
possibilities without committing itself to one until all of the constraints
are taken into account.

Understanding through the interplay of multiple sources of
knowledge. It is clear that we know a good deal about a large number
of different standard situations. Several theorists have suggested that
we store this knowledge in terms of structures called variously: scripts
(Schank, 1976), frames (Minsky, 1975), or schemata (Norman &
Bobrow, 1976; Rumelhart, 1975). Such knowledge structures are
assumed to be the basis of comprehension. A great deal of progress
has been made within the context of this view.

However, it is important to bear in mind that most everyday situa-
tions cannot be rigidly assigned to just a single script. They generally
involve an interpla,y between a number of different sources of informa-
tion. Consider, for example, a child's birthday party at a restaurant.
We know things about birthday parties , and we know things about res-
taurants, but we would not want to assume that we have explicit
knowledge (at least, not in advance of our first restaurant birthday
party) about the conjunction of the two. Yet we can imagine what such
a party might be like. The fact that the party was being held in a res-
taurant would modify certain aspects of our expectations for birthday
parties (we would not expect a game of Pin-the-Tail-on-the-Donkey,
for example), while the fact that the event was a birthday party would
inform our expectations for what would be ordered and who would pay
the bill. 

Representations like scripts, frames , and schemata are useful struc-
tures for encoding knowledge, although we believe they only approxi-
mate the underlying structure of knowledge representation that emerges
from the class of models we consider in this book, as explained in
Chapter 14. Our main point here is that any theory that tries to
account for human knowledge using script-like knowledge structures
will have to allow them to interact with each other to capture the gen-
erative capacity of human understanding in novel situations. Achieving
such interactions has been one of the greatest difficulties associated
with implementing models that really think generatively using script- or
frame-like representations.
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THE POP PERSPECTIVE

PARALLEL DISTRIBUTED PROCESSING

In the examples we have considered , a number of different pieces of
information must be kept in mind at once. Each plays a part, con-
straining others and being constrained by them. What kinds of
mechanisms seem well suited to these task demands? Intuitively, these
tasks seem to require mechanisms in which each aspect of the informa-
tion in the situation can act on other aspects , simultaneously influenc-
ing other aspects and being influenced by them. To articulate these
intuitions , we and others have turned to a class of models we call Paral-
lel Distributed Processing (PDP) models. These models assume that
information processing takes place through the interactions of a large
number of simple processing elements called units , each sending excita-
tory and inhibitory signals to other units. In some cases, the units
stand for possible hypotheses about such things as the letters in a par-
ticular display or the syntactic roles of the words in a particular sen-
tence. In these cases, the activations stand roughly for the strengths

associated witt the different possible hypotheses , and the interconnec-
tions among the units stand for the constraints the system knows to
exist between the hypotheses. In other cases, the units stand for possi-
ble goals and actions , such as the goal of typing a particular letter, or
the action of moving the left index finger, and the connections relate
goals to subgoals, subgoals to actions , and actions to muscle move-
ments. In stilI other cases , units stand not for particular hypotheses or
goals, but for aspects of these things. Thus a hypothesis about the
identity of a word , for example , is itself distributed in the activations of
a large number of units.

PDP Models: Cognitive Science or Neuroscience?

One reason for the appeal of PDP models is their obvious " physiolog-
ical" flavor: They seem so much more closely tied to the physiology of
the brain than are other kinds of information-processing models. The
brain consists of a large number of highly interconnected elements
(Figure 3) which apparently send very simple excitatory and inhibitory
messages to each other and update their excitations on the basis of
these simple messages. The properties of the units in many of the PDP
models we will be exploring were inspired by basic properties of the
neural hardware. In a later section of this book, we wilI examine in
some detail the relation between PDP models and the brain.
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1. THE APPEAL OF POP

FIGURE 3. The arborizations of about 1 percent of the neurons near a vertical slice
through the cerebral cortex. The full height of the figure corresponds to the thickness of
the cortex , which is in this instance about 2 mm. (From Mechanics of the Mind p. 84 , by

C. Blakemore, 1977 , Cambridge, England: Cambridge University Press. Copyright 1977

by Cambridge University Press. Reprinted by permission.

Though the appeal of POP models is definitely enhanced by their
physiological plausibility and neural inspiration , these are not the pri-
mary bases for their appeal to us. We are , after all , cognitive scientists
and POP models appeal to us for psychological and computational rea-
sons. They hold out the hope of offering computationally sufficient
and psychologically accurate mechanistic accounts of the phenomena of
human cognition which have eluded successful explication in conven-
tional computational formalisms; and they have radically altered the
way we think about the time-course of processing, the nature of
representation , and the mechanisms of learning.
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The Microstructure of Cognition

The process of human cognition, examined on a time scale of
seconds and minutes, has a distinctly sequential character to it. Ideas.

come , seem promising, and then are rejected; leads in the solution to a
problem are taken up, then abandoned and replaced with new ideas.
Though the process may not be discrete , it has a decidedly sequential
character, with transitions from state-to-state occurring, say, two or
three times a second. Clearly, any useful description of the overall
organization of this sequential flow of thought will necessarily describe
a sequence of states. 

But what is the internal structure of each of the states in the
sequence , and how do they come about? Serious attempts to model
even the simplest macrosteps of cognition-say, recognition of single
words-require vast numbers of microsteps if they are implemented
sequentially. As Feldman and Ballard (1982) have pointed out, the
biological hardware is just too sluggish for sequential models of the
microstructure to provide a plausible account, at least of the
microstructure' of human thought. And the time limitation only gets
worse, not better, when sequential mechanisms try to take large
numbers of constraints into account. Each additional constraint
requires more time in a sequential machine , and , if the constraints are
imprecise, the constraints can lead to a computational explosion. Yet
people get faster, not slower , when they are able to exploit additional
constraints.

Parallel distributed processing models offer alternatives to serial
models of the microstructure of cognition. They do not deny that there
is a macrostructure, just as the study of subatomic particles does not
deny the existence of interactions between atoms. What POP models
do is describe the internal structure of the larger units, just as
subatomic physics describes the internal structure of the atoms that
form the constituents of larger units of chemical structure.

We shall show as we proceed through this book that the analysis of
the microstructure of cognition has important implications for most of
the central issues in cognitive science. In general , from the POP point
of view, the objects referred to in macrostructural models of cognitive
processing are seen as approximate descriptions of emergent properties
of the microstructure. Sometimes these approximate descriptions may
be sufficiently accurate to capture a process or mechanism well enough;
but many times, we will argue , they fail to provide sufficiently elegant
or tractable accounts that capture the very flexibility and open-
endedness of cognition that their inventors had originally intended to
capture. We hope that our analysis of POP models will show how an
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I. THE APPEAL OF PDP

examination of the microstructure of cognition can lead us closer to an
adequate description of the real extent of human processing and learn-

ing capacities.
The development of PDP models is still in its infancy. Thus far the

models which have been proposed capture simplified versions of the
kinds of phenomena we have been describing rather than the full ela-
boration that these phenomena display in real settings. But we think

there have been enough steps forward in recent years to warrant a con-
certedeffort at describing where the approach has gotten and where it
is going now, and to point out some directions for the future.

The first section of the book represents an introductory course in
parallel distributed processing. The rest of this chapter attempts to

describe in informal terms a number of the models which have been
proposed in previous work and to show that the approach is indeed a
fruitful one. It also contains a brief description of the major sources of
the inspiration we have obtained from the work of other researchers.

This chapter is Jollowed, in Chapter 2 , by a description of the quantita-
tive framework within which these models can be described and exam-
ined. , Ch~ptet l explicates one of the central concepts of the book: dis-

tributed representation. The final chapter in this section, Chapter 4
returns.tothe question of demonstrating the appeal of parallel

ciistributedprocessing models and gives an overview of our explorations
inthernierostructure of cognition as they are laid out in the remainder
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models in this domain. These models have not developed far enough
to capture the full details of obstacle avoidance and multiple constraints
on reaching and grasping, but there have been applications to two prob-
lems with some of these characteristics.

Finger movements in skilled typing. One might imagine , at first
glance , that typists carry out keystrokes successively, first programming
one stroke and then, when it is completed, programming the next.
However , this is not the case. For skilled typists, the fingers are con-

tinually anticipating upcoming keystrokes. Consider the word vacuum.
In this word , the , a and c are all typed with the left hand , leaving the
right hand nothing to do until it is time to type the first u. However, a
high speed film of a good typist shows that the right hand moves up to
anticipate the typing of the even as the left hand is just beginning to
type the v. By the time the c is typed the right index finger is in posi-
tion over the and ready to strike it.

When two successive key strokes are to be typed with the fingers of
the same hand , concurrent preparation to type both can result in similar
or conflicting instructions to the fingers and/ or the hand. Consider , in
this light , the difference between the sequence ev and the sequence er.
The first sequence requires the typist to move up from home row to
type the and to move down from the home row to type the while in
the second sequence , both the and the are above the home row.

The hands take very different positions in these two cases. In the
first case , the hand as a whole stays fairly stationary over the home
row. The middle finger moves up to type the and the index finger
moves down to type the v. In the second case, the hand as a whole
moves up, bringing the middle finger over the and the index finger
over the r. Thus , we can see that several letters can simultaneously
influence the positioning of the fingers and the hands.

From the point of view of optimizing the efficiency of the typing
motion , these different patterns seem very sensible. In the first case
the hand as a whole is maintained in a good compromise position to
allow the typist to strike both letters reasonably efficiently by extending
the fingers up or down. In the second case, the need to extend the
fingers is reduced by moving the whole hand up, putting it in a near-
optimal position to strike either key.

Rumelhart and Norman (1982) have simulated these effects using
PDP mechanisms. Figure 4 illustrates aspects of the model as they are
illustrated in typing the word very. In brief, Rumelhart and Norman
assumed that the decision to type a word caused activation of a unit for
that word. That unit , in turn , activated units corresponding to each of
the letters in the word. The unit for the first letter to be typed was
made to inhibit the units for the second and following letters , the unit

'-'--=-
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for the second to inhibit the third and following letters, and so on. 
a result of the interplay of activation and inhibition among these units
the unit for the first letter was at first the most strongly active , and the
units for the other letters were partially activated.

Each letter unit exerts influences on the hand and finger involved in
typing the letter. The unit, for example, tends to cause the index
finger to move down and to cause the whole hand to move down with
it. The unit , on the other hand, tends to cause the middle finger on
the left hand to move up and to cause the whole hand to move up also.
The unit also causes the left index finger to move up and the left
hand to move up with it.

The extent of the influences of each letter on the hand and finger it
directs depends on the extent of the activation of the letter. Therefore
at first , in typing the word very, the exerts the greatest control.

opwa'd

. ootw..d+;nward

~ x

~ ~ ~ ~

:; ii: :::; i!:

x..J WW C C! ..JCCz
~ ~ ii: 5 opward

Inward+otwa'd
downward

Response
System

THUMB

RESPONSE SYSTEM

U(- +0.5) LMh- 31 LH+l. 3) RH+1 +1.

Word
Schema

.-.... nlargo' lingo, position

. co"Onlllngo, position

Keypress
Schemata

FIGURE 4. The interaction of activations in typing the word very. The very unit is
activated from outside the model. It in turn activates the units for each of the com-
ponent letters. Each letter unit specifies the target finger positions, specified in a key-
board coordinate system. Land R stand for the left and right hands, and I and M for the
index and middle fingers. The letter units receive information about the current finger
position from the response system. Each letter unit inhibits the activation of all letter
units that follow it in the word: inhibitory connections are indicated by the lines with
solid dots at their terminations. (From "Simulating a Skilled Typist: A Study of Skilled
Motor Performance" by D. E. RumeIhart and D. A. Norman , 1982, Cognitive Science
p. 12. Copyright 1982 by Ablex Publishing. Reprinted by perm ission,)
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Because the and are simultaneously pulling the hand up, though , the
is typed primarily by moving the index finger , and there is little

movement on the whole hand.
Once a finger is within a certain striking distance of the key to 

typed, the actual pressing movement is triggered, and the keypress

occurs. The keypress itself causes a strong inhibitory signal to be sent
to the unit for the letter just typed , thereby removing this unit from the
picture and allowing the unit for the next letter in the word to become
the most strongly acti vated.

This mechanism provides a simple way for all of the letters to jointly
determine the successive configurations the hand will enter into in the

process of typing a word. This model has shown considerable success
predicting the time between successive keystrokes as a function of the
different keys involved. Given a little noise in the activation process, it
can also account for some of the different kinds of errors that have
been observed in transcription typing.

The typing .model represents an illustration of the fact that serial

behavior-a succession of key stroke iS not necessarily the result of

an inherently serial processing mechanism. In this model , the sequen-
tial structure of typing emerges from the interaction of the excitatory
and inhibitory influences among the processing units.

Reaching for an object without falling over. Similar mechanisms
can be used to model the process of reaching for an object without los-
ing one s balance while standing, as Hinton (1984) has shown. He con-
sidered a simple version of this task using a two-dimensional" person
with a foot, a lower leg, an upper leg, a trunk , an upper arm, and a
lower arm. Each of these limbs is joined to the next at a joint which
has a single degree of rotational freedom. The task posed to this per-
son is to reach a target placed somewhere in front of it , without taking
any steps and without falling down. This is a simplified version of the
situation in which a real person has to reach out in front for an object
placed somewhere in the plane that vertically bisects the body. The
task is not as simple as it looks, since if we just swing an arm out in
front of ourselves, it may shift our center of gravity so far forward that
we will lose our balance. The problem, then, is to find a set of joint

angles that simultaneously solves the two constraints on the task. First
the tip of the forearm must touch the object. Second, to keep from
falling down , the person must keep its center of gravity over the foot.

To do this , Hinton 'assigned a single processor to each joint. On each
computational cycle , each processor received information about how far
the tip of the hand was from the target and where the center of gravity
was with respect to the foot. Using these two pieces of information

each joint adjusted its angle so as to approach the goals of maintaining
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balance and bringing the tip closer to the target. After a number of
iterations , the stick-person settled on postures that satisfied the goal of
reaching the target and the goal of maintaining the center of gravity
over the " feet."

Though the simulation was able to perform the task , eventually satis-
fying both goals at once, it had a number of inadequacies stemming
from the fact that each joint processor attempted to achieve a solution
in ignorance of what the other joints were attempting to do. This prob-
lem was overcome by using additional processors responsible for setting
combinations of joint angles. Thus , a processor for flexion and exten-
sion of the leg would adjust the knee, hip, and ankle joints synergisti-

cally, while a processor for flexion and extension of the arm would
adjust the shoulder and elbow together. With the addition of proces-
sors of this form , the number of iterations required to reach a solution
was greatly reduced, and the form of the approach to the solution
looked very natural. The sequence of configurations attained in one
processing run is shown in Figure 5.

Explicit attempts to program a robot to cope with the problem of
maintaining balance as it reaches for a desired target have revealed the
difficulty of deriving explicitly the right combinations of actions for
each possible starting state and goal state. This simple model illustrates
that we may be wrong to seek such an explicit solution. We see here
that a solution to the problem can emerge from the action of a number
of simple processors each attempting to honor the constraints
independently.

FIGURE 5. A sequence of configurations assumed by the stick " person" performing the
reaching task described in the text , from Hinton (1984). The small circle represents the
center of gravity of the whole stick-figure, and the cross represents the goal to be
reached. The configuration is shown on every second iteration.
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Perception

L.-

Stereoscopic vision. One early model using parallel distributed pro-
cessing was the model of stereoscopic depth perception proposed by
Marr and Poggio (I 976). Their theory proposed to explain the percep- .
tion of depth in random-dot stereograms (Figure 6) in terms of a sim-
ple distributed processing mechanism.

Random-dot stereograms present interesting c~allenges to mechan-
isms of depth perception. A stereogram consists of two random-dot pat-
terns. In a simple stereogram such as the one shown here , one pattern
is an exact copy of the other except that the pattern of dots in a region
of one of the patterns is shifted horizontally with respect to the rest of
the pattern. Each of the two patterns-corresponding to two retinal
images-consists entirely of a pattern of random dots , so there is no
information in either of the two views considered alone that can indi-
cate the presence of different surfaces , let alone depth relations among
those surfaces. Yet , when one of these dot patterns is projected to the
left eye and th-e other to the right eye , an observer sees each region as
a surface, with the shifted region hovering in front of or behind the

other, depending on the direction of the shift.

FIGURE 6. Random-dot stereo grams. The two patterns are identical except that the
pattern of dots in the central region of the left pattern are shifted over with respect to
those in the right. When viewed stereoscopically such that the left pattern projects to the
left eye and the right pattern to the right eye , the shifted area appears to hover above the
page. Some readers may be able to achieve this by converging to a distant point (e. , a
far wall) and then interposing the figure into the line of sight. (From Vision p. 9, by D.
Marr. 1982, San Francisco: Freeman. Copyright 1982 by W. H. Freeman & Co.
Reprinted by permission.)
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What kind of a mechanism might we propose to account for these
facts? Marr and Poggio (I976) began by explicitly representing the two
views in two arrays , as human observers might in two different retinal
images. They noted that corresponding black dots at different per-
ceived distances from the observer will be offset from each other by
different amounts in the two views. The job of the model is to deter-
mine which points correspond. This task is, of course , made difficult
by the fact that there will be a very large number of spurious
correspondences of individual dots. The goal of the mechanism , then
is to find those correspondences that represent real correspondences in
depth and suppress those that represent spurious correspondences.

To carry out this task , Marr and Poggio assigned a processing unit to
each possible conjunction of a point in one image and a point in the
other. Since the eyes are offset horizontally, the possible conjunctions
occur at various offsets or disparities along the horizontal dimension.
Thus , for each point in one eye, there was a set of processing units
with one unit assigned to the conjunction of that point and the point at
each horizontal offset from it in the other eye.

Each processing unit received activation whenever both of the points
the unit stood for contained dots. So far , then , units for both real and
spurious correspondences would be equally activated. To allow the
mechanism to find the right correspondences, they pointed out two
general principles about the visual world: (a) Each point in each view
generally corresponds to one and only one point in the other view , and
(b) neighboring points in space tend to be at nearly the same depth and
therefore at about the same disparity in the two images. While there
are discontinuities at the edges of things, over most of a two-
dimensional view of the world there will be continuity. These princi-
ples are called the uniqueness and continuity constraints , respectively.

Marr and Poggio incorporated these principles into the interconnec-

tions between the processing units. The uniqueness constraint was cap-
tured by inhibitory connections among the units that stand for alterna-
tive correspondences of the same dot. The continuity principle was
captured by excitatory connections among the units that stand for simi-
lar offsets of adjacent dots.

These additional connections allow the Marr and Poggio model to
solve" stereograms like the one shown in the figure. At first , when a

pair of patterns is presented, the units for all possible correspondences
of a dot in one eye with a dot in the other will be equally excited.
However, the excitatory connections cause the units for the correct
conjunctions to receive more excitation than units for spurious conjunc-
tions, and the inhibitory connections allow the units for the correct
conjunctions to turn off the units for the spurious connections. Thus
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the model tends to settle down into a stable state in which only the
correct correspondence of each dot remains active.

There are a number of reasons why Marr and Poggio (1979) modi-
fied this model (see Marr, 1982, for a discussion), but the basic
mechanisms of mutual excitation between units that are mutually con-
sistent and mutual inhibition between units that are mutually incompa-
tible provide a natural mechanism for settling on the right conjunctions
of points and rejecting spurious ones. The model also illustrates how
general principles or rules such as the uniqueness and continuity princi-
ples may be embodied in the connections between processing units , and
how behavior in accordance with these principles can emerge from the
interactions determined by the pattern of these interconnections.

Perceptual completion of familiar patterns. Perception , of course , is

influenced by familiarity. It is a well-known fact that we often misper-
ceive unfamiliar objects as more familiar ones and that we can get by
with less time or with lower-quality information in perceiving familiar

items than we need for perceiving unfamiliar items. Not only does
familiarity help us determine what the higher- level structures are when
the lower-level information is ambiguous; it also allows us to fill in
missing lower-level information within familiar higher-order patterns.
The well- known phonemic restoration effect is a case in point. In this
phenomenon , perceivers hear sounds that have been cut out of words
as if they had actually been present. For example, Warren (1970)
presented legi#lature to subjects , with a click in the location marked by
the #. Not only did subjectscorrectIy identify the word legislature;
they also heard the missing sl just as though it had been presented.
They had great difficulty , lo~alit:ing toe click, which they tended to hear
as a disembodied sound. Similar phenomena have been observed in
visual perception of wordssince the work of Pillsbury (1897).

Two of us have proPased a tnodel describing the role of familiarity in
perception based onexcita.tQry ap:(:tinhibitory interactions among units
standing for variousqypgtpeses about the input at different levels of
abstraction (McCleUand&' (u.melhart , 1981; Rumelhart & McClelland
1982). The model ' haS'; ~een.: ~pplied' in detail ' to ' the role of familiarity
in the perception of letters in visually presented, words , and has proved
to provide a verycloseaccdunr of the results of a large number of
experiments. ' 

The model assumes that there are units that act as detectors for the
visual features whicl1~distlQgliish letters; with one set of units assigned
to detect the feaiun~siri eacliofthe different letter-positions in the
word. For four-letter words , then , there are four such sets of detectors.
There are also four sets of detectors for the letters themselves and a set
of detectors for the words.
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FIGURE 7. The unit for the letter in the first position of a four-letter array and some
of its neighbors. Note that the feature and letter units stand only for the first position; in
a complete picture of the units needed from processing four-letter displays , there would
be four full sets of feature detectors and four full sets of letter detectors. (From ' An
Interactive Activation Model of Context Effects in Letter Perception: Part 1. An Account
of Basic Findings" by J. L. McClelland and D. E. Rumelhart, 1981 Psychological Review
88, p. 380. Copyright 1981 by the American Psychological Association. Reprinted by

permission.)

them and to inhibit detectors for words which do not have these letters.
A number of words are partially consistent with the active letters , and
receive some net excitation from the letter level, but only the word
WORK matches one of the active letters in all four positions. As a
result WORK becomes more active than any other word and inhibits
the other words , thereby successfully dominating the pattern of activa-
tion among the word units. As it grows in strength , it sends feedback
to the letter level , reinforcing the activations of the W, 0, R, and 

the corresponding positions. In the fourth position , this feedback gives
the upper hand over and eventually the stronger activation of the
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Word level
work

~ 0.

c( 0.

----------- 

fork
weak

-0.4

Letter level

...

----- K

...

r::: 0.

c( 0.

-0.4 16 
Time

It!
FIGURE 8. A possible display which might be presented to the interactive activation
model of word recognition , and the resulting activations of selected letter and word units.
The letter units are for the letters indicated in the fourth position of a four-letter display.

detector allows it to dominate the pattern of activation , suppressing
the detector completely.

This example illustrates how POP models can allow knowledge about
what letters go together to form words to work together with natural
constraints on the task (i.e. , that there should only be one letter in one
place at one time), to produce perceptual completion in a simple and
direct way.

Completion of novel patterns. However, the perceptual intelligence
of human perceivers far exceeds the ability to recognize familiar pat-
terns and fill in missing portions. We also show facilitation in the
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In the model, each unit has an activation value, corresponding
roughly to the strength of the hypothesis that what that unit stands for
is present in the perceptual input. The model honors the following
important relations which hold between these " hypotheses" or activa-
tions: First , to the extent that two hypotheses are mutually consistent
they should support each other. Thus , units that are mutually con-
sistent, in the way that the letter in the first position is consistent
with the word TAKE tend to excite each other. Second, to the extent
that two hypotheses are mutually inconsistent , they should weaken each
other. Actually, we can distinguish two kinds of inconsistency: The
first kind might be called between-level inconsistency. For example
the hypothesis that a word begins with a is inconsistent with the
hypothesis that the word is MOVE. The second might be called mutual
exclusion. For example, the hypothesis that a word begins with 

excludes the hypothesis that it begins with R since a word can only
begin with one letter. Both kinds of inconsistencies operate in the word
perception model to reduce the activations of units. Thus , the letter
units in each 'positioncompete with all other letter units in the same

position , and .the Ylord units compete with each other. , This type of
inhibitory interaction is often called competitive inhibition. In addition

there are inhibitory interactions between incompatible units on different
levels. This type of inhibitory interaction is simply called
between-level inhibition.

The set of excitatory and inhibitory interactions between units can be
diagrammed by drawing excitaroryand inhibitory links between them.
The whole picture is toocOn1ple~Jodraw, sowe illustrate only with a
fragment: Some of thein.te~a~~~6'n~1:Ietween some of the units in this
model are illustrated inFig4re.7"'

;;~

i "

, "

Let us consider what , h'ip~eI1s~ :r~\: ii' ~Yst~(lj)lke this when a familiar

" " ., " " ,

stimulus is presentedund~i(' rag~g(Qoodjiions. For example con-
sider the display shoWn In. F G 1hlsqi~playconsists of the letters
W, 0, and R., completely :yi~I /;i d,/~J;ipugtt'9ra fourth letter to rule

out all letters 6thef'~h3pR"n ~:tiB~r~re~.0I1setPf the display, the
activations of the uriiis'

~(' . ~:'

i~e.19w9. When the display is
presented, detectorsforihe"iJe.. 3pre~~~i;'iri ieachposition become
active (I.e. " their activatiQn~igr9;

y~,

QJYrJhis point , they begin to
excite and inhibit , thecotTesppn(tl f" ele " fofletters. In the first. .,c., ,

.. ..". "

three positions, w,Q, aric;lj(~~f~' ~i, )lsl)Facti\la.ted, so we will
focus our attention ol1:tn-eJd4tfhposiiiohwnereR and K are both
equally consistent Vfiththe. ~~tl~j;!f~~F~t~~;G:tJ~~~Ylheactivations of the
detectors for Rand, ~start:ourYgro*in.g:' JQg~tb~f; as the feature detec-
tors below them become, acti~~te9. \~~~the$tf;d~tectorsbecome active
they and the active letterd,~~eqt(ffs:~r()r w:;~a;~' a'g(j Rio the other posi-
tions start to activated7t

77~?r~:~~~~;~1;~t~~
~bj9.~;; gave these letters 

;'i,t;' ;c'
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perception of letters in unfamiliar letter strings which are word- like but
not themselves actually familiar.

One way of accounting for such performances is to imagine that the
perceiver possesses, in addition to detectors for familiar words, sets of .

detectors for regular subword units such as familiar letter clusters, or
that they use abstract rules , specifying which classes of letters can go
with which others in different contexts. It turns out , however , that the
model we have already described needs no such additional structure to
produce perceptual facilitation for word- like letter strings; to this extent
it acts as if it " knows " the orthographic structure of English. We illus-
trate this feature of the model with the example shown in Figure 9,
where the non word YEAD is shown in degraded form so that the
second letter is incompletely visible. Given the information about this
letter , considered alone , either or would be possible in the second
position. Yet our model will tend to complete this letter as an 

The reason for this behavior is that , when YEAD is shown , a number
of words are partially activated. There is no word consistent with Y, E
or F, A, and but there are words which match YEA (YEAR for
example) and ' others which match EAD (BEAD, DEAD, HEAD, and
READ for example). These and other near misses are partially
activated as a result of the pattern of activation at the letter level.
While they compete with each other , none of these words gets strongly
enough activated to completely suppress all the others. Instead, these

units act as a group to reinforce particularly the letters and A. There
are no close partial matches which include the letter in the second

position, so this letter receives no feedback support. As a result
comes to dominate, and eventually suppress , the in the second

position.
The fact that the word perception model exhibits perceptual facilita-

tion to pronounceable nonwords as well as words illustrates once again
how behavior in accordance with general principles or rules can emerge
from the interactions of simple processing elements. Of course, the
behavior of the word perception model does not implement exactly any
of the systems of orthographic rules that have been proposed by
linguists (Chomsky & Halle, 1968; Venesky, 1970) or psychologists
(Spoehr &. Smith, 1975). In this regard, it only approximates such

rule-based descriptions of perceptual processing. However, rule sys-
tems such as Chomsky and Halle s or Venesky s appear to be only.
approximately honored in human performance as well (Smith & Baker
1976). Indeed , some of the discrepancies between human performance
data and rule systems occur in exactly the ways that we would predict
from the word perception model (Rumelhart & McClelland, 1982).
This illustrates the possibility that PDP models may provide more
accurate accounts of the details of human performance than models

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil



""""

-.J

1. THE APPEAL OF PDP

Word Level

c: 0.4

i;j

oc( 0.

dead
- - read

bead
head

- 0.

Letter Level

------ ....

c: 0.
.Q .
i;j

oc( 0.
C& F

16 
Time

-0.

5W ;0'
FIGURE 9. An example of a non word display that might be presented to the interactive
activation model of word recognition and the response of selected units at the letter and
word levels. The letter units illustrated are detectors for letters in the second input
position.

based on a set of rules representing human competence-at least in
some domains.

Retrieving Information From Memory

Content addressability. One very prominent feature of human
memory is that it is content addressable. It seems fairly clear that we
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can access information in memory based on nearly any attribute of the
representation we are trying to retrieve.

Of course , some cues are much better than others. An attribute
which is shared by a very large number of things we know about is not
a very effective retrieval cue , since it does not accurately pick out a par-
ticular memory representation. But , several such cues , in conjunction
can do the job. Thus, if we ask ' a friend who goes out with several
women

, "

Who was that woman I saw you with?" , he may not know
which one we mean-but if we specify something else about her-say
the color of her hair , what she was wearing (in so far as he remembers
this at all), where we saw him with her-he will likely be able to hit
upon the right one.

It is, of course, possible to implement some kind of content
addressability of memory on a standard computer in a variety of dif-
ferent ways. One way is to search sequentially, examining each
memory in the system to find the memory or the set of memories
which has the. particular content specified in the cue. An alternative
somewhat more efjlcient , scheme involves some form of indexing-
keeping a list, for every content a memory might have, of which
memories have that content.
Such an indexing scheme can be made to work with error-free

probes , but it will break dowhif there is an error in the specification of
the retrieval cue. , There Ij.re possible ways of recovering from such
errors, but they lead' ~9!Ji~, ~iI1dof cmnbinatorial explosions which
plague this kind of computefiroplerfientMioh,

But suppose thatw.~. iJ#~gihe~(':!h~ie~phmemory is represented by a
unit which has mutua:IIY~5eicr- ny)intetacfj()nswith units standing for

- ., " " ~"' ";'" ", ' ' ' ' ' ,

each of its properti~$; 'flie e:Qe:Yeranyprbperty of the memory
became active" th~ ;rotf ~tt~p:cit()b~iactivated, and whenever
the memorywa.si" J~~' :~QnteI1(s\vould tend to become
activated. Slicn' d)atl,toI'r1atically produce content
addressability(&kJ( nt+'"d!4Ho(be immune to errors , it
would notbe4~y,. J;~~ii;~ne'P~obe if the remaining

properties SPeC!f1"': if;~;~:

, ,

As described) pfq.lie,rtyJhat isapart of a number
of differentme )/~WiH'~tend' toactivate all of thememories.lri$~i lff~~qictiYi1:ief from swamping the
correct" me " ; ~trW;a(fdiIJ,itial inhibitory connec-
tions amo'p,gtli ,, ~.1tcl~itldi1al desirable feature would
be mllNaI1YAi l)t9ryi~!etatigris:-~111,OI1g mutually incompatible
property LlrtjJS.; Fo(example;,apersoQcaOI1ot'bothbe single and mar-
ried at ,tn~s~m~ tiWe, so the units for different marital states would be
mutuallyil;lhibitoty:

' ," " " " . " ; , '.
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McClelland (1981) developed a simulation model that illustrates how
a system with these properties would act as a content addressable
memory. The model is obviously oversimplified, but it illustrates many
of the characteristics of the more complex models that will be con-
sidered in later chapters.

Consider the information represented in Figure 10, which lists a
number of people we might meet if we went to live in an unsavory
neighborhood , and some of their hypothetical characteristics. A subset

Name

Art

Sam
Clyde
Mi~e
Jim
Greg
John
Doug
Lance
George
Pete
Fred
Gene
Ralph

Phil
Ike
Nick
Don
Ned
Karl
Ken
Earl
Rick

Neal
Dave

The Jets and The Sharks

Gang

Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets
Jets

Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks
Sharks

Age

40'
30'
20'
40'
30'
20'
20'
20'
30'
20'
20'
20'
20'
20'
30'

COL.

COL.

Edu

Sing.
Mar.
Sing.
Sing.
Sing.
Div.
Mar.
Mar.
Sing.
Mar.
Div.
Sing.
Sing.
Sing.
Sing.

Mar.
Sing.
Sing.
Mar.
Mar.
Mar.
Sing.
Mar.
Div.
Mar.
Sing.
Div.

Mar Occupation

30'
30'
30'
30'
30'
40'
20'
40'
30'
30'
30'
30'

COL.

COL.
COL.

COL.

Pusher
Burglar
Bookie
Bookie
Bookie
Burglar
Pusher
Burglar
Bookie
Burglar
Burglar
Bookie
Pusher
Pusher
Pusher

Pusher
Bookie
Pusher
Burglar
Bookie
Bookie
Burglar
Burglar
Burglar
Pusher
Bookie
Pusher

FIGURE 10. Characteristics of a number of individuals belonging to two gangs, the Jets
and the Sharks. (From "Retrieving General and Specific Knowledge From Stored
Knowledge of Specifics" by 1. L. McClelland , 1981, Proceedings of the Third Annual Confer-
ence of the Cognitive Science Society, Berkeley, CA. Copyright 1981 by J. L. McClelland.
Reprinted by permission.)

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil



--1

THE PDP PERSPECTIVE

of the units needed to represent this information is shown in Figure 11.
In this network, there is an " instance unit" for each of the characters

described in Figure 10 , and that unit is linked by mutually excitatory
connections to all of the units for the fellow s properties. Note that we
have included property units for the names of the characters, as well as
units for their other properties.

Now , suppose we wish to retrieve the properties of a particular indi-
vidual , say Lance. And suppose that we know Lance s name. Then we
can probe the network by activating Lance s name unit , and we can see
what pattern of activation arises as a result. Assuming that we know 
no one else named Lance , we can expect the Lance name unit to be
hooked up only to the instance unit for Lance. This will in turn
activate the property units for Lance , thereby creating the pattern of

FIGURE 11. Some of the Ilnits and interconnections needed to represent the individuals
shown in Figure 10. The units connected with double-headed arrows are mutually excita-
tory. All the units within the same cloud are mutually inhibitory. (From " Retrieving
General and Specific ,Knowledge From Stored Knowledge of Specifics" by J. 
McClelland, 1981 Proceedings of the Third Annual Conference of the Cognitive Science

Society, Berkeley, CA. Copyright 1981 by J. L. McClelland. Reprinted by permission.)
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activation corresponding to Lance. In effect, we have retrieved a
representation of Lance. More will happen than just what we have
described so far , but for the moment let us stop here.

Of course , sometimes we may wish to retrieve a name , given other
information. In this case, we might start with some of Lance
properties , effectively asking the system , say " Who do you know who is
a Shark and in his 20s?" by activating the Shark and 20s units. In this
case it turns out that there is a single individual , Ken , who fits the
description. So , when we activate these two properties , we will activate
the instance unit for Ken , and this in turn will activate his name unit
and fill in his other properties as well.

Graceful degradation. A few of the desirable properties of this kind
of model are visible from considering what happens as we vary the set
of features we use to probe the memory in an attempt to retrieve a par-
ticular individual's name. Any set of features which is sufficient to
uniquely characterize a particular item will activate the instance node
for that item .more strongly than any other instance node. A probe
which contains misleading features will most strongly activate the node
that it matches best. This will clearly be a poorer cue than one which
contains no misleading information-but it will still be sufficient to
activate the " right answer" more strongly than any other , as long as the
introduction qf misleading information does not make the probe closer
to some other item. In general , though the degree of activation of a
particular instance node and of the corresponding name nodes varies in
this model as a function of the exact content of the probe , errors in the
probe will not be fatal unless they make the probe point to the wrong
memory. This kind of model's handling of incomplete or partial probes
also requires no special error-recovery scheme to work- it is a natural
by-product of the nature of the retrieval mechanism that it is capable of
graceful degradation.

These aspects of the behavior of the Jets and Sharks model deserve
more detailed consideration than the present space allows. One reason
we do not go into them is that we view this model as a stepping stone
in the development of other models , such as the models using more
distributed representations , that occur in other parts of this book. We

, however, have more to say about this simple model , for like some
of the other models we have already examined, this model exhibits
some useful properties which emerge from the interactions of the pro-
cessing units.

Default assignment. It probably will have occurred to the reader that
in many of the situations we have been examining, there will be other
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activations occurring which may influence the pattern of activation
which is retrieved. So , in the case where we retrieved the properties of
Lance , those properties , once they become active , can begin to activate
the units for other individuals with those same properties. The
memory unit for Lance will be in competition with these units and will
tend to keep their activation down, but to the extent that they do

become active , they will tend to activate their own properties and there-
fore fill them in. In this way, the model can fill in properties of
individuals based on what it knows about other , similar instances.

To illustrate how this might work we have simulated the case in
which we do not know that Lance is a Burglar as opposed to a Bookie
or a Pusher. It turns out that there are a group of individuals in the set
who are very similar to Lance in many respects. When Lance
properties become activated, these other units become partially
activated, and they start activating their properties. Since they all share
the same " occupation " they work together to fill in that property for
Lance. Of course , there is no reason why this should necessarily be the
right answer , but generally speaking, the more similar two things are in
respects that we know about, the more likely they are to be similar in
respects that we do not , and the model implements this heuristic.

Spontaneous generalization. The model we have been describing
has another valuable property as well- it tends to retrieve what is com-
mon to those memories which match a retrieval cue which is too gen-
eral to capture anyone memory. Thus , for example , we could probe
the system by activating the unit corresponding to membership in the
Jet~. This unit will partially activate all the instances of the Jets
thereby causing each to send activations to its properties. In this way
the model can retrieve the typical values that the members of the Jets
have on each dimension-even though there is no one Jet that has
these typical values. In the example , 9 of 15 Jets are single , 9 of 15 are
in their 20s, and 9 of 15 have only a Junior High School education;
when we probe by activating the Jet unit , all three of these properties
dominate. The Jets are evenly divided between the three occupations
so each of these units becomes partially activated. Each has a different
name , so that each name unit is very weakly activated , nearly cancelling
each other out.

In the example just given of spontaneous generalization , it would not
be unreasonable to suppose that someone might have explicitly stored a
generalization about the members of a gang. The account just given
would be an alternative to " explicit storage" of the generalization. It
has two advantages , though , over such an account. First, it does not
require any special generalization formation mechanism. Second, it can
provide us with generalizations on unanticipated lines, on demand.
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Thus , if we want to know, for example , what people in their 20s with a
junior high school education are like, we can probe the model by
activating these two units. Since all such people are Jets and Burglars
these two units are strongly activated by the model in this case; two of
them are divorced and two are married , so both of these units are par-
tially activated. 1

The sort of model we are considering, then, is considerably more
than a content addressable memory. In addition, it performs default
assignment , and it can spontaneously retrieve a general concept of the
individuals that match any specifiable probe. These properties must be
explicitly implemented as complicated computational extensions of
other models of knowledge retrieval , but in PDP models they are
natural by-products of the retrieval process itself.

REPRESENT A TION AND LEARNING IN PDP MODELS

In the Jets .and Sharks model , we can speak of the model's active
representation at a particular time , and associate this with the pattern of
activation over the units in the system. We can also ask: What is the
stored knowledge that gives rise to that pattern of activation? In con-
sidering this question, we see immediately an important difference
between PDP models and other models of cognitive processes. In most
models, knowledge is stored as a static copy of a pattern. Retrieval
amounts to finding the pattern in long-term memory and copying it into
a buffer or working memory. There is no real difference between the
stored representation in long-term memory and the active representa-
tion in working memory. In PDP models , though , this is not the case.
In these models, the patterns themselves are not stored. Rather, what
is stored is the connection strengths between units that allow these pat-
terns to be re-created. In the Jets and Sharks model, there is an
instance unit assigned to each individual , but that unit does not contain
a copy of the representation of that individual. Instead , it is simply the
case that the connections between it and the other units in the system
are such that activation of the unit will cause the pattern for the
individual to be reinstated on the property units.

1 In this and all other cases , there is a tendency for the pattern of activation 10 be influ-
enced by partially activated , near neighbors , which do not quite match the probe. Thus,
in this case, there is a Jet AI , who is a Married Burglar. The unit for Al gets slightly
activated , giving Married a slight edge over Divorced in the simulation.

common
Pencil

common
Pencil

common
Pencil



THE POP PERSPECTIVE

This difference between PDP models and conventional models has
enormous implications, both for processing and for learning. We have
already seen some of the implications for processing. The representa-
tion of the knowledge is set up in such a way that the knowledge neces-
sarily influences the course of processing. Using knowledge in process-
ing is no longer a matter of finding the relevant information in memory
and bringing it to bear; it is part and parcel of the processing itself.

For learning, the implications are equally profound. For if the
knowledge is the strengths of the connections , learning must be a
matter of finding the right connection strengths so that the right pat-

terns of activation will be produced under the right circumstances. This
is an extremely important property of this class of models , for it opens
up the possibility that an information processing mechanism could
learn as a result of tuning its connections, to capture the
interdependencies between activations that it is exposed to in the
course of processing.

In recent years , there has been quite a lot of interest in learning in
cognitive science. Computational approaches to learning fall predom-
inantly into what might be called the " explicit rule formulation " tradi-

tion , as represented by the work of Winston (1975), the suggestions of
Chomsky, and the ACT'" model of 1. R. Anderson (1983). All of this
work shares the assumption that the goal of learning is to formulate
explicit rules (propositions, productions , etc.) which capture powerful

generalizations in a succinct way. Fairly powerful mechanisms, usually
with considerable innate knowledge about a domain , and/ or some start-
ing set of primitive propositional representations, then formulate
hypothetical general rules, e. , by comparing particular cases and for-
mulating explicit generalizations.

The approach that we take in developing PDP models is completely
different. First , we do not assume that the goal of learning is the for-
mulation of explicit rules. Rather, we assume it is the acquisition of
connection strengths which allow a network of simple units to act 

though it knew the rules. Second , we do not attribute powerful compu-
tational capabilities to the learning mechanism. Rather, we assume
very simple connection strength modulation mechanisms which adjust
the strength of connections between units based on information locally
available at the connection.

These issues will be addressed at length in later sections of this book.
For now , our purpose is to give a simple , illustrative example of the
connection strength modulation process , and how it can produce net-
works which exhibit some interesting behavior.

Local VS. distributed representation. Before we turn to an explicit
consideration of this issue, we raise a basic question about
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representation. Once we have achieved the insight that the knowledge
is stored in the strengths of the interconnections between units , a ques-
tion arises. Is there any reason to assign one unit to each pattern that
we wish to learn? Another possibility-one that we explore extensively
in this book- is the possibility that the knowledge about any individual
pattern is not stored in the connections of a special unit reserved for
that pattern, but is distributed over the connections among a large
number of processing units. On this view, the Jets and Sharks model
represents a special case in which separate units are reserved for each

instance.
Models in which connection information is explicitly thought of as

distributed have been proposed by a number of investigators. The
units in these collections may themselves correspond to conceptual
primitives , or they may have no particular meaning as individuals. In
either case , the focus shifts to patterns of activation over these units
and to mechanisms whose explicit purpose is to learn the right connec-
tion strengths to allow the right patterns of activation to become
activated under the right circumstances.

In the rest of this section , we will give a simple example of a POP
model in which the knowledge is distributed. We will first explain how
the model would work , given pre-existing connections, and we will then
describe how it could come to acquire the right connection strengths
through a very simple learning mechanism. A number of models which
have taken this distributed approach have been discussed in this book'
predecessor Hinton -and A. - Anderson s (1981) Parallel Models of
Associative Memory. We will consider a simple version of a common

, type of distributed model , a pattern associator. 

- -.. - .. -- - - 

Pattern associators are models in which a pattern of activation over
one set of units can cause a pattern of activation over another set of
units without any intervening units to stand for either pattern as a
whole. Pattern associators would, for example, be capable of
associating a pattern of activation on one set of units corresponding to
the appearance of an object with a pattern on another set corresponding
to the aroma of the object, so that , when an object is presented visu-
ally, causing its visual pattern to become active , the model produces the
pattern corresponding to its aroma.

How a pattern associator works. For purposes of illustration , we
present a very simple pattern associator in Figure 12. In this model
there are four units in each of two pools. The first pool, the A units
will be the pool in which patterns corresponding to the sight of various
objects might be represented. The second pool , the Bunits , will be the
pool in which the pattern corresponding to the aroma will be
represented. We can pretend that alternative patterns of activation on
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From Vision

A Units

From

::;( 

Olfaction

B Units

FIGURE 12. A simple pattern associator. The example assumes that patterns of activa-
tion in the A units can be produced by the visual system and patterns in the B units can
be produced by the olfactory system. The synaptic connections allow the outputs of the
A units to influence the activations of the B units. The synaptic weights linking the A
units to the B units were selected so as to allow the pattern of activation shown on the A
units to reproduce the pattern of activation shown on the B units without the need for
any olfactory input. 

the A units are produced upon viewing a rose or a grilled steak, and
alternative patterns on the B units are produced upon sniffing the same
objects. Figure 13 shows two pairs of patterns , as well as sets of inter-
connections necessary to allow the A member of each pair to reproduce
the B member.

The details of the behavior of the individual units vary among dif-
ferent versions of pattern associators. For present purposes, we
assume that the units can take on positive or negative activation values
with 0 representing a kind of neutral intermediate value. The strengths
of the interconnections between the units can be positive or negative
real numbers.

The effect of an A unit on a B unit is determined by multiplying the
activation of the A unit times the strength of its synaptic connection
with the B unit. For example , if the connection from a particular A
unit to a particular B unit has a positive sign , when the A unit is
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25 +.25 +.25 -
25 +.25 +.25 -

+1 !

25 - 25 +.25 -
25 +.25 - 25 +.

25 - 25 - 25 +.
25 - 25 - 25 +.

25 +.25 - 25 +.
25 - 25 +.25 -

FIGURE 13. Two simple associators represented as matrices. The weights in tffe-fi:,~1 1..0 4-uL.
matrii(e8 allow the A pattern shown above the matrix to produce the B pattern shown to
the right of it. Note that the weights in the first matrix are the same as those shown in
the diagram in Figure 12.

excited (activation greater than 0), it will excite the B unit. For this
example , we ll simply assume that the activation of each unit is set to
the sum of the excitatory and inhibitory effects operating on it. This is
one of the simplest possible cases.

Suppose, now, that we have created on the A units the pattern
corresponding to the first visual pattern shown in Figure 13 , the rose.

How should we arrange the strengths of the interconnections between
the A units and the B units to reproduce the pattern corresponding to
the aroma of a rose? We simply need to arrange for each A unit to
tend to excite each B unit which has a positive activation in the aroma
pattern and to inhibit each B unit which has a negative activation in the
aroma pattern. It turns out that this goal is achieved by setting the
strength of the connection between a given A unit and a given B unit
to a value proportional to the product of the activation of the two units.
In Figure 12 , the weights on the connections were chosen to allow the
A pattern illustrated there to produce the illustrated B pattern according
to this principle. The actual strengths of the connections were set to
:t . , rather than :t 1 , so that the A pattern will produce the right mag-
nitude , as well as the right sign , for the activations of the units in the B
pattern. The same connections are reproduced in matrix form in Fig-
ure 13A.

Pattern associators like the one in Figure 12 have a number of nice
properties. One is that they do not require a perfect copy of the input
to produce the correct output , though its strength will be weaker in this
case. For example , suppose that the associ at or shown in Figure 12 were
presented with an A pattern of 0, 1). This is the A pattern shown
in the figure , with the activation of one of its elements set to O. The B
pattern produced in response will have the activations of all of the B
units in the right direction; however, they will be somewhat weaker
than they would be , had the complete A pattern been shown. Similar
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effects are produced if an element of the pattern is distorted-or if the
model is damaged , either by removing whole units , or random sets of
connections, etc. Thus, their pattern retrieval performance of the
model degrades gracefully both under degraded input and under
damage.

How a pattern associator learns. So far , we have seen how we as
model builders can construct the right set of weights to allow one pat-
tern to cause another. The interesting thing, though , is that we do not
need to build these interconnection strengths in by hand. Instead , the
pattern associator can teach itself the right set of interconnections
through experience processing the patterns in conjunction with each
other.

A number of different rules for adjusting connection strengths have
been proposed. One of the first-and definitely the best known- is due
to D. O. Hebb 0949). Hebb's actual proposal was not sufficiently
quantitative to build into an explicit model. However, a number of dif-
ferent variants can trace their ancestry back to Hebb. Perhaps the sim-
plest version is:

When unit A and unit B are simultaneously excited, increase

the ~trength of the connection between them.

A natural extension of this rule to cover the positive and negative
activation values allowed in our example is:

Adjust the strength of the connection between units A and B in
proportion to the product of their simultaneous activation.

In this formulation , if the product is positive, the change makes the
connection more excitatory, and if the product is negative, the change
makes the connection more inhibitory. For simplicity of reference , we
will call this the Hebb rule although it is not exactly Hebb' s original
formulation.

With this simple learning rule , we could train a " blank copy " of the
pattern associator shown in Figure 12 to produce the B pattern for rose
when the A pattern is shown , simply by presenting the A and B pat-
terns together and modulating the connection strengths according to th~
Hebb rule. The size of the change made on every trial would, of

course , be a parameter. We generally assume that the changes made on
each instance are rather small, and that connection strengths build up
gradually. The values shown in Figure 13A , then , would be acquired as
a result of a number of experiences with the A and B pattern pair.
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It is very important to note that the information needed to use the
Hebb rule to determine the value each connection should have is locally
available at the connection. All a given connection needs to consider is
the activation of the units on both sides of it. Thus , it would be possi-
ble to actually implement such a connection modulation scheme locally,
in each connection, without requiring any prognimmer to reach into
each connection and set it to just the right value.

It turns out that the Hebb rule as stated here has some serious limi-
tations , and, to our knowledge , no theorists continue to use it in this
simple form. More sophisticated connection modulation schemes have
been proposed by other workers; most important among these are the
delta rule , discussed extensively in Chapter1J.l; the competitive learning
rule , discussed in Chapter 5; and the joint I'fuDabili't y rul~for learning

in stochastic parallel models , described in the Chapter /\ All of these

learning rules have the property that they adjust the strengths of con-
nections between units on the basis of information that can be assumed
to be locally available to the unit. Learning, then , in all of these cases
amounts to a. very simple process that can be implemented locally at
each connection without the need for any overall supervision. Thus
models which 'incorporate these learning rules train themselves to have
the right interconnections in the course of processing the members of
an ensemble of patterns.

Learning multiple patterns in the same set of interconnections. 

to now , we have considered how we might teach our pattern associator
to associate the visual pattern for one object with a pattern for the
aroma of the same object. Obviously, different patterns of interconnec-
tions between the A and B units are appropriate for causing the visual
pattern for a different object to give rise to the pattern for its aroma.
The same principles apply, however, and if we presented our pattern
associator with the A and B patterns for steak , it would learn the right
set of interconnections for that case instead (these are shown in Figure
13B). In fact , it turns out that we can actually teach the same pattern
associ at or a number of different associations. The matrix representing
the set of interconnections that would be learned if we taught the same
pattern associator both the rose association and the steak association 

shown in Figure 14. The reader can verify this by adding the two
matrices for the individual patterns together. The reader can also verify
that this set of connections will allow the rose A pattern to produce the
rose B pattern , and the steak A pattern to produce the steak B pattern:
when either input pattern is presented , the correct corresponding output
is produced.

The examples used here have the property that the two different
visual patterns are completely uncorrelated with each other. This being
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FIGURE 14. The weights in the third matrix allow either A pattern shown in Figure 0
to recreate the corresponding B pattern. Each weight in this case is equal to the sum of
the weight for the A pattern and the weight for the B pattern , as illustrated.

the case , the rose pattern produces no effect when the interconnections
for the steak have been established, and the steak pattern produces no
effect when the interconnections for the rose association are in effect.
For this reason, it is possible to add together the pattern of intercon-
nections for the rose association and the pattern for the steak associa-
tion , and still be able to associate the sight of the steak with the smell
of a steak and the sight of a rose with the smell of a rose. The two sets
of interconnections do not interact at all.

One of the limitations of the Hebbian learning rule is that it can
learn the connection strengths appropriate to an entire ensemble of pat-
terns only when all the patterns are completely uncorrelated. This
restriction does not, however, apply to pattern associators which use
more sophisticated learning schemes.

Attractive properties of pattern associator models. Pattern associator

models have the property that uncorrelated patterns do not interact with
each other, but more similar ones do. Thus , to the extent that a new
pattern of activation on the A units is similar to one of the old ones , it
will tend to have similar effects. Furthermore , if we assume that learn-
ing the interconnections occurs in small increments, similar patterns

will essentially reinforce the strengths of the links they share in com-
mon with other patterns. Thus , if we present the same pair of patterns
over and over, but each time we add a little random noise to each ele-
ment of each member of the pair, the system will automatically learn to
associate the central tendency of the . two patterns and will learn to
ignore the noise. . What will be stored will be an average of the similar
patterns with the slight variations removed. On the other hand , when
we present the system with completely uncorrelated patterns, they will
not interact with each other in this way. Thus , the same pool of units
can extract the central tendency of each of a number of pairs of unre-
lated patterns. This aspect of distributed models is exploited extensively
in Chapters 17 and. 25 on distributed memory and amnesia.
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Extracting the structure of an ensemble of patterns. The fact that
similar patterns tend to produce similar effects allows distributed
models to exhibit a kind of spontaneous generalization, extending

behavior appropriate for one pattern to other similar patterns. This
property is shared by other PDP models, such as the word perception
model and the Jets and Sharks model described above; the main differ-
ence here is in the existence of simple, local , learning mechanisms that
can allow the acquisition of the connection strengths needed to produce
these generalizations through experience with members of the ensem-
ble of patterns. Distributed models have another interesting property
as well: If there are regularities in the correspondences between pairs
of patterns, the model will naturally extract these regularities. This
property allows distributed models to acquire patterns of
interconnections that lead them to behave in ways we ordinarily take as
evidence for the use of linguistic rules.

detailed example of such a model is described in Chapter 18.
Here , we describe the model very briefly. The model is a mechanism
that learns hqw to construct the past tenses of words from their root
forms through repeated presentations of examples of root forms paired
with the corresponding past-tense form. The model consists of two
pools of units. In one pool , patterns of activation representing the pho-
nological structure of the root form of the verb can be represented

and, in the other, patterns representing the phonological structure of
the past tense can be represented. The goal of the model is simply to
learn the right connection strengths between the root units and the

past-tense units , so that whenever the root form of a verb is presented
the model will construct the corresponding past-tense form. The model
is trained by presenting the root form of the verb as a pattern of activa-
tion over the root units , and then using a simple , local , learning rule to
adjust the connection strengths so that this root form will tend to pro-
duce the correct pattern of activation over the past-tense units. The
model is tested by simply presenting the root form as a pattern of
activation over the root units and examining the pattern of activation
produced over the past- tense units.

The model is trained initially with a small number of verbs children
learn early in the acquisition process. At this point in learning, it can
only produce appropriate outputs for inputs that it has explicitly been
shown. But as it learns more and more verbs , it exhibits two interest"-
ing behaviors. First, it produces the standard ed past tense when tested
with pseudo-verbs or verbs it has never seen. Second, it "overregular-
izes " the past tense of irregular words it previously completed correctly.
Often, the model will blend the irregular past tense of the word with
the regular ed ending, and produce errors like CAMED as the past of
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COME. These phenomena mirror those observed in the early phases of
acquisition of control over past tenses in young children.

The generativity of the child's responses-the creation of regular
past tenses of new verbs and the overregularization of the irregular
verbs-has been taken as strong evidence that the child has induced the
rule which states that the regular correspondence for the past tense 
English is to add a final ed (Berko, 1958). On the evidence of its per-
formance , then, the model can be said to have acquired the rule. How-
ever, no special rule-induction mechanism is used, and no special
language-acquisition device is required. The model learns to behave in
accordance with the rule , not by explicitly noting that most words take
ed in the past tense in English and storing this rule away explicitly, but
simply by building up a set of connections in a pattern associator
through a long series of simple learning experiences. The same
mechanisms of parallel distributed processing and connection modifica-
tion which are used in a number of domains serve , in this case , to pro-
duce implicit knowledge tantamount to a linguistic rule. The model
also provides' a fairly detailed account of a number of the specific
aspects of the .error patterns children make in learning the rule. In this
sense , it provides a richer and more detailed description of the acquisi-
tion process than any that falls out naturally from the assumption that
the child is building up a repertoire of explicit but inaccessible rules.

There is a lot more to be said about distributed models of learning,
about their strengths and their weaknesses , than we have space for in
this preliminary consideration. For now we hope mainly to have sug-
gested that they provide dramatically different accounts of learning and

acquisition than are offered by traditional models of these processes.
We saw in earlier sections of this chapter that performance in accor-
dance with rules can emerge from the interactions of simple , intercon-
nected units. Now we can see how the aquisition of performance that
conforms to linguistic rules can emerge from a simple, local , connec-
tion strength modulation process.

We have seen what the properties of PDP models are in informal
terms, and we have seen how these properties operate to make the
models do many of the kinds of things that they do. The business of
the next chapter is to lay out these properties more formally, and to
introduce some formal tools for their description and analysis. Before
we turn to this, however . we wish to describe some of the major
sources of inspiration for the PDP approach.
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ORIGINS OF PARALLEL DISTRIBUTED PROCESSING

The ideas behind the PDP approach have a history that stretches
back indefinitely. In this section , we mention briefly some of the peo-
ple who have thought in these terms , particularly those whose work has
had an impact on our own thinking. This section should not been seen
as an authoritative review of the history, but only as a description of
our own sources of inspiration.

Some of the earliest roots of the PDP approach can be found in the
work of the unique neurologists, Jackson (1869/1958) and Luria
(1966). Jackson was a forceful and persuasive critic of the simplistic
localizationist doctrines of late nineteenth century neurology, and he
argued convincingly for distributed, multilevel conceptions of process-

ing systems. Luria, the Russian psychologist and neurologist , put for-
ward the notion of the 

dynamic functional system. On this view, every
behavioral or cognitive process resulted from the coordination of a large
number of different components, each roughly localized in different
regions of the brain , but all working together in dynamic interaction.
Neither Hughlings-Jackson nor Luria is noted for the clarity of his
views , but we have seen in their ideas a rough characterization of the
kind of parallel distributed processing system we envision.

Two other contributors to the deep background of PDP were Hebb
(1949) and Lashley (1950). We already have noted Hebb's contribu-
tion of the Hebb rule of synaptic modification; he also introduced the
concept of cell assemblies-a concrete example of a limited form of dis-
tributed processing-and discussed the idea of reverberation of activa-
tion within neural networks. Hebb's ideas were cast more in the form
of speculations about neural functioning than in the form of concrete
processing models, but his thinking captures some of the flavor of
parallel distributed processing mechanisms. Lashley s contribution was

to insist upon the idea of distributed representation. Lashley may have
been too radical and too vague , and his doctrine of equipotentiality of
broad regions of cortex clearly overstated the case. Yet many of his
insights into the difficulties of storing the " engram " locally in the brain
are telling, and he seemed to capture quite precisely the essence of dis-
tributed representation in insisting that" there are no special cells
reserved for special memories" (Lashley, 1950 , p. 500).

In the 1950s , there were two major figures whose ideas have contri-
buted to the development of our approach. One was Rosenblatt (1959,
1962) and the other was Selfridge (1955). In his Principles of Neuro-
dynamics (I 962), Rosenblatt articulated clearly the promise of a neur-
ally inspired approach to computation, and he developed the perceptron
convergence procedure an important advance over the Hebb rule for
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. .

changing synaptic connections. Rosenblatt s work was very controver-
sial at the time , and the specific models he proposed were not up to all
the hopes he had for them. But his vision of the human information
processing system as a dynamic, interactive , self-organizing system lies
at the core of the PDP approach. Selfridge s contribution was his

insistence on the importance of interactive processing, and the develop-
ment of Pandemonium an explicitly computational example of a
dynamic, interactive mechanism applied to computational problems in
perception.

In the late 60s and early 70s , serial processing and the von Neumann
computer dominated both psychology and artificial intelligence, but
there were a number of researchers who proposed neural mechanisms
which capture much of the flavor of PDP models. Among these fig-
ures, the most influential in our work have been 1. A. Anderson
Grossberg, and Longuet-Higgins. Grossberg s mathematical analysis of
the properties of neural networks led him to many insights we have
only come to appreciate through extensive experience with computer
simulation , and he deserves credit for seeing the relevance of neurally
inspired mechanisms in many areas of perception and memory well
before the field was ready for these kinds of ideas (Grossberg, 1978).

Grossberg (1976) was also one of the first to analyze some of the
properties of the competitive learning mechanism explored in
Chapter 5. Anderson s work differs from Grossberg s in insisting upon
distributed representation, and in showing the relevance of neurally
inspired models for theories of concept learning (Anderson, 1973
1977); the work in Chapters 17 and 25 on distributed memory and
amnesia owes a great deal to Anderson s inspiration. Anderson s work
also played a crucial role in the formulation of the cascade model
(McClelland, 1979), a step away from serial processing down the road
to POP. Longuet-Higgins and his group at Edinburgh were also pursu-
ing distributed memory models during the same period, and David
Willshaw, a member of the Edinburgh group, provided some very
elegant mathematical analyses of the properties of various distributed
representation schemes (Willshaw, 1981). His insights provide one of
the sources of the idea of coarse coding described at length in Chapter
3. Many of the contributions of Anderson, Willshaw, and others
distributed modelers may be found in Hinton and Anderson (1981).
Others who have made important contributions to learning in POP
models include Amari (1977a), Bienenstock, Cooper, and Munro
(1982), Fukushima (1975), Kohonen (1977, 1984), and von der
Malsburg (1973).

Toward the middle of the 1970s , the idea of parallel processing began
to have something of a renaissance in computational circles. We have
already mentioned the Marr and Poggio (1976) model of stereoscopic
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depth perception. Another model from this period , the HEARSA Y
model of speech understanding, played a prominent role in the
development of our thinking. Unfortunately, HEARSAY's computa-
tional architecture was too demanding for the available computational
resources , and so the model was not a computational success. But its
basically parallel , interactive character inspired the interactive model of
reading (Rumelhart, 1977), and the interactive activation model of
word recognition (McClelland & Rumelhart, 1981; Rumelhart &
McClelland, 1982).

The ideas represented in the interactive activation model had other
precursors as well. Morton logogen model (Morton , 1969) was one of
the first models to capture concretely the principle of interaction of dif-
ferent sources of information, and Marslen-Wilson (e. , Marslen-

Wilson & Welsh , 1978) provided important empirical demonstrations of
interaction between different levels of language processing. Levin
(1976) Proteus model demonstrated the virtues of activation-
competition mechanisms , and Glushko (1979) helped us see how con-
spiracies of partial activations could aGcount for certain aspects of
apparently rule-guided behavior.

Our work also owes a great deal to a number of colleagues who have
been working on related ideas in recent years. Many of these col-
leagues appear as authors or coauthors of chapters in this book. But
there are others as well. Several of these people have been very
influential in the development of the ideas in this book. Feldman and
Ballard (1982) laid out many of the computational principles of the
POP approach (under the name of connectionism), and stressed the bio-
logical implausibility of most of the prevailing computational models in
artificial intelligence. Hofstadter (1979, 1985) deserves credit for
stressing the existence of subcognitive-what we call
microstructural- level , and pointing out how important it can be to
delve into the microstructure to gain insight. A sand dune , he has said
is not a grain of sand. Others have contributed crucial technical
insights. Sutton and Barto (1981) provided an insightful analysis of the
connection modification scheme we call the delta rule and illustrated the
power of the rule to account for some of the subtler properties of clas-
sical conditioning. And Hopfield' s (1982) contribution of the idea that
network models can be seen as seeking minima in energy landscapes
played a prominent role in the development of the Boltzmann machine
(Chapter 7), and in the crystallization of the ideas presented in
Chapters 7 and 14 on. harmony theory and schemata.

The power of parallel distributed processing is becoming more and
more apparent , and many others have recently joined in the exploration
of the capabilities of these mechanisms. We hope this book represents
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the nature of the enterprise we are all involved in, and that it does jus-

tice to the potential of the PDP approach.
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