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Abstract
Inferring the abstract relational and causal struc-
ture of the world is a major challenge for
reinforcement-learning (RL) agents. For humans,
language—particularly in the form of explana-
tions—plays a considerable role in overcoming
this challenge. Here, we show that language can
play a similar role for deep RL agents in complex
environments. While agents typically struggle to
acquire relational and causal knowledge, augment-
ing their experience by training them to predict
language descriptions and explanations can over-
come these limitations. We show that language
can help agents learn challenging relational tasks,
and examine which aspects of language contribute
to its benefits. We then show that explanations
can help agents to infer not only relational but
also causal structure. Language can shape the way
that agents to generalize out-of-distribution from
ambiguous, causally-confounded training, and ex-
planations even allow agents to learn to perform
experimental interventions to identify causal re-
lationships. Our results suggest that language de-
scription and explanation may be powerful tools
for improving agent learning and generalization.

It is often argued that machine learning models—and deep
learning models in particular—lack the human proficiencies
for forming abstractions and inferring relational or causal
structure (e.g. Fodor & Pylyshyn, 1988; Lake et al., 2017;
Pearl, 2018; Marcus, 2020; Ichien et al., 2021; Holyoak &
Lu, 2021; Puebla & Bowers, 2021; Geirhos et al., 2020).
These limitations can make it hard to train models that
generalize out-of-distribution, or that reason in human-like
ways, particularly for reinforcement learning (RL) agents
that receive high-bandwidth input from raw pixels and must
learn to act in partially-observable environments.
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Human learning of abstract, relational, and causal structure
benefits substantially from language, and particularly ex-
planations. Language helps us to identify structure in the
world, and to structure our thinking (Edmiston & Lupyan,
2015; Lupyan, 2016; Dove, 2020). Explanations—language
that provides explicit information about appropriate abstrac-
tions and causal structure (Keil et al., 2000; Lombrozo,
2006)—are particularly useful. Explanations mitigate credit
assignment problems, by linking a concrete situation to
reusable abstractions (Lombrozo, 2006; Lombrozo & Carey,
2006). Thus, humans can use explanations learn efficiently,
from otherwise underspecified examples (Ahn et al., 1992).
Explanations help us make comparisons and master rela-
tional and analogical reasoning (Gentner & Christie, 2008;
Lupyan, 2008; Edwards et al., 2019). Explanations selec-
tively highlight generalizable causal factors in a situation,
improving our causal inference (Lombrozo & Carey, 2006).
Even explaining to ourselves, without feedback, can im-
prove our generalization (Chi et al., 1994; Rittle-Johnson,
2006; Williams & Lombrozo, 2010), perhaps because expla-
nations form abstractions that are easy to recall and general-
ize (cf. Dasgupta & Gershman, 2021).

Indeed, there has been increasing interest in using language
or explanations as a learning signal for machines (e.g.,
Ross et al., 2017; Mu et al., 2020; Camburu et al., 2018;
Schramowski et al., 2020; see related work). That is, rather
than seeking explanations post-hoc, to help humans under-
stand a system (e.g., Chen et al., 2018; Topin & Veloso,
2019; Xie et al., 2020), these works use explanations to help
a system understand a task (cf. Santoro et al., 2021). Most
machine learning from explanations focuses on supervised
learning1, but explanations may be even more relevant to
reinforcement learners. While supervised learners are theo-
retically limited (e.g., Pearl, 2018), RL agents can intervene
and thus can acquire causal knowledge (e.g., Dasgupta et al.,
2019; Rezende et al., 2020). Furthermore, RL agents strug-
gle with credit-assignment, abstraction, and generalization
(Ghosh et al., 2021; Kirk et al., 2021)—the exact settings
where explanations help humans. These observations mo-
tivate exploring whether language explanations could help
RL agents infer relational and causal structure.

1The few studies on explanations in RL (Guan et al., 2021;
Tulli et al., 2020) do not explore relations or causal interventions.
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What is a language explanation?We de�ne a language
explanation to be a string indicating a relationship between
a situation, the agent's behavior, and abstract task structure.
For example, after turning on an oven, an agent might re-
ceive an explanation like “turning on the oven heats it up, to
prepare for baking.” This explanation conveys the abstract
causal links between an action and a desired goal. By con-
trast, many true statements would not qualify as explana-
tions, because they ignore the agent's behavior, task-relevant
structure, or both; e.g., noting that “the oven is silver” would
not be an explanation unless that fact is relevant to the task.
We use the term “explanation” in this work to refer to a
broad class of language utterances, including descriptions if
they convey task-relevant abstractions; see Discussion.

We explore the bene�ts of explanations using tasks situated
in rich 2D and 3D environments. To study relational learn-
ing and abstraction, we use a challenging relational tasks in-
volving uniqueness—identifying the object from a set that is
theodd-one-outalong one of multiple varying dimensions.
To study causality, we �rst study learning in ambiguous,
causally-confounded tasks, where multiple distinct features
perfectly predict reward in training, but the features are dis-
sociated in evaluation. We then study causal interventions,
where agents must learn to perform experimental interven-
tions to identify the causal structure of a particular episode.

In all settings, we �nd that deep RL performs poorly, but
that learning and generalization improve substantially when
agents learn to predict language explanations. Explana-
tions help agents learn, by discouraging them from �xating
on easy-but-inadequate “shortcut” features (Geirhos et al.,
2020; Hermann & Lampinen, 2020). Explanations can help
agents to disentangle confounded features, and can shape
the way that agents generalize out-of-distribution on decon-
founded evaluations. They also enable agents to learn to
perform experiments in order to identify causal structure.

To understand these effects better, we explore how differ-
ent aspects of explanations contribute to their bene�ts We
demonstrate that the most effective way to exploit explana-
tions is to train agents to predict them, rather than simply
observe them (prediction also avoids a need for explanations
in evaluation). We further show that explanation prediction
is learned much more rapidly than the tasks, supporting the
idea that language helps agents learn task-relevant abstrac-
tions, which in turn make learning the task easier. We fur-
thermore show that explanations that provide feedback rele-
vant to the speci�c behavior of the agent are more effective
than behavior-agnostic signals, even unsupervised auxiliary
objectives (input reconstruction) that provide much more
information. Thus, the distinct bene�ts of explanations can
outperform or complement more generic auxiliary learning.

Taken together, these results suggest that generating expla-
nations could be a powerful tool for augmenting RL in chal-

lenging tasks. Furthermore, explanations posed in natural
language may be simpler for humans to produce than other
forms of supervision (e.g., Cabi et al., 2019; Guan et al.,
2021). Thus, training agents to generate such explanations
is a viable path towards both improved learning and gener-
alization, and perhaps toward more human-like and inter-
pretable agent behavior.

1. The odd-one-out tasks

We �rst outline a challenging family of fundamentally-
relational tasks: �nding the odd one out in a set of ob-
jects, i.e. the one that is somehow unique (Fig. 1). Odd-
one-out tasks have been used extensively in cognitive sci-
ence (e.g., Stephens & Navarro, 2008; Crutch et al., 2009),
and proposed in perceptual settings in robotics (Sinapov &
Stoytchev, 2010). These tasks are challenging, because they
involve both relational reasoning (same vs. different) and
abstraction (identifying uniqueness requires reasoning over
all objects, and all dimensions along which objects may be
related). Furthermore, these tasks permit informative expla-
nations of relevant dimensions, properties, and relations.

Investigating these challenging and abstract—yet
explainable—relational tasks is particularly interesting,
because relational reasoning and abstraction are critical
human abilities (Gentner, 2003; Penn et al., 2008), but the
capacity of deep learning to acquire these skills is disputed
(Santoro et al., 2017; 2018; Geiger et al., 2020; Ichien et al.,
2021; Puebla & Bowers, 2021). However, explanations sup-
port human relational learning (Gentner & Christie, 2008;
Lupyan, 2008; Edwards et al., 2019), suggesting that expla-
nations might similarly help machines acquire these skills.

In Fig. 1 we conceptually illustrate some odd-one-out tasks.
In Fig. 1a one object is uniquely green, while the rest are
purple. We thus denote color as therelevantdimension in
this episode. Along the other, irrelevant dimensions—shape,
texture, and size—attributes appear in pairs, e.g. there are
two pentagons and two triangles. These pairs force the
agent to considerall the objects. If the agent considered
only the �rst three objects it would be unable to tell whether
the �rst object was the odd one out (uniquely large), the
second (uniquely green), or the third (uniquely a triangle
or uniquely solid textured). Thus, the agent must consider
all objects to identify the correct dimension and the unique
feature. This makes the relational reasoning particularly
challenging, since the agent must consider many possible
relationships. The agent is rewarded for selecting the odd-
one-out, by picking it up or touching it.

We emphasize that in principle these tasks can be learned
from reward alone—language is not necessary for perform-
ing them, and we evaluate without language. Nevertheless,
we �nd that in practice language explanations are critical
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Properties explanation:This is a large, striped, purple pentagon.

Reward explanation: Correct, it is uniquely green.

(a) Example 1.

Properties explanation:This is a large, striped, blue rectangle.

Reward explanation: Incorrect, others are red,
solid, small, or circles.

(b) Example 2.

Figure 1: Conceptual illustrations of two possible odd-one-out tasks, and corresponding possible explanations. This �gure
depicts odd-one-out tasks with feature dimensions of color, texture, shape, and size, and the two types of explanations we
consider. Property explanations identify relevant object features, while reward explanations specify which feature(s) make
the choice correct or incorrect. (a) The second object is the odd one out, because it is a unique color. (b) The �rst object is
the odd one out, because it is uniquely large. Explanations of incorrect choices identify all features.

for learning these tasks in our settings. We consider two
types: reward explanations and property explanations (see
Fig. 1). Reward explanations are produced after the agent
chooses, and identify the feature(s) that make the choice
correct or incorrect. Property explanations are produced be-
fore the agent chooses, and explain the identity of the object
the agent is facing by specifying its task-relevant properties.
Both types satisfy our criterion for explanations: they link
the situation and the agent's behavior to the task structure.

Environments: Odd-one-out tasks can be instantiated in
various settings, from games to language or images, and can
incorporate various latent structures (e.g. meta-learning).
We instantiate these tasks in 2D and 3D RL environments
(Fig. 3a). In 2D, the agent has simple directional movement
actions, while in 3D it can move, look around, and grasp
nearby objects at which it is looking. In both environments
we place an agent in a room containing four objects, which
vary along feature dimensions of color, texture, position, and
either shape (2D) or size (3D). In each episode, one object
will be unique along one dimension. The 3D environment
compounds the dif�culty of the odd-one-out tasks, because
the agent's limited view often forces it to compare objects
in memory. See Appx. C.2 for full details.

2. Method: generating explanations

We focus on language explanations provided by the envi-
ronment during training. We synthetically generate the ex-
planations online, conditional on agent behavior. However,
explanations could be produced by humans, e.g. as annota-
tions of past trajectories (cf. Ross et al., 2017). We train the
agent to predict explanations as an auxiliary signal to shape
its representations (Fig. 2), as opposed to providing expla-
nations as direct inputs (which is less effective; Appx. A.3);
our approach thus does not require explanations at test time.
Note that we do not directly supervise behavior through ex-
planations, nor tell the agent how to use them. The agent
simply predicts explanations as an auxiliary output.

We train agents using the IMPALA (Espeholt et al., 2018)
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Figure 2: RL agent with auxiliary explanation prediction.

framework. Our agent (Fig. 2) consists of a visual encoder, a
memory, and output heads. The encoder is a CNN or ResNet
(task-dependent). The agent memory is a 4-layer Gated
TransformerXL Memory (Parisotto et al., 2020), which re-
ceives the visual encoder output and previous reward as in-
puts. The output of the memory is input to the heads. The
policy and value heads are MLPs, trained withV -trace. An-
other head reconstructs the input images to learn better repre-
sentations (though this is not necessary; Appx. A.8). Finally,
the explanation head is a single-layer LSTM, which gener-
ates language explanations. We train the agent to predict
these explanations using a summed softmax cross-entropy
loss. See Appx. C.1 for further agent details.

3. Experiments

3.1. Odd-one-out tasks in 2D and 3D RL environments

We �rst evaluate the bene�t of explanations for learning odd-
one-out tasks, by comparing agents trained with property
and reward explanations to agents trained without. In both
2D and 3D environments, agents trained with explanations
learn to solve the tasks over 90% of the time (Figs. 3b-
c). Agents trained without explanations perform worse;
in the easier 2D environment they exhibit partial learning
(see 3.4), while in the challenging 3D environment they
perform near chance. In 2D all agents were trained with an
unsupervised reconstruction loss. However, agents trained
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(a) 2D & 3D environments. (b) 2D results. (c) 3D results.

Figure 3: Explanations help agents learn the perceptual odd-one-out tasks in both RL environments. (a) Our environments
in 2D (top) and 3D (bottom). In 2D, the agent is the white square, while in 3D it has a �rst-person view. The objects
appear in varying positions, colors, textures, and shapes (2D) or sizes (3D). (b) 2D results. Agents trained with explanations
achieve high performance; agents trained without explanations do not. (c) 3D results. Only agents trained with explanations
exhibit learning substantially above chance. (Training steps denotes actor/environment steps, number of parameter updates
is � 104� smaller. 5 seeds per condition in 2D, 3 per in 3D, lines=means, dark region=� SD, light region=range.)

without reconstruction but with explanations perform well
(Appx. A.8), while agents trained with reconstruction but
without explanations do not. By highlighting abstract task
structure, explanations outperform task-agnostic auxiliary
objectives, even ones that provide strictly more supervision.

3.2. Explanations can deconfound

For humans, explanations help identifywhich speci�c as-
pectsof a situation are generalizable (Lombrozo & Carey,
2006). Could explanations also help RL agents to disentan-
gle causally-confounded (perfectly correlated) features, and
shape how agents generalize to out-of-distribution tests? We
explore this with a different training and testing setup (Fig.
4a). In training, one object is the odd-one-out alongthree
feature dimensions (color, shape, and texture). Thus, any
or all of these features could be used to solve the task—the
dimensions are perfectly confounded. In test, however, the
features are deconfounded: there is a different odd-one-out
along each dimension. We explore the effect of explana-
tions that consistently refer to a single feature dimension
(without mentioning others) on the agent's behavior in de-
confounded evaluation. We train agents in four conditions:
no explanations, color-only explanations, shape-only expla-
nations, or texture-only explanations. Single-dimension ex-
planations can potentially draw the agent's attention to a par-
ticular dimension, and thereby disentangle these features,2

even though the explanations do not alter the relationship
between these dimensions and the reward signal.

Agents trained without explanations were biased towards
using color (the simplest feature) in the deconfounded eval-
uation (Fig. 4b). However, the agents trained with expla-

2Feature uniqueness is always confounded, but feature values
recombine across episodes, allowing disentangling.

nations generalized in accordance with the dimension that
they were trained to explain> 85%of the time (Fig. 4c),
even though there were no direct cues linking the reward to
that dimension over the others. In this setting, shaping an
agent's internal representations through explanations draws
its attention to the desired dimension, and allows> 85%
out-of-distribution generalization along that dimension.

3.3. Explanations allow agents to learn to experiment

Explanations help humans to understand causal structure
(Lombrozo, 2006; Lombrozo & Carey, 2006). The ability
of deep learning to infer causality is sometimes questioned
(e.g. Pearl, 2019), but while theoretical limitations hold for
passive learners, RL agents can intervene and can there-
fore identify causal structure. Indeed, agents can meta-learn
causal reasoning in simple settings (Dasgupta et al., 2019)
where causal variables are directly observable and actions
allow strong interventions. We investigate whether explana-
tions could help agents learn to identify causal structure in
more challenging relational tasks in richer environments.

We consider a meta-learning setting where agents com-
plete episodes composed of four odd-one-out trials. In each
episode, there is only one causally-important dimension in
all four trials—reward is determined by uniqueness along
only one of the feature dimensions (e.g. color). This “cor-
rect” dimension changes across episodes, and is not directly
observable. Thus agents must learn toperform experiments
on the �rst three trials to identify the causally-relevant di-
mension, in order to select the correct object on a fourth
test trial (Fig. 5a). The agent receives 1 reward for complet-
ing an early trial correctly, but 10 reward for completing the
�nal trial correctly. Thus, the agent is incentivized to exper-
iment and discover the correct dimension in the early trials,
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Train (confounded):

Evaluation (deconfounded):

(a) Training & evaluation setup. (b) Bias without explanations. (c) Choices with explanations.

Figure 4: Explanations can deconfound perfectly correlated features. (a) Schematic depictions and environment screenshots
from train and test. The agent is trained in confounded settings, where the target object is unique in color, shape, and texture.
The agent is tested in deconfounded settings, where one object is unique along each dimension (and an additional distractor
object has no unique attributes). (b) When trained without explanations, the agent is biased towards using color (the simplest
feature) in evaluation. (c) However, if the agent is trained with explanations that target any particular feature, the agent
prefers that feature in the deconfounded evaluation. (3 seeds per condition, chance is random choice among valid objects.)

in order to gain a large reward in the �nal trial.

To enable experiments, in the �rst three trials of each
episode, we give the agent a magic wand that can perform
one causal intervention per trial: changing an object's color,
shape, or texture. That is, we endow the agent with three
additional actions which transform one of those three prop-
erties of an adjacent object. The agent is forced to use the
wand to create an odd-one-out, because each trial's initial
con�guration lacks any objects with unique features—along
each dimension the features are either all the same, or ap-
pear in pairs. When the features are all the same, the experi-
ments are relatively easy (Fig. 5b): the agent must simply
transform an object and then select the same object. When
the features are paired, however, the experiments are harder
(Fig. 5c): the agent must transform one object, which will
change to match other objectsand then it must select an-
other objectthat wasformerlypaired with this one, but is
now unique. The �nal trial is always a deconfounded test,
where a different object is unique along each dimension,
and the magic wand is disabled. On all trials, we reward the
agent only if it selects an object which is unique along the
“correct” dimension. Thus, the agent cannot reliably choose
correctly unless it has already experimented with the magic
wand to infer the correct dimension.

We again compare agents that receive property and reward
explanations to agents that do not, but in this case the ex-
planations are augmented to identify the correct dimension
(e.g., “incorrect, the dimension is shape, and other objects
are squares”). Again, while in principle these tasks could be
learned from rewards alone, we �nd that agents trained with-
out explanations cannot learn these tasks. However, agents
trained with explanations achieve high success at both easy
(Fig. 5b) and hard levels (Fig. 5c). Explanations can help
agents learn to perform causal intervention experiments.

3.4. Exploring the bene�ts of explanation in more detail

In order to better understand the bene�ts of explanations,
we explored our results further in a variety of analyses, ab-
lations, and control experiments. We highlight three intrigu-
ing results here, and brie�y outline the rest.

Explanations help agents overcome biases toward easy
features (Appx. A.1): In 2D, agents without explanations
�xate on positions and colors, and learn to solve the task
only when those dimensions happen to be relevant. Shape
and texture are generally not learned at all. This explains
the moderate performance without explanations. With ex-
planations, by contrast, agents learn to solve the tasks with
any feature. Similarly, in the confounded features setting
color is preferred without explanations, but again with ex-
planations agents can learn to use other features. Hermann
& Lampinen (2020) show similar feature-dif�culty rankings
for CNNs, and that CNNs lazily prefer easier features. Sim-
ilarly, Geirhos et al. (2020) discuss “shortcut features” that
networks prefer, despite the fact that those features do not
correctly solve the task. Thus, explanations may help an
agent to overcome biases towards easy-but-inaccurate solu-
tions, to escape minima or plateaus, and to master the task.

Both explanation types provide complementary bene-
�ts; their relative value depends on the environment
(Fig. 6): In the above experiments we provided agents with
both property and reward explanations. Here, we compare to
agents trained to generate only a single type of explanations.
We found that having both types of explanations is generally
better than (or at least as good as) a single type, but the rela-
tive bene�ts of different types depend on the setting. In the
2D environment (Fig. 6a) either type of explanations alone
results in learning, but both types together result in substan-
tially faster learning. In the 3D setting (Fig. 6b), we �nd that
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(a) A single intervention trial (top), and multi-
trial episode structure (bottom).

Transform color!

(b) Easy level structure (bottom) and
results (top).

Transform color!

(c) Hard level structure (bottom) and
results (top).

Figure 5: Explanations allow agents to meta-learn to perform experiments. (a) Each episode consists of four trials: three
where the agent gets to experiment with a magic wand in order to discover which feature dimension is relevant, followed by
a �nal deconfounded trial where it must choose the unique object along that dimension. In this case the relevant dimension
is color. In the �rst trials the agent transforms the shape and texture of the objects, but is not rewarded for picking them up
(red X). In the third trial, it transforms the color and is rewarded for picking the object up (green check). The agent can
then infer that it should choose the different-colored object in the �nal trial. (b) In some episodes, the experiments are easy,
because all the object attributes are the same, and the agent only needs to transform an object and select that object. Agents
trained with explanations learn these tasks, while agents trained without explanations do not. (c) In other episodes, the
experiments are harder, because the object attributes are all paired—the agent must transform one object, and then pick up
anotherwhich has been made unique. With explanations, agents learn these dif�cult levels as well. (4 seeds per condition.)

property explanations are relatively more bene�cial; perhaps
because predicting explanations on encountering the objects
helps the agent overcome the memory challenges in the 3D
environment by helping it to encode the relevant features in
an easily decodable way. By contrast, for the meta-learning
tasks (Fig. 6c), we �nd that the reward explanations are nec-
essary for any learning. This is likely because the relevance
of a transformation experiment to the �nal reward is much
more directly conveyed by the reward explanations than the
property ones. However, both types of explanations together
are required for complete learning within the training bud-
get we considered. In summary, the relative bene�ts of the
explanation types depend on the demands of the environ-
ment, but generally having both types is best.

Behaviorally- and contextually-relevant explanations
are best (Appx. A.2):Human explanations arepragmatic
communication: they depend on context, knowledge, and
behavior (Van Fraassen, 1988). We therefore compared to
ablation explanations that referred to objects in the room,
but independent of behavior (on 10% of steps we randomly
chose an explanation that could occur in the current room,
regardless of agent actions), and irrelevant explanations (ran-
domly sampled from those possible inanyroom). We found
that behavior-relevant explanations were much more bene�-
cial than behavior-irrelevant ones, and completely irrelevant
explanations had no bene�t. In particular, in the challenging

experimentation tasks, behaviorally relevant explanations
werenecessaryfor learning. Explanations should engage
with the agent rather than passively conveying information.

Other explorations: We brie�y describe our other explo-
rations here; see Appx. A for full results. We �nd that lan-
guage prediction is learned much faster than the RL tasks
(Appx. A.6), supporting our suggestion that language makes
learning abstractions easier, which can in turn support RL.
We found that explanations as input are not helpful (Appx.
A.3), and can even interfere with the bene�ts of explanations
as targets. Prediction is a more powerful signal for learning
than receiving an input. We also found that a curriculum of
tasks that teaches the agent about object properties—by cue-
ing the agent with a property as input (e.g. “blue”) and then
rewarding the agent if it chooses the matching object—is
not as effective as explanations (Appx. A.7). Finally, expla-
nations are more bene�cial in complex tasks (Appx. A.5).
Thus, explanations may be especially useful as RL is im-
plied to increasingly complex settings.

4. Related work

Language plays a critical role in human learning. Lan-
guage can identify consistent abstractions or structures in
the world, and can shape reasoning processes (Edmiston &
Lupyan, 2015; Lupyan, 2016; Dove, 2020). In particular, ex-
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(a) Basic 2D. (b) Basic 3D. (c) Meta-learning (hard levels).

Figure 6: Different explanation types offer complementary, separable bene�ts. We compare agents trained with all
explanations or none (as above) to those trained with only property explanations (red), or only reward explanations (blue).
(a) In the basic 2D tasks, either kind of explanations is suf�cient for learning, but having both types together is substantially
faster. (b) In the 3D tasks, property explanations result in comparable learning, while reward explanations are not as effective,
but still better than none. This is likely due to the memory challenge of these tasks, since it is harder to see all objects at
once—property explanations can help the agent discover what to encode to make its choice, while reward explanations
cannot. (c) In the learning to experiment setting, by contrast, only reward explanations result in any learning on the hard
levels, but both types together is even better. (5 seeds each for All/None conditions, 2 seeds each for properties/reward.)

planations can enable ef�cient, generalizable learning, even
from a single example (Ahn et al., 1992). Explanations can
highlight both causal factors, and relationships between a
present situation and broader principles (Lombrozo, 2006).
Explanations therefore depend strongly on prior knowledge,
and the relationship between explainer, the recipient, and the
situation to be explained (Van Fraassen, 1988; Cassens et al.,
2021). As Wood et al. (1976) say: “one must recognize the
relation between means and ends in order to bene�t from
`knowledge of results.”' Explanations link a speci�c situa-
tion to more general principles that can be used in the future.

Relations: Relational and analogical reasoning are consid-
ered crucial to human intelligence (Gentner, 2003), and pos-
sibly absent in other animals (Penn et al., 2008). The rela-
tionssameanddifferentare central to many accounts, but
their origins are disputed (Penn et al., 2008; Katz & Wright,
2021, e.g.). But language and culture play a critical role
in learning these concepts and skills (Gentner & Christie,
2008; Lupyan, 2008)—“relational concepts are not simply
given in the natural world: they are culturally and linguisti-
cally shaped” (Gentner, 2003). Thus, explanations may be
particularly key, and their absence may help explain neu-
ral networks' de�cits in relational reasoning (Geiger et al.,
2020; Puebla & Bowers, 2021; Ichien et al., 2021), at least
without relational inductive biases (Santoro et al., 2017;
Shanahan et al., 2020).

Causality: Humans focus on causal structure, even as chil-
dren (Gopnik et al., 1999; Gopnik & Sobel, 2000), and
our causal understanding is closely linked to explanations
(Lombrozo & Vasilyeva, 2017). Human explanations are
not just causal, but emphasize important causal factors that

are useful for future prediction and intervention (Lombrozo
& Carey, 2006). Furthermore, Lombrozo & Carey (2006)
emphasize that children accept various explanations, while
adults selectively endorse causally generalizable ones, sug-
gesting that this focus may be at least partly learned.

Self-explanation: Asking humans to produce explanations
for themselves, without providing feedback, can improve
generalization (e.g. Chi et al., 1994; Rittle-Johnson, 2006;
Williams & Lombrozo, 2010). Furthermore, Nam & Mc-
Clelland (2021) �nd that the ability to produce explanations
is strongly related to the ability to learn a generalizable
problem-solving strategy involving relational reasoning; and
furthermore that education—especially in mathematics—is
related to developing these abilities. The skills of explain-
ing and generalizing may be learned together.

4.1. Related work in AI

We are certainly not the �rst to observe that the cognitive lit-
erature suggests that explanations might help in AI. Here we
review a variety of prior work on explanation in AI. We also
relate to the broader set of approaches for auxiliary super-
vision that help agents (or models) to learn more effective
representations for a task. Explanations are a particularly
targeted form of auxiliary supervision that focuses on the
causally-relevant, generalizable elements of a situation.

Language as representation, or to shape representa-
tions? Andreas et al. (2018) used language as a latent bot-
tleneck representation in meta-learning, and found bene-
�ts. However, Mu et al. (2020) showed that it was better
to not bottleneck through language, but merely use descrip-
tions to shape latent representations in supervised classi-
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�cation tasks. We similarly use language as an auxiliary
signal to shape latent representations toward task-relevant
abstractions. However, we focus on RL, where discover-
ing the right abstractions is more challenging and therefore
language can be even more bene�cial. RL also allows us
to extend to settings like causal intervention, which is not
possible in a classi�cation paradigm.

Natural Language Processing:Explanations �t naturally
into NLP tasks, and Hase & Bansal (2021) highlight the
many ways that explanations could enter in NLP tasks, e.g.
as targets, inputs, or as priors. They �nd no improvement
from using explanations as targets, but show some positive
effects of explanation retrieval during both training and test,
including improved performance on relational tasks and
better disentangling of causal factors.

Feature explanations as learning tools:Some prior work
has re�ned models using input attention or gradients as tar-
gets for explanatory feedback (e.g. from humans). Ross
et al. (2017) show that penalizing gradients to irrelevant fea-
tures can improve generalization on a variety of image and
language tasks. Lertvittayakumjorn & Toni (2021) survey
works on tuning NLP models using explanatory feedback
on features, word-level attention, etc. Schramowski et al.
(2020) highlight an intriguing interactive-learning-from-
feedback setting where an expert in the loop gives feedback
which can be used for similar counter-example- or gradient-
based training. Stammer et al. (2021) extend this approach
in neurosymbolic models to intervene on symbolically-
conveyed semantics rather than purely visual features. In
RL, however, applications of feature explanations have been
more limited, although Guan et al. (2021) used human anno-
tations of relevant visual features (and binary feedback) to
generate augmentations that varied the task-irrelevant fea-
tures, and showed bene�ts over other feature-based explana-
tion techniques or augmentations in video game playing.

Language in RL: Language is used broadly in RL, whether
as instructions (e.g. Hermann et al., 2017; Kaplan et al.,
2017), to target exploration (Goyal et al., 2019; Watkins
et al., 2021; Mu et al., 2022; Tam et al., 2022), or as an
abstraction to structure hierarchical policies (Jiang et al.,
2019). Luketina et al. (2019) review many recent uses of
language in RL, and argue for further research. However,
they do not even mention explanations. Tulli et al. (2020)
consider natural language explanations of actions in RL.
However, they only evaluate a simple, symbolic MDP, and
observe no bene�ts, perhaps because their explanations do
not relate to the abstract task structure.

Auxiliary tasks: Predicting explanations is part of the gen-
eral paradigm of shaping agent representations with auxil-
iary signals (e.g. Jaderberg et al., 2016). However, explana-
tions are fundamentally different from unsupervised losses—
unsupervised objectives are task-independent by de�nition,

while explanations selectively emphasize the causally rel-
evant features of a situation, and the relationship to gen-
eral task principles (Lombrozo & Carey, 2006; Lombrozo,
2006). Somesupervisedauxiliary objectives are more simi-
lar to explanations; the boundaries of explanation are blurry.
In the Alchemy environment (Wang et al., 2021), which
involves learning latent causal structure, predicting task-
relevant features improves performance. Similarly, Santoro
et al. (2018) show that predicting a “meta-target”—an ab-
stract label encoding some task structure—improves learn-
ing of a relational reasoning task. More broadly, supervis-
ing task inference can improve meta-learning (Rakelly et al.,
2019; Humplik et al., 2019). Since these predictions directly
relate to task structure, they are closer to explanations than
unsupervised task-agnostic predictions. However, they do
not necessarily actively link the details of the present situa-
tion to the principles of the task, as human explanations do.

5. Discussion

We explored relational and causal tasks that are challenging
for RL agents to learn from reward alone. In all cases, learn-
ing to generate language descriptions and explanations sig-
ni�cantly improved performance. Even though our agents
lacked prior knowledge of language, they were able to
rapidly learn to predict language explanations, and this pre-
diction helped them to discover the reasoning processes nec-
essary for the task. Explanations help agents learn the chal-
lenging, essential abilities of relational and causal reasoning.

We particularly emphasize the causal bene�ts of explana-
tions, because causal understanding is essential to effective
generalization. Indeed, explanations shaped how our agents
to generalize out-of-distribution (cf. Ross et al., 2017) from
ambiguous, causally-confounded data; furthermore, expla-
nations enabled agents to learn to perform their own experi-
mental interventions to identify causal structure. Without
access to a pre-speci�ed, discrete causal diagram (e.g. Pearl,
2019), our agents were able to ground explanations in pixel-
level inputs to learn and generalize causal structure. Hu-
mans use explanations to highlight the causally-relevant fac-
tors of a task (Lombrozo & Carey, 2006), and our results
show that explanations can play that same role for agents.

This focus on task-speci�c structure allows explanations to
outperform task-agnostic auxiliary objectives. Indeed, we
found that explanations helped agents to move beyond a
�xation on easy shortcuts that do not fully solve the task, but
that models nevertheless prefer (cf. Hermann & Lampinen,
2020; Geirhos et al., 2020). Explanations offer a promising
route to training RL agents that learn and generalize better.

Criteria for explanations: Explanations should satisfy cer-
tain criteria for maximal bene�ts. Explanations must relate
between the context, the agent's behavior, and the abstract
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task structure—explanations that ignore behavior are less
useful, and those that ignore context are useless. Receiv-
ing explanations as input was not useful in our experiments,
likely because it is easier for the agent to ignore inputs than
auxiliary targets. Furthermore, explanations outperform un-
supervised auxiliary reconstruction. Thus, simply training
agents with more information (as with unsupervised objec-
tives) is often not suf�cient; explanations must provide rele-
vant and speci�c learning targets to be most bene�cial.

Nevertheless, we acknowledge that the boundaries of expla-
nation are vague (cf. Van Fraassen, 1988; Woodward, 2005;
Brenner et al., 2021). For example, descriptions cannot
name every property, so they tend to pragmatically focus on
causally-relevant ones, and thus highlight similar features to
explanations. This fact is why we refer to task-relevant prop-
erty descriptions as explanations. Furthermore, we use “ex-
planation” to refer to cues to relationships between speci�c
situations, behaviors and abstract principles, which may
overlap with other forms of auxiliary supervision. While
we focused on language explanations, non-language predic-
tions that highlight abstract task features could likely serve
the same purpose. Explanations can also vary in abstraction
(cf. Fyfe et al., 2014; Watkins et al., 2021). The boundaries
of explanation should be explored further in future work.

Limitations and future directions: We performed our ex-
periments on variations of odd-one-out tasks in RL, which
may seem to limit the breadth of our conclusions. However,
our different experiments cover many central challenges, in-
cluding relational and causal structure, confounding, and
meta-learning, as well as 2D and 3D environments. Thus
we expect that our results will generalize to other challeng-
ing settings in future work; even beyond RL.

In broader settings, the ground truth for explanations may
not be automatically accessible. In some cases, knowledge
about abstractions such as property descriptions may be ac-
cessible through large pretrained models—indeed, in subse-
quent work we have shown that the abstractions from large
language-supervised image captioning systems can improve
RL exploration (Tam et al., 2022)—which may provide a
scalable route to language supervision. However, these mod-
els may not have access to causal or task-speci�c structure,
or may not work well in domains like Atari which are out-
side their training distribution. In such cases it may be nec-
essary to rely on alternative approaches, particularly human
annotation. Nevertheless, as noted above, explanation is an
especially natural and rich form of feedback for humans to
provide, so collecting such data may be worthwhile.

Although we drew inspiration from human uses of explana-
tion, our agents do not learn from explanations in the same
way as humans. Humans can use our prior knowledge of
language to learn from a single explanation in context. By
contrast, our agents needed to learn about languagesimulta-

neouslywith learning about the tasks, through many repeti-
tions of similar explanations. Future work should explore
whether agents that are trained with language and explana-
tions across a diverse array of tasks can meta-learn how to
learn from explanations in a more human-like way.

We also do not want to imply that explanations arenecessary
for learning. Most of our tasks could potentially be learned
with suf�cient data alone, especially if combined with more
complicated techniques, for example data augmentation
(Raileanu et al., 2020; Guan et al., 2021), or auxiliary gen-
erative model learning (Gregor et al., 2019). Furthermore,
many promising domains for deep learning—such as pro-
tein structure prediction (Jumper et al., 2021)—are precisely
those areas that humans do not understand well, and so are
challenging domains for humans to explain. Indeed, some
domains might be irreducibly complex; in these domains
forcing a system to strictly follow simple explanations could
be detrimental. Our approach does not force the agent to use
explanations directly, and therefore might be less harmful in
such cases than stronger constraints like requiring symbolic
representations (e.g., Garcez & Lamb, 2020).

In other domains there may exist simple explanations that
humans have not yet discovered. This observation moti-
vates a future research direction: learning to explain over
diverse task distributions, leveraging human explanations
in domains we do understand. A curriculum focused on
producing explanations could potentially yield substantial
bene�ts. Humans generalize better after explaining, even
without feedback (Chi et al., 1994; Rittle-Johnson, 2006),
and this ability may be learned through education (cf. Nam
& McClelland, 2021). An agent that similarly learns to pro-
duce explanations might similarly learn to generalize better
even in some domains for which we lack ground truth expla-
nations, and its explanations might help humans interpret
its behavior, and the domains in which it performs.

Conclusions:We considered a challenging set of relational
and causal tasks, and showed that learning to predict lan-
guage descriptions and explanations helps RL agents to
learn and generalize these tasks across various settings and
paradigms. Explanations can help agents move beyond bi-
ases favoring easy features, determine how agents general-
ize out-of-distribution from ambiguous experiences, and al-
low agents to meta-learn to perform experiments to identify
causal structure. Because these abilities are challenging for
current agents, generating explanations as an auxiliary learn-
ing signal—rather than purely for post-hoc interpretation—
may be a fruitful direction for further research.
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Camburu, O.-M., Rocktäschel, T., Lukasiewicz, T., and
Blunsom, P. e-snli: Natural language inference with natu-
ral language explanations.Advances in Neural Informa-
tion Processing Systems, 31:9539–9549, 2018.

Cassens, J., Habenicht, L., Blohm, J., Wegener, R., Korman,
J., Khemlani, S., Gronchi, G., Byrne, R. M., Warren,
G., Quinn, M. S., et al. Explanation in human thinking.
In Proceedings of the Annual Meeting of the Cognitive
Science Society, volume 43, 2021.

Chen, J., Song, L., Wainwright, M., and Jordan, M. Learn-
ing to explain: An information-theoretic perspective on
model interpretation. InInternational Conference on Ma-
chine Learning, pp. 883–892. PMLR, 2018.

Chi, M. T., De Leeuw, N., Chiu, M.-H., and Lavancher, C.
Eliciting self-explanations improves understanding.Cog-
nitive Science, 18(3):439–477, 1994. ISSN 0364-0213.
doi: https://doi.org/10.1016/0364-0213(94)90016-7.
URL https://www.sciencedirect.com/
science/article/pii/0364021394900167 .

Crutch, S. J., Connell, S., and Warrington, E. K. The dif-
ferent representational frameworks underpinning abstract
and concrete knowledge: Evidence from odd-one-out
judgements.Quarterly Journal of Experimental Psychol-
ogy, 62(7):1377–1390, 2009.

Dasgupta, I. and Gershman, S. J. Memory as a computa-
tional resource.Trends in Cognitive Sciences, 2021.

Dasgupta, I., Wang, J., Chiappa, S., Mitrovic, J., Ortega,
P., Raposo, D., Hughes, E., Battaglia, P., Botvinick,
M., and Kurth-Nelson, Z. Causal reasoning from meta-
reinforcement learning.arXiv preprint arXiv:1901.08162,
2019.

Dove, G. More than a scaffold: Language is a
neuroenhancement.Cognitive Neuropsychology, 37
(5-6):288–311, 2020. doi: 10.1080/02643294.2019.
1637338. URL https://doi.org/10.1080/
02643294.2019.1637338 . PMID: 31269862.

Edmiston, P. and Lupyan, G. What makes words spe-
cial? words as unmotivated cues.Cognition, 143:93–100,
2015.

Edwards, B. J., Williams, J. J., Gentner, D., and Lombrozo,
T. Explanation recruits comparison in a category-learning
task.Cognition, 185:21–38, 2019.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. InInterna-
tional Conference on Machine Learning, pp. 1407–1416.
PMLR, 2018.

Fodor, J. A. and Pylyshyn, Z. W. Connectionism and cogni-
tive architecture: A critical analysis.Cognition, 28(1-2):
3–71, 1988.

Fyfe, E. R., McNeil, N. M., Son, J. Y., and Goldstone,
R. L. Concreteness fading in mathematics and science
instruction: A systematic review.Educational psychology
review, 26(1):9–25, 2014.

Garcez, A. d. and Lamb, L. C. Neurosymbolic ai: the 3rd
wave.arXiv preprint arXiv:2012.05876, 2020.

Geiger, A., Carstensen, A., Frank, M. C., and Potts, C. Re-
lational reasoning and generalization using non-symbolic
neural networks.arXiv preprint arXiv:2006.07968, 2020.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-
ing in deep neural networks.Nature Machine Intelligence,
2(11):665–673, 2020.

Gentner, D. Why we're so smart.Language in mind: Ad-
vances in the study of language and thought, 195235,
2003.

Gentner, D. and Christie, S. Relational language supports
relational cognition in humans and apes.Behavioral and
Brain Sciences, 31(2):136–137, 2008.



Explanations support learning relational and causal structure

Ghosh, D., Rahme, J., Kumar, A., Zhang, A., Adams, R. P.,
and Levine, S. Why generalization in rl is dif�cult: Epis-
temic pomdps and implicit partial observability.Advances
in Neural Information Processing Systems, 34, 2021.

Gopnik, A. and Sobel, D. M. Detecting blickets: How young
children use information about novel causal powers in
categorization and induction.Child development, 71(5):
1205–1222, 2000.

Gopnik, A., Meltzoff, A. N., and Kuhl, P. K.The scientist in
the crib: Minds, brains, and how children learn.William
Morrow & Co, 1999.

Goyal, P., Niekum, S., and Mooney, R. J. Using natural
language for reward shaping in reinforcement learning.
arXiv preprint arXiv:1903.02020, 2019.

Gregor, K., Jimenez Rezende, D., Besse, F., Wu, Y., Merzic,
H., and van den Oord, A. Shaping belief states with gen-
erative environment models for rl. InAdvances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URLhttps://proceedings.
neurips.cc/paper/2019/file/
2c048d74b3410237704eb7f93a10c9d7-Paper.
pdf .

Guan, L., Verma, M., Guo, S., Zhang, R., and Kambham-
pati, S. Widening the pipeline in human-guided reinforce-
ment learning with explanation and context-aware data
augmentation. InAdvances in Neural Information Pro-
cessing Systems, 2021.

Hase, P. and Bansal, M. When can models learn from expla-
nations? a formal framework for understanding the roles
of explanation data.arXiv preprint arXiv:2102.02201,
2021.

Hennigan, T., Cai, T., Norman, T., and Babuschkin, I. Haiku:
Sonnet for JAX, 2020. URLhttp://github.com/
deepmind/dm-haiku .

Hermann, K. L. and Lampinen, A. K. What shapes feature
representations? exploring datasets, architectures, and
training. InAdvances in Neural Information Processing
Systems, 2020.

Hermann, K. M., Hill, F., Green, S., Wang, F., Faulkner, R.,
Soyer, H., Szepesvari, D., Czarnecki, W. M., Jaderberg,
M., Teplyashin, D., et al. Grounded language learning in
a simulated 3d world.arXiv preprint arXiv:1706.06551,
2017.

Hill, F., Lampinen, A., Schneider, R., Clark, S., Botvinick,
M., McClelland, J. L., and Santoro, A. Environmental
drivers of systematicity and generalization in a situated
agent. InInternational Conference on Learning Repre-
sentations, 2019.

Holyoak, K. J. and Lu, H. Emergence of relational reasoning.
Current Opinion in Behavioral Sciences, 37:118–124,
2021.

Humplik, J., Galashov, A., Hasenclever, L., Ortega, P. A.,
Teh, Y. W., and Heess, N. Meta reinforcement learning as
task inference.arXiv preprint arXiv:1905.06424, 2019.

Ichien, N., Liu, Q., Fu, S., Holyoak, K. J., Yuille, A., and Lu,
H. Visual analogy: Deep learning versus compositional
models. InProceedings of the 30th Annual Meeting of
the Cognitive Science Society, 2021.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-
ment learning with unsupervised auxiliary tasks. InInter-
national Conference on Learning Representations, 2016.

Jiang, Y., Gu, S., Murphy, K., and Finn, C. Language as an
abstraction for hierarchical deep reinforcement learning.
arXiv preprint arXiv:1906.07343, 2019.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R.,�Z�́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold.Nature, 596(7873):583–589,
2021.

Kaplan, R., Sauer, C., and Sosa, A. Beating atari with
natural language guided reinforcement learning.arXiv
preprint arXiv:1704.05539, 2017.

Katz, J. S. and Wright, A. A. Issues in the comparative cog-
nition of same/different abstract-concept learning.Cur-
rent Opinion in Behavioral Sciences, 37:29–34, 2021.

Keil, F. C., Wilson, R. A., and Wilson, R. A.Explanation
and cognition. MIT press, 2000.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization.arXiv preprint arXiv:1412.6980, 2014.

Kirk, R., Zhang, A., Grefenstette, E., and Rocktäschel, T. A
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Explanations support learning relational and causal structure

In Appendix A we show additional experiments and analyses. In Appendix B we report numerical values for our main
experimental comparisons. In Appendix C we report details of the environments, agents, and training.

A. Ablation experiments & further analyses

In this section, we perform a variety of control, ablation, and auxiliary experiments that identify which attributes of
explanations are useful in different settings. We perform most of these experiments in the 2D RL setting because of the
ef�ciency of running and training agents in this environment.

A.1. Agents trained without explanations �xate on the easiest feature dimensions

(a) Position. (b) Color. (c) Shape. (d) Texture.

Figure 7: In the 2D setting, agents trained with explanations learn all dimensions, but agents trained without explanations
learn to fully solve the tasks only if the relevant dimension is position (the easiest dimension), and only partly learn to solve
the tasks with color (the next easiest dimension). (5 seeds per condition.)

In the basic 2D odd-one-out tasks, the agent achieves off-chance performance without explanations (while in more
complicated settings such as the causal interventions, it cannot learn at all without explanations). In Fig. 7, we show that
what the agent is doing is latching on to the feature dimension(s) that are most salient andeasiest(Hermann & Lampinen,
2020), and only correctly solving episodes involving these features. Speci�cally, position is the most salient feature and is
learned rapidly even without explanations, followed by color which is partially learned without explanations. However, shape
and texture are much more dif�cult and are not learned well without explanations. These results concord with the features
that Hermann & Lampinen (2020) found were easiest for CNNs and ResNets to learn, suggesting that explanations may
help overcome the preference of agents (or other networks) to be “lazy” and prefer “shortcut features” (Geirhos et al., 2020).

A.2. Explanations are most useful if they engage with the agent's behavior; shuf�ed explanations are useless

We next investigate whether explanations need to be relevant to the agent's behavior, or even to the situation at all, in order
to be useful. To do this, we provide the agent with explanations that either are situation-relevant, but behavior irrelevant, or
are irrelevant to both behavior and situational context. To produce the situation-relevant but behavior-irrelevant explanations,
we �rst construct an episode as before. We then enumerate all the property and reward explanations that it would be possible
to receive in that episode, and present a randomly selected one to the agent on approximately 10% of steps, regardless of the
agent's actions. These explanations do contain information about the objects in the scene, and can therefore potentially still
bene�t learning, but they do not directly react to the agent's actions.

We also considered context-irrelevant explanations that were randomly sampled from the set of all possible explanations (we
chose either a property explanation or a post choice one with 50% probability, and then sampled a random set of attributes to
�ll out the template). This condition is essentially a control for the possibility that predicting structured information—even
meaningless information unassociated with the task—could be acting as form of regularization.

Our results (Fig. 8) show that explanations that are relevant to both situation and behavior are most useful, situation-relevant
but behavior-irrelevant explanations can be better than nothing in some cases, and totally irrelevant explanations are not
bene�cial at all. Speci�cally, for the basic tasks behavior-irrelevant explanations still result in some learning, but are much
slower than full behavior-relevant explanations.




