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Recent years have seen an explosion of interest in deep learning and deep neural networks. 

Deep learning lies at the heart of unprecedented feats of machine intelligence as well as 

software people use every day.  Systems built on deep learning have surpassed human 

capabilities in complex strategy games like go and chess, and we use them for speech 

recognition, image captioning, and a wide range of other applications.  A consideration of deep 

learning is crucial for a Handbook of Human Memory, since human brains are deep neural 

networks, and an understanding of artificial deep learning systems may contribute to our 

understanding of how humans and animals learn and remember. 

Deep neural networks are complex, structured systems that process information in a parallel, 

distributed, and context sensitive fashion, and deep learning is the effort to use these systems 

to acquire capabilities we associate with intelligence through an experience dependent learning 

process.  Within the field of Artificial Intelligence, work in deep learning is typically directed 

toward the goal of creating and understanding intelligence using all available tools and 

resources without consideration of their biological plausibility. Many of the ideas, however, at 

the heart of deep learning draw their inspiration from the brain and from characteristics of 

human intelligence we believe are best captured by these brain-inspired systems (Rumelhart, 

McClelland, and the PDP Research Group, 1986).  Furthermore, ideas emerging from deep 

learning research can help inform us about memory and learning in humans and animals.  Thus, 

deep learning research can be seen as fertile ground for cross-engagement between 

researchers who work on related issues with implications for both biological and machine 

intelligence. 

We begin by introducing the basic constructs employed in deep learning and then consider 

several of the widely used learning paradigms and architectures used in these systems.  We 

then turn to a consideration of how the constructs of deep learning relate to traditional 

constructs in the psychological literature on learning and memory.  Next, we consider recent 

developments in the field of reinforcement learning that have broad implications for human 

learning and memory.    We conclude with a consideration of areas where human capabilities 

still far exceed current deep learning approaches, and describe possible future directions 

toward understanding how these abilities might best be captured. 



What is a Deep Neural Network? 

A deep neural network is a system that processes inputs through multiple processing layers to 

produce outputs.  In the simplest case, each layer takes a pattern of activation represented as a 

vector of numeric values over a set of neuron-like processing units and transforms this pattern 

into an output pattern using an array of real valued connection weights followed by the 

application of a non-linear operation. To make these ideas concrete, we consider a generic 

deep neural network that performs a handwritten digit classification task.   The network, 1

diagrammed in Figure 1, processes input patterns derived from handwritten digits, and 

produces, for each input pattern, an output we can think of as representing, for each of the 

digits 0 through 9, an estimate of the probability that the input is an instance of that digit.  In 

the network in question, there are three processing stages (the minimum most people would 

consider necessary for the network to be called deep).  The input to the first is a pattern 

corresponding to the intensities of a 28 x 28 array of pixels (black = 0, white = 1; intermediate 

values allowed) is the digitized image of a handwritten digit, a pattern we can think of as an 

approximation of the retinal image someone would see upon fixating the digit. This image is 

transformed by multiplying it with a matrix of connection weights, which can be thought of as 

analogous to the array of synaptic connections from the neurons in a layer of sensory neurons 

in the eye to another layer of neurons deeper in the brain.  This next layer is called a hidden 

layer since we do not specify either the activations or target outputs for this layer.  Since it is 

the first such layer in our network we will call it ​h​1​. ​We adopt the convention of treating the 

input ​x ​as a pattern on layer 0 of the network, and representing the matrix to the first hidden 

layer from the input layer as ​W​10​.  ​Still in the first stage of processing, we add a vector of 

learned bias parameters ​b​1​ ​to the output of the matrix multiplication.  These biases can be 

thought of as determining the baseline excitabilities of each of the neuron-like units in layer ​h​1​. 
Finally, we apply a  non-linear transformation to each value in the pattern produced by these 

operations.  Many alternative non-linearities are used in deep learning research.  Two basic 

ones are the rectified-linear (​relu) ​function, which simply passes the value through if it is 

positive and otherwise sets the value to 0, and a function called ​tanh ​that keeps the activations 

bounded in the range between -1 and +1.  In our case we apply the ​relu ​to produce the pattern 

h​1​.  ​This completes the first stage of processing in our network. 

We have introduced many concepts in the last paragraph, but this is nearly all we need to 

characterize the processing operations performed in our generic neural network, as almost all 

of the rest of the computations rely on the same ideas.  Indeed, our second stage is very like 

the first, in that it multiplies the pattern ​h​1​ ​times a second matrix ​W​21​, ​adds an array of bias 

weights ​b​2​, ​and applies a ​relu​ non-linearity again to produce hidden layer pattern ​h​2​.  ​The third 

1 ​This network is based on one created as an introduction to Tensorflow, a deep learning 
software toolkit. You can look at the code for the network, run it using Google Colab, and 
repeat the analyses shown in Figure 1 at 
https://github.com/jlmcc94303/TwoHiddenLayerMNISTDemo​. 

https://github.com/jlmcc94303/TwoHiddenLayerMNISTDemo


stage is a little different.  We multiply ​h​2​ ​times a third weight matrix ​W​32​ and add a set of output 

bias weights ​b​3​ ​as before​, ​but this time, we apply the non-linear ​softmax ​function to create 

estimates of the probability that the input ​x ​corresponds to each digit.  The softmax function 

enforces the law of total probability which requires that the probability estimates add up to 1.  2

In concert with common conventions, we call the array of probability estimates ​y​. 

That’s it! If we had such a network, we could study how well it classifies digits. One way this can 

be done is to present a set of test digits, and determine how often the correct digit is the one 

with the largest value in the output pattern ​y​.  In the case of the network in Figure 1, it can 

classify held out test items with an accuracy of about 98% correct after 5 training epochs 

(sweeps through all the items in a 50,000 example training set), a pretty high score for a very 

generic network.  We can also study the network’s representations -- for example, we can ask 

whether the representations at layer ​h​1​ capture the similarity relationships among the digits.  In 

Figure 1B (lower panel), we show such an analysis​ ​based on a test set of 1000 images from each 

of the 10 digit classes.  We see there that the network tends to treat 3’s as similar to 2’s, 5’s 

and 8’s.  We can also consider the network’s output confusability matrix -- how probable it 

thinks each of the possible class labels is on average, when shown the 1000 test examples from 

each of the digits classes.  The results of this analysis, shown in Figure 1B (top panel), are largely 

consistent with the similarity relationships in the bottom panel, but one can see that the 

remaining two layers of the network have succeeded in reducing the similarity of the different 

classes, allowing the network to achieve a high level of accuracy. 

As we have seen, a deep neural network processes input patterns through several layers or 

stages of processing, producing hidden layer patterns and, finally, outputs.  ​ ​The patterns inside 

the network are learned distributed representations, often called ​hidden representations, latent 

representations, ​or ​embeddings.  ​In artificial networks they correspond to arrays of numerical 

values that we can think of in biological terms as corresponding abstractly to the pattern of 

firing rates  over a set of neurons in the brain.  In thinking about these patterns, we often do 

not think of the individual values of the elements in the arrays -- instead, we may think about 

the whole pattern of activation of the units at each layer.  In that case, we generally think of the 

similarity relations among the patterns for different items when we seek to understand the 

content of these patterns, as described above, though some work does consider how individual 

elements might correspond to other things, such as conceptual primitives or individual neuron 

response rates (Yamins et al, 2014). 

Why depth is important  

2 The softmax function takes a vector of real numbers ​v ​and converts it to a vector ​p ​of positive numbers that sum 
to 1.  For each element ​v​i​ of ​v, ​we compute an intermediate value ​s​i​ = exp(​v​i​).  Then, we obtain each of the ​p​i​ values 
by dividing each of the ​s​i​ by the sum of all of the ​s​i​ values.  See McClelland (2013) for a tutorial discussion of the 
probabilistic interpretation of these values and how neurons might compute them. 



Now that we know what a deep network is, it is important to be clear about why depth is 

important.  Why don’t we simply have direct connections between inputs and outputs, rather 

than worrying about having multiple layers of units in between?  The answer begins with the 

fact that limiting a network to direct connections limits the computations that the network can 

perform. With one or more hidden layers, a neural network can perform arbitrary input-output 

mapping tasks; without a hidden layer, this is not the case.  Perhaps the simplest concrete 

example of these two points is provided by the exclusive-or (XOR) problem.  In XOR, there are 

two input units and one output unit.   The input units can each take values of 1 or 0.  When 

either input unit takes value 1 and the other unit takes value 0 the output should be 1, but 

when both take the value 1 or the value 0, the output should be -1.  To see why this cannot be 

computed without a hidden layer, let’s assume we just have one weight from each input unit to 

the output unit, and one bias weight, and let’s assume that the output unit takes value 1 if  

Wx​ + ​b​ is greater than 0, and value -1 if ​Wx​ + ​b​ is less than 0.  There is no setting of the two 

weights and the bias parameter that can produce the correct answer for all four patterns. (For 

example, if both weights are positive, and the bias is negative, the network will produce a 

negative output when both inputs are off and a positive output when both are on, as desired, 

but the output will necessarily be positive when both input units are on).  However, if we 

introduce two hidden units, one that comes on when either input unit is on and another than 

comes on when both hidden units are on, we can then set the weights from these units to the 

output units so that the output unit will come on if the first hidden unit is on, but not if neither 

is on, and not if both are on.  This simple example illustrates an important role of a hidden 

layer: it performs a non-linear transformation of its input, recoding the input in a way that is 

useful for solving a given input-output mapping problem. (For a more detailed discussion, and 

an XOR network that works with just one hidden unit, see McClelland & Rumelhart, 1988, 

Chapter 4). 

For many years, researchers debated whether it is useful or necessary to have more than one 

hidden layer, but now it is generally accepted that more than one is usually better, and in one 

case, a network’s performance was shown to improve with greater depth up to as many as 

1000 layers (He ​et al., ​2016).  The reasons why depth is so important are not fully understood. 

One intuition about the importance of greater depth is the idea that it allows for multiple 

stages of recoding that are useful for capturing subtle nonlinear aspects of input-output 

mappings, allowing networks to disentangle underlying similarities among inputs that may not 

be easily extracted in a single layer.  Furthermore, deeper networks often generalize better to 

items not included in their training set than shallower ones, perhaps in part because the 

recoding at each layer can allow less task-relevant aspects of variation in the input to be 

eliminated or separated out from other more task relevant input variation. 



Knowledge and Learning in a Deep Neural Network 

Knowledge in connections. ​It seems natural to say that the deep network we discussed above 

“knows” how to classify digits.  However, the form of knowledge may not be the same as the 

form of knowledge we usually talk about when we ask if a person knows something.  What 

exactly is the knowledge in the neural network?  This knowledge consists primarily of the values 

of the connection weights in the weight arrays ​W​10​, W​21​, ​and ​W​32​,​ and in the bias arrays ​b​1​, b​2​, 
and​ b​3​.​ Collectively these values are often called the ​parameters ​of the neural network, and 

they constitute the knowledge it uses to perform its classification.  Such networks have often 

been called ​connectionist ​networks -- because their knowledge is in their connections. 

Deep learning. ​With the background laid out above, we are now ready to tackle deep learning, 

that is learning in deep neural networks.  Essentially, deep learning is the process whereby 

experience shapes the values of the connections in a network.  We first describe what is 

perhaps the most common approach, usually called supervised learning, considering extensions 

including reinforcement learning later.  

Applying supervised learning to our deep network for digit classification, we use a set of images 

together with their corresponding labels to train the network.  We can think of the process as 

an idealization of one that could apply to a biological system if it was shown a set of items and 

their names or labels.  Indeed, a rudimentary version of this computation was proposed by 

Frank Rosenblatt, the pioneering neural network researcher of the mid-20th century (e.g., 

Rosenblatt, 1962).   First, the network is initialized with random weights and biases, so that 

initially, its output is not based on any experience.  Then, it is trained on items sampled from its 

training set.  For each item, it takes its input pattern and processes it using the system we have 

described.  Then, the item’s label is compared to the value the network produces as its 

estimate of the probability of the correct label, and a measure called the ​loss ​reflecting how 

different this estimate is from 1.0 is calculated. Following this, a computation is performed to 

determine how each connection weight should change to reduce the loss, making the 

probability of the correct label higher and the probabilities of all other labels lower.  For each 

parameter (i.e., each weight in each weight array and each bias in each bias array) this 

computation determines a quantity indicating how much (and in which direction) a change in 

the value of the parameter will affect the loss.  Each of these values is called the ​gradient​ ​of the 

parameter with respect to the loss, and the entire ensemble of such values is collectively 

referred to as the gradient of the entire set of parameters.  The connection weights are then 

adjusted by an amount proportional to the negative of the gradient, hence the name ​gradient 

descent​. ​The weights move down the gradient, thereby reducing the loss. 

The use of gradient descent has, as already indicated, been part of computational approaches 

to intelligence for a very long time.  Gradient descent can be seen as a way of providing a 

means for optimizing the performance of a neural network in response to demands placed on it 

by its experiences.  As we shall see, the principle can be extended in many ways, allowing 



learning systems to learn from experiences without labels, or with reward signals indicating 

how good the network’s outputs are, without specifying what specific outputs are the correct 

ones. 

Backpropagation, and why it is important.  ​At first, gradient descent was only applied to a 

single layer of connection weights (the ones just before the network’s output layer), in part 

because researchers tended to think of neurons as having discrete values (either 0 or 1), which 

prevented calculating gradient values for weights in the earlier processing stages of the 

network.  The idea of treating unit activations as continuous valued allowed gradients to be 

determined for all of the parameters in a deep network like ours, according to a computation 

called ​backpropagation ​(Rumelhart, Hinton & Williams, 1986), because the signals indicating 

how weights coming into, for example, our ​h​2​ ​from ​h​1​ ​should change we determined by sending 

learning signals at the output layer backward through weight matrix  ​W​32​ ​used to propagate 

error signals forward to the output layer of the network.​  The introduction of backpropagation was 

a crucial advance, because it could be applied repeatedly through any number of layers of weights, 

allowing researchers to learn connections weights at all layers of a neural network, not just at a final 

output layer.  While multi-layer networks could be used without back-propagation, all of the 

connections in layers other than the last one had to be set by hand, making it impossible for networks to 

learn the non-linear transformations of inputs that would be most useful for performing the task at 

hand.  Thus, we could say that back propagation really enabled deep learning, viewed as the process of 

setting the connection weights in all of the layers in a deep neural network. 

Comment.  ​It should be noted that what we have described here is a bare-bones 

implementation of gradient descent learning.  Deep learning researchers employ many 

methods that enhance learning performance.  Since our purpose here is to focus on 

fundamental properties, we omit discussion of these enhancements here.  It may also be worth 

noting that backpropagation was initially criticized by some scientists interested in biological 

computation because the algorithm seemed to require precise and rapid reverse transmission 

across axons and synapses.  Debate about this question is still underway, although current 

trends indicate more openness to exploring how computations approximating back propagation 

might actually be carried out in the brain (Richards & Lillicrap, 2019).  In our view, there are 

exciting and interesting questions that remain to be addressed regarding how the biological 

brain learns.  While these are being explored, it is useful to consider the consequences of deep 

learning based on the principle of gradient descent, as the principle allows us to explore 

computations that actually lead to solutions of challenging problems for perception, memory, 

and other functions of the mind and brain.  Once these problems can be posed in terms of a 

training set and a loss measure, we can use gradient descent to find a solution.  3

3 An early concern with gradient descent was that the process would likely become stuck in a local minimum -- a 
set of parameters values less than all other neighboring values, but not as good as the best possible set of values 
overall.  However, this problem is far less severe than was once thought.  A more severe problem has turned out to 
be that neural networks can easily overfit their training data, limiting their ability to handle unseen examples.  Fully 



Architectures for Deep Learning 

Understanding gradient descent in the simple-feedforward network considered in the previous 

section provides a starting place for work in deep learning, but it is important to recognize 

several of the more complex network architectures that are in use in deep learning as well. 

Here we consider three other architectures: ​convolutional​, ​recurrent​, and ​attentional​ neural 

networks.  Deep-learning researchers create hybrids of these architectures to suit their needs in 

building models for artificial intelligence. It seems to us likely that the brain exploits aspects or 

variants of all of these architectures, though perhaps without some of the features that are 

exploited in artificial intelligence. 

Convolutional neural networks​. A very common type of artificial neural network, the 

convolutional neural network (CNN), was initially inspired by aspects of the neural networks in 

the brain (LeCun ​et al, ​2015).  It was observed that neurons in the visual pathway respond to 

similar stimulus properties at different positions in the visual field, leading to neural networks 

that use many identical copies of units with connection weights that are replicated at many 

positions across the visual field.  For example, to represent the presence of line segments at 

eight different evenly spaced orientations at any position within an image, the same  matrix of 

connection weights can be replicated many times to project every patch of an image to a 

patch-specific set of eight units, one for each orientation.  A local pooling operation can then be 

applied from several adjacent sets of patch-specific units, resulting in a set of eight units in a 

pooling layer whose activation indicates to what extent the input contains a line of each of the 

orientations anywhere in the set of local patches.  The types of units are inspired by the 

presence of simple and complex cells in primary visual cortex in primate brains, corresponding 

to the patch-specific units and local pooling units respectively, and the pattern of 

topographically-restricted connectivity known to characterize the visual pathway is captured by 

the topographically-restricted connectivity of the CNN.  

Artificial CNN’s are often trained to classify images into hundreds or even thousands of 

different classes using supervised learning.  One trick they employ that is common in deep 

learning is to add the gradient signals driving each copy of the replicated connection weights at 

each position in a convolutional layer together and then use the summed gradient signal to 

update all the copies of the weights, so that all copies always remain exactly the same.  (In a 

biological system, fixating on many different positions within the same image of an object and 

backpropagating the classification loss from each fixation would have approximately the same 

effect.) 

Recurrent neural networks.​  The networks we have considered thus far have been useful for 

many tasks, but lack an important capability:  the ability to use information distributed over 

time.  Recurrent neural networks (RNNs) provide this capability.  RNNs generally treat time as a 

understanding and addressing the reasons why neural networks overfit remains an important and challenging 
issue. 



sequence of discrete steps, each containing an element of a sequence, such as a frame of a 

video or audio stream, or a character in a printed text.  The simplest form of RNN employs a 

stack of layers like a feed-forward network, but with the added feature that at each layer, its 

state at the end of the previous time step provides another source of input, via an additional 

connection weight matrix.  For example, we could turn our basic feed-forward network into an 

RNN by adding new weight matrices ​W​11​ ​and ​W​22​, so that at time ​t, ​the input to hidden layer 1 

would be ​W​10​x​(​t​)+​W​11​h​1​(​t​-1)+​b​1​, ​and the input to hidden layer 2 would be 

W​21​h​1​(​t ​)+​W​22​h​2​(​t ​-1)+​b​2​, as shown in Figure 2A.​  ​The simplest version of such a network, 

introduced by Elman (1990), demonstrated how this extension could capture key aspects of 

language structure.   Two ways of looking at what is today called a ‘Vanilla RNN’ are presented 

in Figure 2.  Conceptually, we can imagine that there is really only a single copy of the network, 

which simply updates its state as every time step, as shown in panel A, computer 

implementations of RNNs are best visualised as consisting of many separate copies of the same 

network, one for each of some specified number of time steps, as shown in panel B.  The values 

of the connection weights are shared across all of the copies. Thus, RNN’s are like CNN’s in that 

they reuse the same connection weights -- here, for each point in time, rather than, as in the 

CNN, for each point in space.  The computed weight update to each of the shared weight 

matrices is the sum of the updates to each instance of each weight matrix, based on back 

propagation (see figure caption for details).  

While lots of interesting work was done with these networks over the years following the 

introduction of backpropagation, they fell into disuse in AI research because they struggled to 

master long-distance dependencies -- for example, in a sentence such as ‘Inside the 

cave/dugout, John looked around and saw a bat’ they could not span intervening words to use 

prior context (cave or dugout) to constrain the meaning assigned to a later word (bat).  A major 

part of the problem is that the gradient of a loss generated at a particular time step tends to 

vanish rapidly as it is back propagated through each time step, making it very hard to learn to 

exploit long-distance dependencies. Another factor is that the hidden state of the network is 

continually updated with new information.  A major breakthrough occurred with the 

development and subsequent refinement of long-short-term memory modules (LSTM’s, 

Hochreiter & Schmidhuber, 1993), which came into wide use in language-related deep learning 

research early in this century.  These modules include learnable connection weights that ‘gate’ 

information into and out of an internal context state within each neural network module and 

that can also learn to ‘forget’ or remove no longer needed information from the context state. 

An excellent introduction to these models is provided in Colah’s blog (Olah, 2015).  

LSTM-based models have contributed to many exciting developments in natural language 

processing starting about 10 years ago.  For example, such models were able to learn to 

perform language prediction tasks:  Using a large text corpus, an LSTM-based model could learn 

to use the preceding elements of the text to predict subsequent elements, or even to predict 

the translation of a text into another language.  An accessible overview of work of this type is 

provided in a blob post by Andrej Karpathy (Karpathy, 2015).  It has turned out, however, that 



the LSTM based networks still suffer to a degree from the same problems that plagued vanilla 

RNNs, and they have now been largely superseded by networks that use learned attention. 

Neural networks with learned attention mechanisms. ​Since about 2015, another powerful 

architectural feature has been added to the deep learning toolkit -- a feature deep learning 

researchers call ​attention​.  The idea here is to learn patterns called ​queries ​that can be 

compared to other learned patterns called ​keys, ​to decide what set of units to attend to (that is, 

to draw information from), to constrain a computation of a representation in another set of 

units.   For example, in a recent attention-based model of language processing called BERT 

(Devlin ​et al, ​2018), a set of queries, keys and values is computed at each of several layers of 

processing at each position in a multi-word sequence.  At each layer of processing, the queries 

from each position are compared to the keys at all other positions, and are used to weight the 

contributions of the values at each position to the computation of the representation of the 

meaning of the word at every other position (see Uszkoreit, J. 2017).  Models based on learned 

attention are now the main drivers of language processing systems that have achieved state of 

the art performance in machine translation and several other tasks.  Learned attention can also 

be used in vision and many other applications, and is likely to contribute to continued progress 

in a wide range of application areas. 

Sources of Teaching Signals that Guide Learning 

A key conceptual as well as practical issue for deep learning systems is the source of the 

teaching signals that drive learning.  In our generic example, we considered the case where the 

source of the teaching signal was the label of each image of a hand-written digit.  Cases like this 

are considered to be ​supervised learning, ​with the supervisory signal being the label or correct 

name of each digit in the training set.  However, real life does not always present us with labels 

that tell us exactly what our response to an input should be.  A great deal of deep learning 

research has been done with the idea that we should be able to learn without having an explicit 

supervisory signal, and we consider this idea here.  In a later section, we consider cases where 

the supervisory signal is a reward signal, under the heading ​Deep Reinforcement Learning. 

A very important class of models considers learning from images, texts, or other types of inputs, 

in the absence of any labels.  Such models are often called ​unsupervised, ​but this word can 

actually cover two rather different approaches that we will distinguish.  In the first approach, 

the task is to build a network that can reconstruct its input or predict some elements of its 

input from other elements. As we shall see this approach allows us to apply the same 

gradient-based approach we have considered thus far to minimize the reconstruction or 

prediction loss.  In the second approach, we do not use a loss computed against external 

patterns of any kind, though even here, the learning can often be understood as gradient 

descent, in this case on some measure of system-internal behavior.   In both cases, the key 



point is that no special supervisory signal is required -- we only have inputs or input streams as 

the source of experiences that drive learning. 

Reconstruction- and prediction-error driven learning  

Let’s return to the case of hand printed digits and consider a situation in which we have many 

images of hand-printed digits, but no labels for any of the images.  Here, we might seek to form 

an internal representation from each image that allows us to reconstruct the image. Of course, 

a simple element-wise copy of the input would be a trivial internal representation we could use 

for this purpose, but since the first report of backpropagation (Rumelhart ​et al, ​1986), 

researchers have used a neural network to map from the input back to itself through one or 

more hidden layers, using gradient descent to learn internal representations that suffice to 

reconstruct the input, subject to the constraints imposed by the architecture of the neural 

network.  The network architecture could be almost identical to the one we used for digit 

classification, with the simple change that we replace the output classification layer with an 

image reconstruction layer, where we use gradient descent on a loss that we calculate pixel by 

pixel, then sum across the output units as the total loss signal used to train the weights in the 

network. 

Prediction-error driven learning works in a similar way.  Elman’s (1990) work on next-word 

prediction using his simple recurrent network exemplifies the approach.  Elman’s training data 

simply consisted of a long sequence of words, with the task being simply to predict the next 

word from the current word together with the previous hidden state, and this approach is in 

wide use in many deep language processing models today.   An extension of this approach is to 

predict missing aspects of an input from other aspects.  This is the approach used in 

attention-based language models such as BERT, where the network is given multiword 

sequences (e.g. a pair of sentences) at a time.  Some of the words are deleted or replaced with 

random elements at the input level, and the task is to reconstruct the uncorrupted sequence at 

the output level. 

Learning without relying on any external supervisory signal 

It was a breakthrough for models of intelligent behavior when gradient-based methods were 

introduced.  The use of a measure of loss against some external supervisory signal, even if it is 

just the input itself, is useful because we can then see connection weight changes as directly 

serving the goal of minimizing some externally observable behavior of our system, and such 

behavior is ultimately what intelligent machines must be optimized or biologically selected for. 

However, early biologically motivated approaches to learning usually were not formulated in 

terms of gradient descent in a loss measure.  For example, Hebb’s famous learning rule 

(1949/2005) tells us that the brain strengthens the connection from neuron A to neuron B 

when A takes part in causing B to fire, a matter that is entirely internal to the system.  Hebb’s 

idea has motivated and inspired research for over 70 years, but gaining traction toward building 



intelligent machines has depended on linking connection adjustment to the enhancement of 

performance as assessed by a measure usually called ​loss​, or distance from some standard. 

That said, there are many interesting learning algorithms that do not rely on any external loss 

measure. Some have been used to address issues in biological and machine learning, and we 

argue that deep learning research could benefit from building on these ideas.  In this context, it 

is useful to note that it is often possible to see such algorithms as performing gradient descent 

on some system-internal quantity which it might be useful to minimize, such as the utilization 

of limited resources.  Indeed, including a resource-based loss (minimizing the total magnitude 

of connection weights, for example) is often combined with externally measured loss. 

Furthermore, learning rules such as Hebb’s rule can be seen as performing a gradient 

computation; Linsker (1986) showed that his version of Hebb’s rule maximizes the tendency of 

a neuron to respond to correlations among its inputs, subject to resource constraints, and such 

learning rules can also be understood as performing useful statistical computations, such as 

principal components analysis and independent components analysis (Bell & Sejnowski, 1997). 

When coupled with simple local connectivity constraints (for example, the constraint that units 

at a given position in one layer project only to neurons in a spatially restricted corresponding 

position in another layer), these approaches have given rise to models that show how features 

of neuronal responses can arise even from spontaneous random activity without any external 

sensory experiences at all (Linsker, 1986a,b; Miller, Keller & Stryker, 1989).   It seems likely that 

processes like these continue to play some role in connection adjustment processes in the 

brain, and it has been suggested that they may have computational advantages as well 

(O’Reilly, 2001). 

To summarize what we have discussed up to this point:  Deep neural networks offer 

mechanisms for performing intelligent tasks that are inspired, but not constrained, by aspects 

of brain function.  They achieve their success by optimizing the strengths of connections and 

other parameters using gradient descent in a measure of their success in performing some 

designated task.  They exploit a number of enhancements over what we might call vanilla 

neural computation, including convolution, learned gating, and recurrence, all factors that are 

likely to be exploited (albeit perhaps in not exactly the same form) by biological learning 

systems. 

Deep Learning and Human Learning and Memory 

We next turn to a consideration of how learning in deep neural networks relates to issues and 

topics in human learning and memory.  As we shall see, almost all aspects of human memory 

can be thought of as being influenced by a gradual learning process in real biological neural 

networks that are often simulated using deep neural networks. 



Developmental learning and gradual acquisition of expertise  

Learning via gradient descent is an intrinsically slow process, typically requiring many thousands 

to millions of training examples to fully capture the knowledge contained in a natural domain of 

experiences.  As such, deep learning might seem like a poor model of human memory as it is 

traditionally studied in the laboratory, where participants’ ability to learn and remember 

materials presented within a brief period of time is assessed.  Indeed, as one of us has argued, 

deep learning might be a better model of the very gradual process whereby cognitive intuitions 

and abilities are acquired over developmental time or through immersion in a domain leading 

to the gradual emergence of expertise (McClelland, McNaughton & O’Reilly, 1995).  Consider 

the ability to use our hands to grasp and manipulate objects; to control our bodies to walk, run, 

and dance; to comprehend and produce language; to read and to write; to intuitively 

understand physical relationships and the effects of our actions on the world; and to perform 

music or any other specialized skill expertly.  All of these abilities appear to be acquired very 

gradually through very extensive exposure, making the acquisition of such systems of 

knowledge a plausible candidate for modeling with multi-layer neural networks that learn 

slowly via many small connection weight adjustments.  Knowledge of the semantics of natural 

kinds develops slowly, too, over the first decade of life, making it another candidate for 

modeling using a deep learning system.  

Shortly after the introduction of backpropagation, many researchers began to use it to address 

these aspects of human learning and development.  Early applications included models that 

learned to map from inputs representing spellings of words to  outputs representing their 

sounds (Sejnowsky and Rosenblatt, 1987, Seidenberg & Mcclelland, 1989), or to map from and 

input representing a physical situation such as the state of a balance scale to the outcome of 

the situation, in this case which side of the scale would go down (McClelland, 1989).  Elman’s 

(1990) work with simple recurrent networks showed how the paradigm could be extended, 

using a network’s input and it internal state from the previous time step to predict the next 

element in a sequence, and a network that learned about living things first introduced by 

Rumelhart and Todd (1993) provided a springboard for an exploration of the development of 

knowledge in this domain by Rogers and McClelland (2004, 2008).  These models were able to 

capture patterns of human performance and the patterns of developmental progressions seen 

in human learners, demonstrating their relevance to cognitive and psychological questions. 

According to this work, the gradual learning that occurs in deep neural networks could 

correspond to -- or at least capture many aspects of -- the learning process that occurs in 

human learners as they master cognitive domains of many different kinds over extended time 

periods.  

The effects of brain damage on memory and acquired cognitive abilities further aid us in 

relating these models to brain structures and brain learning mechanisms.  On the one hand, 

lesions to the hippocampus and overlying areas in the medial temporal lobes of the brain 

impair the ability to acquire new explicit knowledge quickly but can leave well-established prior 



knowledge and abilities nearly completely intact.  Indeed, patient HM, who lost both medial 

temporal lobes to surgery  to treat intractable epilepsy, was profoundly impaired in the ability 

to demonstrate learning with standard memory paradigms, and had no recollection of having 

participated in memory testing sessions even within minutes afterwards (Scoville & Milner, 

1957).   Yet his ability to read and write, his knowledge of words and their meanings, his 

semantic and general knowledge, and his intelligence as measured by IQ tests were all intact. 

On the other hand, damage to the  neocortex of the brain tends to produce deficits in acquired 

abilities, with the content of the deficit depending on the functional role of the specific site of 

the lesion.   As two examples, damage to the fusiform face area produces a deficit in the ability 

to recognize faces, and damage to the visual word-form area produces a deficit in the ability to 

read printed words.  These findings are consistent with a theory of learning in the brain called 

complementary learning systems theory ​(Marr, 1971; McClelland, McNaughton & O’Reilly, 

1995)​ ​which holds that the neocortex is a gradual learning system similar to a deep neural 

network, and that the hippocampus and related areas in the medial temporal lobes provide a 

fast learning system that allows humans and other animals to learn arbitrary aspects of new 

things relatively quickly -- a crucial ability we rely on every time we encounter someone or 

something new. 

We now consider how deep learning may inform our perspective on aspects of memory as it 

can be studied in the laboratory. 

Gradient-based changes as the substrate for implicit memory  

According to complementary learning systems theory, each experience a person has gives rise 

to a pattern of activation distributed widely over many neocortical brain areas.  Gradual 

learning occurs through adjustment of connections among the neurons in the neocortex, and 

these changes are typically small in magnitude during the learning of arbitrary associative 

relationships, so that they result in changes only detectable with very sensitive, implicit 

assessments of learning, such as, for example, measures of the probability of generating a 

particular word in a word stem completion task.  The accumulation of such changes can give 

rise to the gradual improvement of a cognitive ability over a few laboratory sessions, such as 

the ability to read mirror reflected text, or the ability to trace a figure while viewing the figure 

and one’s hand in a mirror.  Learning in these sorts of tasks is spared in patients with MTL 

lesions (Schacter, 1987), supporting the view that these functions arise from the changes to 

connection weights in neocortical networks thought to be like deep learning systems. 

Apparently, accumulation of the effects of such changes can even give rise to the gradual 

acquisition of knowledge of facts and word meanings that have come into use since the onset 

of amnesia, assuming the information is repeated frequently.  For example, HM learned to 

recognize the picture of John F. Kennedy and could report that he had been elected president 

and then assassinated, all very frequently discussed facts based on events that happened after 

his surgery (Milner, Corkin & Teuber, 1968).   Priming effects observed in amnesic patients from 

a single encounter with a picture or word may also be due to such changes.   According to this 



way of thinking, such priming effects might correspond to the after-effects of changes in 

neocortical connections arising from an individual experience.   These effects tend to decay 

fairly rapidly after exposure, suggesting that connection weight changes in the neural networks 

in the brain may have a fast-decaying component accounting for effects of immediate 

repetition, and a slower-decaying component capturing the gradual acquisition of a new skill or 

oft-repeated element of new semantic content (McClelland & Rumelhart, 1985). 

According to complementary learning systems theory, gradual-learning based changes in the 

neocortex also influence performance in two other kinds of memory tasks, which we now 

discuss. 

Immediate memory tasks 

In some classical approaches to understanding memory, researchers have posited the existence 

of short term and/or working memory systems, sometimes conceived as containing a fixed 

number of slots (Atkinson & Shiffrin, 1968; Luck and Vogel, 1997), each holding a single item.  In 

a neural network modeling context, it is more natural to think of memory in terms either of 

sustained activation within a neural network, or in terms of rapid changes in connection 

weights.  Indeed, accounts of both types have been offered (e.g., Burgess & Hitch, 1999; 

Botvinick & Plaut, 2006).  Importantly, the amount of information that an individual can retain 

for immediate recall appears to be crucially dependent on item familiarity, sequential statistical 

relationships between list elements, and the meaningfulness and coherence of the material to 

be remembered, and patients with cortical degeneration affecting semantic knowledge 

representations show deficits in exploiting item familiarity and meaningfulness effects 

(Patterson, Graham & Hodges, 1994).  Thus, our ability to retain information in immediate 

memory is highly dependent on experience, and is generally thought to reflect recurrent 

computations that constrain neural activity patterns to conform to lexical, semantic, and 

syntactic constraints that have been learned through the gradual, frequency-dependent 

learning process that occurs in deep neural networks.  Botvinick and Plaut (2006) simulate a 

wide range of aspects of immediate serial recall of short lists of items using the activation state 

within a generic recurrent neural network.  Their model’s success in accounting for human 

performance data supports the view that it may be useful to think of immediate serial recall 

and related verbatim verbal memory tasks as reflecting sustained activation based on a gradual 

learning process in a recurrent neural network, affected by experience statistics and drawing on 

connection based knowledge in a neocortex-like slow learning system.  Indeed, as Botvinick & 

Plaut discuss, immediate serial recall within what is called the span of immediate memory 

seems not to be much affected by MTL lesions, though beyond the span of immediate memory, 

the MTL does appear to play a role.  Notably, deep learning systems used for language tasks 

and many other types of tasks  rely on maintained activation states dependent on gradual 

learning in recurrent neural networks as well.  In all of these systems the activation state of the 

system can be viewed as a form of learning-dependent working memory. 



Episodic memory tasks 

In some theoretical frameworks, episodic memory and semantic memory are considered quite 

distinct, with memory for specific episodes thought to depend more crucially on the medial 

temporal lobe (though the MTL is usually thought to be important for initial acquisition of new 

semantic memories, see e.g. Squire, 1992).  However, a newer perspective holds that episodic 

and semantic memory are intimately intertwined (Renoult, Irish, Moscovitch & Rugg, 2019). 

Here we highlight two crucial ways in which the neocortical and MTL learning systems work 

together in tasks that are typically thought of as episodic memory tasks. 

First, it is important to understand that the input to the hippocampus is not raw sensory input; 

instead, the hippocampus receives input predominantly from cortical association areas, in 

which the brain representations are heavily dependent on gradual learning of the kind 

attributed to the neocortex in complementary learning systems theory.  The consequence of 

this is that, for example, an individual who grew up in a Chinese cultural tradition and who had 

learned to read and write Chinese would likely have a richly elaborated pattern of phonological 

and semantic activity in their neocortical association areas upon processing the input below, 

whereas someone growing up in an English language cultural tradition would only perceive a 

sequence of four unrecognizable characters: 

This sequence corresponds to a meaningful Chinese proverb, literally meaning ‘fix your house 

before the rain comes’ or more proverbially, prepare while you can for foreseeable adversities. 

According to the complementary learning systems theory, what will be available for storage 

after someone who is Chinese experiences the above sequence of characters will be quite 

different, compared to someone who does not understand either Chinese writing or culture. 

Even if written in a language that a participant in a memory experiment understands, an input 

that is not consistent with the learner’s pattern of prior experience or which lacks sufficient 

context to make sense will not result in a coherent understanding, and will not, therefore, be 

easy to remember (Bartlett, 1932/1995).   Thus, what is available to the hippocampus depends 

critically on gradually acquired knowledge in deep neocortical networks. 

Second, the hippocampus and MTL appear to work together synergistically in recall, making it 

far easier to learn, for example, pairs of words with strong pre-existing associations 

(locomotive-brakeman) than pairs of words with weak or no pre-existing associations 

(city-ostrich) (Cutting, 1978).  The effect may be due in part to greater meaningfulness of 

related pairs resulting in better initial storage, but is likely to reflect the neocortical system’s 

prior knowledge of the relevant associative relationships complementing the retrieval of the 

association formed in the MTL (Kwok, 2003).  



Complementing gradient-based learning systems with a hippocampus-like external memory  

We end this section by noting that models of human and animal learning and memory as well 

as deep learning models in AI make extensive use of complementary learning systems-like 

architectures.  As was noted first by McCluskey & Cohen (1989), deep networks struggle to 

integrate arbitrary new information quickly without interference with existing knowledge.  To 

learn new things quickly without interference, a complementary learning system such as is 

provided by the hippocampus is needed (McClelland ​et al., ​1995).   This issue is widely 

appreciated in the deep learning community, where a number of approaches have been 

introduced to overcome it.   Deep learning models often employ rehearsal buffers (as 

introduced in Mnih ​et al., ​2015) or sophisticated external memory systems (as introduced in 

Graves ​et al., ​2016) inspired in part by the human hippocampus. These systems are used 

together with cortex-like deep neural networks, allowing Mnih ​et al. ​ to achieve human level 

performance in  the Atari suite of computer games and allowing Graves ​et al. ​to solve complex 

planning problems.  For further discussion, see Kumaran, Hassabis & McClelland (2016).  The 

issue remains an active area of ongoing research in the deep learning community.  In models 

addressing biological  learning and memory, there has also been extensive exploration of the 

roles of complementary learning systems.  We mention two highlights from recent work here. 

First, it is now generally accepted that rapid statistical learning (e.g., from exposure 2 minutes 

of exposure to sequences of syllables with strong sequential dependencies) depends on the fast 

learning system in the hippocampus, as modeled by Shapiro ​et al. ​(2017).  Second, there has 

been considerable interest over the last decade in the possibility that new information 

consistent with pre-existing schemas can be rapidly integrated into neocortical neural networks 

(Tse ​et al., ​2007), and computational investigations have now begun to explore the conditions 

under which this kind of rapid integration can occur (McClelland, McNaughton, & Lampinen, 

2020). 

Deep Reinforcement Learning 

The discussion so far has focused on learning in situations where a neural network seeks to 

match some form of externally provided information, such as a classification response provided 

by an external teacher, or the next item in the input stream. If the system generates the wrong 

output, its parameters can be adjusted to move its output closer to the target. 

  

While this form of learning has been a primary focus of deep learning research for most of its 

history, recent work has begun to focus also on a second area referred to as ​reinforcement 

learning ​(RL)​. ​Here again the learning system accepts inputs and produces outputs, but instead 

of receiving explicit output targets, as in supervised learning, the feedback signal takes the form 

of a single number, which scores how ‘good’ the output was. This numerical feedback signal is 

typically referred to as a ‘reward’ signal, with larger numbers indicating higher reward. The goal 

of learning is to select outputs that maximize the rewards received. 



  

One fundamental difference between RL and supervised learning is the need for exploration. 

Even when an output yields a large quantity of reward, there is still the possibility that some 

other action might generate even more, and the only way to find out is to explore alternative 

actions. However, there comes a point where exploration is wasteful, and it makes more sense 

to leverage the information that has been gathered so far. Negotiating this balance between 

exploration and ‘exploitation’ is a central problem in RL. 

  

In a further contrast with supervised learning, RL research has tended to focus on scenarios 

where the system’s outputs are understood as actions that alter the environment and thus 

determine the system’s next ‘sensory’ input, completing a sensory-motor loop. One 

ramification of this framing is that reward can be accrued not only through single actions, but 

through sequences of action, putting a focus on sequential decision-making problems. 

  

It should be clearly noted that RL, by its definition, has no inherent connection with deep 

learning, and indeed RL research began as quite a separate endeavor. The development of 

computational algorithms for RL began in the 1980’s, directly inspired by questions arising from 

animal conditioning research (Sutton & Barto, 1981). These early investigations gave rise to the 

temporal difference​ (TD) approach that is still central to most RL procedures (Sutton & Barto, 

2018). Here, the system or ‘agent’ learns, for each input or state, an estimate of expected 

future reward, referred to as a ‘state value.’ An action is then selected and the agent takes note 

of both the reward received and the state value for the outcome state in which it arrives. A bit 

of simple arithmetic, based on these quantities, yields a ​reward prediction error​ (RPE) signal, 

indicating whether things turned out better or worse than was predicted based on the initial 

state. This RPE is then used to drive learning: Actions that yield positive RPEs are up-weighted 

so as to be selected more reliably in future; actions that yield negative RPEs are 

down-weighted.  

  

The initial link between RL and animal learning was fortified in the 1990s, when it was noted 

that midbrain dopamine release displays a temporal profile quite closely matching what would 

be expected of an RPE signal (Montague. Dayan & Sejnowski, 1996). As we will discuss further 

below, RL has gone on to provide a rich framework for understanding learning and decision 

making in humans and other animals, as well as the underlying neural mechanisms. 

  

Despite its interest, however, RL research up until around 2015 had one important limitation, 

which was connected to the issue of ‘state representation.’ The vast majority of RL algorithms 

required the current state or situation to be represented simply as an entry in a look-up table, 

or at most as a set of linearly combinable features. This made it impossible to select actions or 

compute value based on richer non-linear transformations of input, as would be necessary, for 

example, to deal with pixel-level visual inputs or relationally rich inputs such as board positions 

in chess. 



  

Of course, as discussed earlier, learning useful non-linear transformations of input 

representations is exactly the focus in deep learning, and an aspiration arose early in the history 

of RL research to use deep neural networks to learn rich representations on top of which 

RL-driven action selection could operate. Some early success in pursuing this goal was attained 

in now-classic work on backgammon (Tesauro, 1994), but more typically the combination of RL 

with deep learning was found to be unstable, with learning diverging into failure modes rather 

than converging toward desired patterns of behavior. 

  

A breakthrough occurred around 2015, in work that successfully applied “deep RL” -- as the 

combination of deep learning and RL has come to be called -- to a suite of classic Atari video 

games (Mnih et al., 2015). Here, a standard convolutional neural network took input in the 

form of pixel-level representations of the video-game screen, and output actions corresponding 

to joystick operations. Rewards corresponded to points in the game. A standard TD algorithm 

was used to compute RPE signals, and these were used to up- and down-weight actions as 

usual. However, this was accomplished through backpropagation: RPE signals were combined 

with backpropagation to adjust all of the weights in the network so as to up-weight actions 

yielding a positive RPE and down-weight actions yielding a negative one. Through gradual 

adjustments along these lines, the system was able to reach superhuman levels of performance 

on a large set of Atari games, often finding surprising solutions that to a human eye could even 

appear creative. 

  

One ingredient that contributed to the more stable learning obtained in this Atari work was 

experience replay​, using a hippocampus-like rehearsal buffer, as mentioned above. 

Action-outcome pairs were stored in memory and re-presented as training examples, alongside 

new experiences, throughout the learning process (a maneuver inspired by replay events 

observed in the brain). This kept training from focusing too exclusively on very recent 

experiences, avoiding the instability associated with earlier efforts. 

  

This initial breakthrough work on deep RL has been followed by an explosion in deep RL 

research, which has extended the paradigm in a number of fundamental ways. One key 

development has involved the integration of ​model-based ​methods. The initial work on Atari 

had adopted a ​model-free​ strategy, learning to select actions directly from a representation of 

the current state. Model-based RL, in contrast, leverages a ‘forward model’ of the environment, 

which given an initial state and an action specifies the probabilities of outcome states. Such a 

model can be used for planning, i.e., explicit search over action-outcome trajectories just 

before selecting an action. Over the last few years, deep learning has been integrated into 

model-based RL in at least two ways. First, it has been used to recommend actions based on 

model-free learning, with these recommendations then being used to guide model-based 

search. This coordinated use of model-based and model-free learning formed the foundation 

for AlphaGo, a system that learned through RL to play the ancient board game of go at a 



super-human level (Silver et al., 2016). Second, deep learning has been used to learn the 

forward model itself, based on observed action-outcome associations (Schrittwieser et al., 

2019). 

  

The initial work on deep RL relied on ‘end-to-end’ RL, with backprop updates – and therefore 

the learning of internal representations -- driven solely by the RPE signal. However, there are 

two significant pitfalls associated with this end-to-end approach. First, in many problem 

domains, reward is ‘sparse’; that is, reward is only received rarely. This is true, for example, in 

board games like go, where reward (positive or negative) is only received at the end of the 

game. When reward is sparse, in this sense, it means that an RL agent can cast about for a long 

time without learning anything at all. A second problem with end-to-end learning is that it 

results in internal representations that are closely tied to a particular task, and which may 

therefore not be ideal for other tasks. These considerations have motivated work in which deep 

RL has incorporated ‘auxiliary’ learning signals alongside those arising from task-based reward. 

One example is an additional reward intended to drive exploration, often linked to novelty, 

surprise or successful control of the environment, independent of task-specific goals (e.g., Badia 

et al., 2020). Another common form of auxiliary learning signal encourages the agent to predict 

the outcomes of its actions, independent of whether they yield reward (e.g., Wayne et al., 

2020; van den Oord, Li & Vinyals, 2018). This kind of learning, which extends  the 

prediction-based learning often used in language modeling by including the agent’s action as 

part of the condition for the prediction, could be used for model-based RL, but even when it is 

not it has been found to engender rich internal representations useful for model-free RL. 

  

Deep RL has been successfully applied in agent architectures containing recurrent neural 

networks including the long short-term memory networks introduced earlier. In this setting, RL 

can drive learning of working memory-like internal representations that carry forward 

action-relevant information about past events. One interesting side effect of this kind of 

learning is that it can give rise to deep RL systems that develop the ability to adapt their 

behavior rapidly based on reward feedback (Wang et al., 2016; see also Finn, Abbeel, Levine, 

2017). ​The leveraging of past experience to accelerate new learning is referred to in machine 

learning as ‘meta-learning’. However, not surprisingly, the idea originates from psychology, 

where it has been called ‘learning to learn.’ Here, we describe the psychological principle and 

present a deep RL model that captures this behavior.  

 

In the first paper to use this term, Harlow (1949) presented an experiment that captures the 

principle neatly (Figure 3, left). Here, monkeys were presented with two unfamiliar objects, and 

permitted to grab one of them. Beneath lay either a food reward or an empty well. The objects 

were then placed before the animal again, possibly left–right reversed, and the procedure was 

repeated for a total of six rounds. Two new and unfamiliar objects were then substituted in, 

and another six trials ensued with these objects. Then another pair of objects, and so forth. 

Across many object pairs, the animals were able to figure out that a simple rule always held: 



one object yielded food and the other did not, regardless of left–right position. Thus, after 

training, when a monkey was presented with a new pair of objects it was able to learn in one 

shot which the preferable object was, providing a simple but vivid example of learning to learn. 

This pattern of behavior is shown in the middle panel, with the animals’ ‘insight’ reflected most 

directly in their excellent performance on the second trial in each six-trial block.  

 

Building on earlier work by Hochreiter (2001), Wang and colleagues (2018) showed that this 

same kind of learning to learn arises in a recurrent neural network trained on a task with the 

same logic as the one employed by Harlow (1949). Specifically, an LSTM network was trained, 

using reinforcement learning and backpropagation, to select between novel pairs of images, 

with the same six-trial block structure and rule-based pattern of reward. After training on a long 

series of different image pairs, the weights in the network were held fixed and a new image pair 

was presented for six trials. As shown in the right panel of the figure, under these conditions 

the network behaved very much like the monkeys in Harlow’s experiment. In effect, 

reinforcement learning and backpropagation had ‘tuned’ the weights in the recurrent network 

in such a way that the ​activation patterns​ in the network were able to store information about 

which image had been selected on recent trials, and whether reward had been received. As 

discussed earlier, such an internal pattern of activity constitutes a form or working memory, 

one that the network learned to form, and then to use to guide adaptive behavior without 

weight updates.  

 

In summary, the original RL algorithm had given birth to a second, emergent learning algorithm, 

implemented in the network’s activation dynamics, an instance of learning to learn, or in this 

case, meta-reinforcement learning. ​ This meta-reinforcement learning effect mirrors the 

working-memory based reward learning that has been observed in some recent investigations 

of human learning (Collins & Frank, 2012). 

  
Deep RL: Implications for Psychology 

  
Like deep learning at large, deep RL has interesting and wide-ranging implications for 

psychology and neuroscience. Deep RL of course brings together two computational 

frameworks that independently have tight preexisting links with psychology and neuroscience: 

deep learning, with its ties to representation learning in biological neural systems, and RL which 

as we have noted was inspired by animal learning phenomena and has been linked to 

dopaminergic function. Beyond this, a number of techniques that have been added to the deep 

RL toolbox, such as memory replay and model-based RL, have immediate connections with -- 

and in some cases were directly inspired by -- animal behavior or neuroscience (see e.g., 

Gershman & Daw, 2017). 

  

However, while deep learning and RL have their own independent implications for psychology 

and neuroscience, deep RL is more than the sum of its parts: It raises issues that are not raised 



by either of its two ingredients alone. A good example is the meta-reinforcement learning 

phenomenon mentioned above, which has recently been used to account for a diverse range of 

behavioral observations and neuroscientific findings relating to the prefrontal cortex (Wang et 

al., 2018). We have already discussed how meta-reinforcement learning provided a novel 

explanation for the meta-learning effect observed by Harlow (1949). To take just one example 

on the neuroscience side, Wang and colleagues (2018) showed that the receptive fields of 

macaque prefrontal neurons during a reward-based learning task were closely mirrored by the 

response patterns of units inside a recurrent network trained on the same task.  

 

A second example of a novel hypothesis suggested by deep RL is provided by recent work on 

‘distributional RL.’ Here, the value and RPE signals from standard TD learning are replaced by 

richer, multi-dimensional representations capturing the full probability distribution over 

rewards and prediction-error signals (Dabney et al, 2018). Elaborating TD learning in this way 

enhances learning in deep RL systems by driving the emergence of richer internal 

representations, an effect not seen when the same approach is applied to RL systems that do 

not involve deep learning (Lyle, Bellemare & Castro, 2019). In recent experimental neuroscience 

work, evidence has been obtained that the mammalian dopamine system may use a 

distributional representation, as in distributional RL (Dabney et al., 2020).  

 

While the field of deep RL is relatively new, the logic of the approach together with the initial 

steps we have described linking deep RL with behavioral and neuroscience findings suggests 

that it may provide a useful source of new hypotheses for how reward-based representation 

learning occurs in the brain, and how this manifests in behavioral patterns of learning and 

decision-making.  

Discussion 

In this article, we have considered the role of deep neural networks as models of human 

learning and memory.  These models trace their roots to Hebb (1949), Rosenblatt (1962), and 

the PDP movement of the 1980s, and have become a major focus of research in artificial 

intelligence over the last decade.   As researchers who have been involved in this tradition for 

decades, we see renewed motivation for ideas originating a quarter of a century ago, as well as 

exciting new directions that expand the fertile ground for productive interplay between 

research in artificial intelligence and research on biologically-based cognitive systems in animals 

and man and the biological implementation of such systems.  We have seen how neural 

networks can be applied to the effort to understand many aspects of learning and memory, 

ranging from immediate recall of short lists of items to the gradual emergence of semantic 

knowledge during human development.  We have seen how deep learning models exploit 

complementary learning systems to enhance their effectiveness at solving cognitively 

challenging tasks, and we have seen how gradient-descent based learning in advanced 

architectures with external memory demonstrate the potential for learning to shape what we 



store in memory and how we search memory to find what we need to perform skilled tasks. 

Building on Deep Reinforcement Learning, we have seen how neural network models can learn 

representations that support reward-driven behavior, and how such models can capture 

important behavioral phenomena such as the ability to learn to learn.  We see an exciting 

prospect for the further development of models that rely on ideas from Deep Learning to 

inform our search for ways of understanding human learning and memory. 

Limitations and Future Directions 

Thus far, we have not addressed limitations of current deep learning models.  We now turn to 

this important topic, acknowledging that current models do have limitations in their ability to 

capture aspects of human intelligence.  We see the current state of development of models of 

intelligence as promising and exciting, but far from fully satisfactory.  In spite of successes in 

creating artificial systems that are in use every day and that exceed human capabilities in 

games that take decades for human learners to master like chess and go, further progress is 

needed, and we do not believe it is possible to predict how long it will be before we have 

models that fully capture human mental abilities.  Below we mention two recent challenges 

that point to areas where further progress is needed, along with tentative suggestions about 

the prospects for progress and the direction such progress might take.  We preface these 

remarks by acknowledging that some critics of a deep learning approach have long argued that 

more explicit symbol-processing based approaches may be necessary as alternatives or 

complements to neural network based approaches (Fodor & Pylyshyn, 1988; Griffiths, Chater, 

Kemp, Perfors & Tenenbaum, 2010; Lake, Ullman, Tenebaum & Gershman, 2017).  We still favor 

the view that we will achieve the most satisfactory long-term outcomes by continuing to 

explore how mechanisms that address the shortcomings of current models can arise without 

building too much structure in (McClelland, Botvinick, Noelle, Plaut, Rogers, Seidenberg & 

Smith, 2010), and we are excited that so many brilliant scientists are now exploring this 

approach. 

One-shot learning. ​The first challenge we consider arises when we first see an instance of a new 

concept or type of object -- perhaps a new kind of vehicle such as a segway, or a character in an 

unfamiliar alphabet.  After using the segway as a motivating example, Lake, Salakhutdinov, and 

Tenenbaum (2015) investigated the character example more fully, and demonstrated that 

humans were far better at several tasks after seeing a single example character than and of a 

set of neural-network models they considered.   Among other things, after seeing an example 

of a character generated by one person, human adults were better at finding a second example 

of the character or generating new examples of the character than the neural networks. 

Acquiring and adapting new skills quickly from observation and  instruction.  ​The second 

challenge arises when we first learn a new task or adapt our goals in a familiar task based on 

instructions.  Lake ​et al. (​2017) presented this challenge in the context of the videogame 

Frostbite​, noting that, after reading the instructions on how to play the game, watching a 



couple of minutes of expert play, and then playing for just 15-20 minutes, humans achieved 

scores comparable to what improved versions of the network used by Mnih ​et al ​(2015) could 

achieve after thousands to millions of games.  Furthermore, Lake ​et al.​ suggested a number of 

altered goals a human who knew how to play the game could readily adopt, such as trying to 

lose, trying to get as close as possible to a particular score without going over, or trying to get a 

score just slightly better than a friend’s score. 

We agree that these challenges address aspects of human intelligence not yet fully captured by 

Deep Learning systems.  Below, we consider some what it will take to address the core issues 

behind these challenges. 

Giving networks the same inductive biases that humans bring to a task. ​ When humans learn 

how to perform a task, they rely on what are called ​inductive biases​ that constrain the space of 

possible solutions to a problem, allowing for rapid learning.  Depending on their architecture 

and the optimization objective applied during learning,  deep learning models can have strong 

inductive biases.  Convolutional networks provide a clear example, since their structure builds 

in an inductive bias to assume the statistical structure of images remains the  same even when 

images are translated (i.e., shifted) vertically and horizontally.  As in other cases, the inductive 

bias in this case can be thought of as corresponding to one that in animals would have derived 

from  evolution.  

Inductive biases may also be provided by  the resources we use to generate particular 

behaviors and by experience.  Consider, for example, the task of producing a new example of a 

character from an human alphabet.  Humans perceive characters using their visual systems, and 

produce characters by using their hands to guide a writing implement -- in the case of the Lake 

et al. ​(2015) study, a mouse -- to create a series of strokes to form a character.  The neural 

networks Lake ​et al. ​considered did not have most of these characteristics.  Their networks 

relied on simulated vision systems that processed characters as static images (arrays of pixel 

intensities, as in the digit recognition model we used to introduce deep networks).    These 

networks have built-in visual biases including convolutional layers, but they lack the inductive 

bias that characters are formed out of a series of strokes that can be made by a hand using a 

writing implement.  In fact, Lake ​et al. ​captured their own findings by creating an explicitly 

structured symbolic model that treats characters as hierarchically structured assemblies of 

strokes.  Given that writing is a recent human adaptation that relies on characteristics of the 

human body (especially the human hand), it seems natural to explore the possibility that 

experience using the hand to control an implement to write could lead to connection-based 

knowledge with similar functional characteristics. To achieve human level performance in the 

various tasks Lake ​et al. ​(2015) demonstrated humans could perform without building in an 

explicit, character-specific hierarchical generative model in advance is a good challenge for 

deep learning research. We suggest that an important part of the solution may be to use 

networks that learn to produce drawings and characters using a human-like arm and hand 



controlling a pen or mouse.  For a neural network system that suggests the promise of this 

approach, using a pen controlled by specifying stroke sequences, see Ganin ​et al. ​(2018). 

Embedding networks that learn specific tasks in larger systems that perform many different 

tasks.  ​One of the ways that most neural networks differ from humans is that a given neural 

network is typically trained on just one task or closely related suite of tasks.  Highly successful 

convolutional networks for image classification, for example, are trained only to classify images, 

and Deep RL systems have generally been trained to perform only one task at a time.  In Mnih 

et al. ​(2015) for example, the same architecture was used to play each of many different games, 

but a freshly initialized instance of this architecture was trained for each game.  Similarly, 

completely distinct instances of the Alpha0 system (Silver ​et al., ​2018) are used to achieve 

superhuman performance at the separate games of chess, go, and the Japanese game shogi. 

This makes these systems completely unlike adult humans, who bring a lifetime of relevant 

experience to learning a new game such as Frostbite.  In order to create systems that are able 

to learn a new game quickly from instruction, then, deep learning research will need to move 

toward using single systems that can effectively share what they have learned in each of many 

different tasks to help provide the starting place for learning new tasks (see Parisi ​et al.​, 2019). 

Building such a system is an important step toward artificial general intelligence -- one that may 

also bring us closer to having neural networks that capture some of the aspects of the human 

ability to learn new tasks quickly from very limited experience. 

Building networks that learn to follow open-ended instructions. ​Another way neural networks 

differ from people is that they do not generally make use of the open-ended medium of 

language to provide a way of guiding their performance and learning in a particular task. 

Throughout this article we have mentioned many networks, but virtually none of them rely on 

open-ended task specifications that can be provided through natural language.   In this respect, 

they are really far more like non-human animal learners, or perhaps human learners brought up 

in total isolation from any form of interpersonal communication.  To us, this is a profound 

limitation facing most Deep Learning systems -- one that will definitely have to be addressed 

before we can say we have a system that has the ability to learn and perform in all of the ways 

that humans can.  

Some promising steps have recently been taken toward addressing this limitation.  As one 

example, Radford ​et al. ​(2019) have recently described a neural network language processing 

system that can in principle learn an open ended range of language based tasks based on 

learning from texts that include examples of instances of language processing tasks, such as 

summarization and a wide range of different types of text-conditioned question answering 

tasks.  A fertile extension of this general approach would be to train deep learning systems that 

live, play, and learn in a (perhaps virtual) environment that they share with humans, engaging 

in a give-and-take with others who can guide the behavior through discourse about their 



activities in the shared environment.    Some steps moving part way in this direction are 

described in Hill ​et al. ​(2020). 

Metacognition and discourse with others that can shape intelligent behavior.  ​FInally, we make 

note of the human ability to think about our own behavior and exchange information with 

others -- information that we can put to use to increase our effectiveness.  As one example, if 

someone is just learning English, one can tell them that the past tense of a verb is formed by 

adding ‘ed’, and this information can immediately be put to use, though nuanced mastery of 

the English past tense goes far beyond this simple ‘rule’, which should not be confused with 

expert language understanding.  Furthermore, humans go beyond mere rule-following, often 

engaging in reflection on the tasks they seek to master, creating helpful guides for their own 

behavior.  The developmental psychologist Annette Karmiloff-Smith was an early proponent of 

the view that humans rely on neural-network like processing systems complemented by 

metacognitive systems that observe and regulate the neural network (Clark & Karmiloff-Smith, 

1993), and Anders Ericsson, who has spent his career studying the psychology of expertise has 

long argued that self-reflection and self-directed practice together with expert guidance by 

world-class coaches and role models are very important contributors to the emergence of 

world-class performance in all walks of life, ranging from athletics, to music, and to science and 

technology.  It is likely that, to achieve human level performance, Deep Learning systems will 

need to exploit these characteristics of natural intelligence, and there are now several exciting 

new directions in deep learning research that seek to capture some aspects of these abilities 

(e.g., Lampinen & McClelland, 2019). 

Final Comments and Conclusion 

Given that the brain is a neural network, researchers at least since Hebb (1949) have sought to 

understand how human learning and memory might emerge from processes taking place in 

neural network-like systems.  It was once possible, however, to argue that neural networks only 

address the implementation of cognitive abilities in brains, and that the true nature of such 

abilities needed to be sought in the characteristics of symbolic systems (Fodor & Pylyshyn, 

1988). The unprecedented successes of deep learning models in the field of artificial 

intelligence have rekindled interest in thinking about the idea that mental abilities might arise 

as consequences of processing and learning in a neural network.  In this article we have 

considered such systems, and we have seen how they can address human and animal 

performance in a wide range of different types of learning and memory tasks.  We hope we 

have provided readers interested in human learning and memory with a starting place for 

understanding of some of the developments that have occurred in this field, and we hope we 

have indicated some of the directions research in this field must take to fully capture human 

learning and memory abilities.  In closing, we emphasize that the effort to understand the 

nature of specifically human intelligence remains an important endeavor, quite apart from 

what can be achieved in artificial systems.  Research that draws inspiration from research on 



artificial systems while still focusing on human performance and its biological substrate will be 

crucial to the long-term goal of understanding how learning and memory arise in natural 

biological systems, including humans.  
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Figure 1.​ A: The deep neural network described in the text for handwritten digit classification. 

Each input image contains 28 x 38 grayscale values (turned into numbers between 0 and 1). 

This vector of values is passed through two hidden layers to a third output layer where the 

softmax function is applied to calculate the network’s estimate of the probability that the 

correct label is each one of the possible digits.  The network is trained by providing, with each 

of 50,000 training images, a teaching signal or target output value, which specifies which of the 

10 labels (0 through 9) is correct.  B: Output confusability and representation similarity analysis. 

Bottom: Representation similarities at the first hidden layer after the network was trained for 

one epoch, or sweep through the training set, and obtained a test accuracy of 90% correct. The 

mean activation pattern for each of 1000 test examples of each digit is first computed, and then 

compared to the mean activation pattern of every other digit, using the cosine similarity, which 

takes a value of 1 when two patterns are identical, and falls off from there as patterns become 

more different.  Top: Digit confusability analysis of the network outputs.  For each of the 10 

digit classes (one per row), the mean predicted probabilities for each digit label are shown, one 

in each column.  The actual color scale has been adjusted by taking the square root of each 

predicted probability, so that the network’s slight tendency to confuse certain digits can be 

seen.  The largest off-diagonal entry in the table corresponds to a probability of about .1.  



 

Figure 2. ​ Two visualizations of a recurrent neural network.  In A, we show the network as it is 

used to compute an output ​y​(​t​) for the input ​x​(​t​), using contextual influences provided by the 

previous state of each hidden layer, ​h​1​(​t​-1) and ​h​2​(​t​-1). Each blue arrow represents a distinct 

weight matrix, as described in the text.  In B, the network is shown ‘unrolled’ for 4 time steps. 

This visualization is useful to see the full set of paths through which error signals can propagate 

to allow gradient-descent-based learning.  For example, the error signal at time step 4, based 

on the loss computed between the teaching signal ​t​(4) and the network output ​y​(4), propagates 

downward through each upward blue arrow and leftward through each rightward blue arrow, 

specifying weight changes in all of the copies of matrix ​W​10​, the matrix mediating the influence 

of x(t) on h1(t) at each timestep.  The total change to ​W​10​ is the sum of the changes specified by 

the back propagated error signal for each of the copies of the matrix. 

  



 

Figure 3.​  ​Meta-learning in recurrent neural networks.​ ​Left, illustration of the simple 
meta-learning task used with Harlow’s monkeys.  Middle, performance of monkeys across the 
six trials with each new object pair, at the start of training and at the end of training.  Right, 
corresponding performance of the recurrent neural network model of Wang et al (2016). Figure 
adapted from Botvinick et al. (2019). 


