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ABSTRACT

The question of whether deep neural networks are good at generalising beyond
their immediate training experience is of critical importance for learning-based
approaches to Al. Here, we demonstrate strong emergent systematic generalisa-
tion in a neural network agent and isolate the factors that support this ability. In
environments ranging from a grid-world to a rich interactive 3D Unity room, we
show that an agent can correctly exploit the compositional nature of a symbolic
language to interpret never-seen-before instructions. We observe this capacity not
only when instructions refer to object properties (colors and shapes) but also verb-
like motor skills (lifting and putting) and abstract modifying operations (negation).
We identify three factors that can contribute to this facility for systematic gener-
alisation: (a) the number of object/word experiences in the training set; (b) the
invariances afforded by a first-person, egocentric perspective; and (c) the vari-
ety of visual input experienced by an agent that perceives the world actively over
time. Thus, while neural nets trained in idealised or reduced situations may fail
to exhibit a compositional or systematic understanding of their experience, this
competence can readily emerge when, like human learners, they have access to
many examples of richly varying, multi-modal observations as they learn.

1 INTRODUCTION

Since the earliest days of research on neural networks, a recurring point of debate is whether neural
networks exhibit ‘systematic’ generalization (Fodor & Pylyshyn, 1988; Marcus, 1998; McClelland
et al., 1987). This debate has been re-energized over the past few years, given a resurgence in
neural network research overall (Lake & Baroni, 2017; Bahdanau et al., 2018; Lake, 2019). The
current evidence reveals that systematicity in neural networks is not a binary question; since there
are cases where networks behave systematically and others where they do not, a more pertinent
research question is when and under what conditions neural networks are systematic. Here, we
establish that a conventional neural-network-based agent exposed to raw visual input and symbolic
(language-like) instructions readily learns to exhibit strong systematic generalisation, and explore
the conditions that support the emergence of this behaviour. First, we show in a 3D simulated room
that an agent trained to f£ind all objects from a set and 1ift only some of them can 1ift withheld
test objects never lifted during training. Second, we show that the same agent trained to 1ift all
of the objects and put only some of them during training can put withheld test objects, zero-shot,
in the correct location. Because the architecture of our agent does not include components that are
explicitly engineered to promote systematicity, we refer to the behaviour it exhibits as emergent
systematicity (McClelland et al., 2010).

In order to better understand emergent systematicity, we conduct several experiments to isolate its
contributing factors. We find three to be critical: (a) the number of words and objects experienced
during training; (b) a first-person egocentric perspective; and (c) the diversity of perceptual input
afforded by the perspective of a first-person interactive agent over time. Factor (a) is demonstrated
in the context of a negation generalisation experiment, in which the agent is able to generalise, above
chance accuracy, to unseen negatively-posed commands (find [something that is] not a toy
train) if it is provided with enough training examples. These results serve to explain differences
between our findings and studies showing poor systematicity, where networks were typically trained
in a supervised fashion on abstract or idealised stimuli from a single modality (Lake & Baroni,
2017). They also suggest that the human capacity to exploit the compositionality of the world, when
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learning to generalize in systematic ways, might be replicated in artificial neural networks if those
networks are afforded access to a rich, interactive, multimodal stream of stimuli that better matches
the experience of an embodied human learner (Clerkin et al., 2017; Kellman & Arterberry, 2000;
James et al., 2014; Yurovsky et al., 2013; Anderson, 2003).

1.1 SYSTEMATICITY AND NEURAL NETWORKS

Systematicity is the property of human cognition whereby “the ability to entertain a given thought
implies the ability to entertain thoughts with semantically related contents” (Fodor & Pylyshyn,
1988). As an example of systematic thinking, Fodor & Pylyshyn (1988) point out that any human
who can understand John loves Mary will also understand the phrase Mary loves John, whether or
not they have heard the latter phrase before. Systematic generalization (Plaut, 1999; Bahdanau et al.,
2018; Lake et al., 2019) is a desirable characteristic for a computational model because it suggests
that if the model can understand components (or words) in certain combinations, it should also
understand the same components in different combinations. Note that systematic generalisation is
also sometimes referred to as ‘combinatorial generalization’ (O’reilly, 2001; Battaglia et al., 2018).

Recent discussions around systematicity and neural networks have focused on the issue of how best
to encourage this behaviour in trained models. Many recent contributions argue that systematic
generalziation requires inductive biases that are specifically designed to support some form of sym-
bolic computation (such as graphs (Battaglia et al., 2018), modular-components defined by symbolic
parses (Andreas et al., 2016; Bahdanau et al., 2018), explicit latent variables (Higgins et al., 2017)
or other neuro-symbolic hybrid methods (Mao et al., 2019)). On the other hand, some recent work
has reported instances of systematicity in the absence of such specific inductive biases (Chaplot
et al., 2018; Yu et al., 2018; Lake, 2019). In the following sections, we first add to this latter lit-
erature by reporting several novel cases of emergent systematicity. Unlike in previous work, the
examples that we present here involve tasks involving the manipulation of objects via fine-grained
motor-policies, as well as language and vision. This is followed by an in-depth empirical analysis
of the environmental conditions that stimulate systematicity in these cases.

2 A MINIMAL MULTI-MODAL AGENT
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Figure 1: Schematic of the architecture used in all ex-
periments. The blue components show some critical
differences that differentiate it from more abstract stud-
ies that reported failures in systematic generalization.

Language processing Language instructions are received at every timestep as a string. The agent
splits these on whitespace and processes them with a (word-level) LSTM network with hidden state
size 128. The final hidden state is concatenated with the output of the visual processor to yield a
multimodal representation of the stimulus at each timestep.

Memory, action and value prediction The multimodal representation is passed to a 128-unit
LSTM. At each timestep, the state of this LSTM is multiplied by a weight matrix containing A 128
weights; the output of this operation is passed through a softmax to yield a distribution over actions
(A is the environment-dependent size of the action set). The memory state is also multiplied by a
1 128 weight matrix to yield a value prediction.
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Training algorithm We train the agent using an importance-weighted actor-critic algorithm with a
central learner and distributed actors (Espeholt et al., 2018).

3 EXAMPLES OF SYSTEMATIC GENERALISATION

A key aspect of language understanding is the ability to flexibly combine predicates with arguments;
verb-noun binding is perhaps the canonical example. Verbs typically refer to processes and actions,
so we study this phenomenon in a 3D room built in the Unity game engine.! In this environment, the
agent observes the world from a first-person perspective, the Unity objects are 3D renderings of ev-
eryday objects, the environment has simulated physics enabling objects to be picked-up, moved and
stacked, and the agent’s action-space consists of 26 actions that allow the agent to move its location,
its field of vision, and to grip, lift, lower and manipulate objects. Executing a simple instruction like
find a toothbrush (which can be accomplished on average in six actions by a well-trained agent
in our corresponding grid world) requires an average of around 20 action decisions.

3.1 A GENERAL NOTION OF LIFTING

Lifting is a simple motor process that corresponds to a verb and is easily studied in this environ-
ment. We consider the example instruction 1ift a helicopter to be successfully executed if the
agent picks up and raises the helicopter above a height of 0.5m for 2 seconds, a sequence which
requires multiple find-grained actions once the helicopter is located. Similarly, the instruction find
a helicopter is realised if the agent moves within two metres of a helicopter and fixes its gaze
(as determined by a ray cast from the agent’s visual field) while remaining within the two metre
proximity for five timesteps without lifting the object during this time.

To measure how general the acquired notion of lifting is, we trained the agent to find each of a set
X = X3 [ Xz of different objects (allowing the agent to learn to ground objects to their names)
and to 1ift a subset X; of those objects, in trials in a small room containing two objects positioned
at random (one ‘correct’ according to the instruction, and one ‘incorrect’). The agent receives a
positive reward if it finds or lifts the correct object, and the episode ends with no reward if the agent
finds or lifts the incorrect object. We then evaluate its ability to extend its notion of lifting (zero-
shot) to objects X 2 Xj. In a variant of this experiment, we trained the agent to lift all of the objects
in X when referring to them by their color (1ift a green object), and to find all of the objects
in X according to either shape or color (find a pencil or find a blue object). We again
tested on whether the agent lifted objects X 2 X, according to their shape (so, the test trials in both
variants are the same). As shown in Fig 2(a), in both variants the agent generalises with near-perfect
accuracy. The agent therefore learned a notion of what it is to lift an object (and how this binds to
the word /ift) with sufficient generality that it can, without further training, apply it to novel objects,
or to familiar objects with novel modes of linguistic reference.

3.2 A GENERAL NOTION OF PUTTING

We took our study of predicate-object binding further by randomly placing two large, flat objects
(a bed and a tray) in the room and training an agent to place one of three smaller objects on top.
As before, the agent received a positive reward if it placed the correct small object on the bed
or the tray according to the instruction. If it placed an incorrect object on the bed or tray, the
episode ended with no reward. To test generalisation in this case, we trained the agent to 1ift each
of a set X = Xj [ Xz of smaller objects (as in the previous experiment) and then to put some
subset X1 X of those objects on both the bed and the tray as instructed. We then measured
its performance (with no further learning) in trials where it was instructed to put objects from X
onto either the bed or the tray. Surprisingly, we found that the agent was able to place objects with
over 90% accuracy onto the bed or the tray zero-shot as instructed (Fig 2(b)). This generalisation
requires the agent to bind its knowledge of objects (referred to by nouns, and acquired in the lifting
trials) to a complex control process (acquired in the training putting trials) — involving locating
the correct target receptacle, moving the object above it (avoiding obstacles like the bed-head) and
dropping it gently. An important caveat here is that control in this environment, while fine-grained,
is far simpler than the real world; in particular the process required to lift an object does not depend
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Figure 2: Test and training performance as an agent learns zero-shot predicate-argument binding for (a) ‘lifting’
in two variants: (1) training instructions are e.g. find a spaceship, find/lift a pencil, testing instruc-
tions are e.g. 1ift a spaceship. (2) training instructions are e.g. find a spaceship/lift a green
object, testing instructions are e.g. 1ift a spaceship. (b) ‘putting’: training instructions are e.g. put a
spaceship on the bed, lift a pencil, testing instructions are e.g. put a pencil on the bed.

on the shape of that object (only its extent, to a degree). Once the objects are held by the agent,
however, their shape becomes somewhat more important and placing something on top of something
else, avoiding possible obstacles that could knock the object from the agent’s grasp, is a somewhat
object-dependent process.

4 UNDERSTANDING THE DRIVERS OF SYSTEMATICITY

4.1 NUMBER OF TRAINING INSTRUCTIONS

To emphasize most explicitly the role of the diversity of training experience in the emergence of
systematicity, we consider the abstract notion of negation. Rumelhart et al. (1986) showed that
a two-layer feedforward network with sufficient hidden units can learn to predict the negation of
binary patterns. Here, we adapt this experiment to an embodied agent with continuous visual input
and, importantly, consider not only learning, but systematic generalization. To do so, we generated
trials in the Unity room with two different objects positioned at random and instructions of the form
find a box (in which case the agent was rewarded for locating and fixing its gaze on the box)
and find [something that is] not a box (in which case there was a box in the room but the agent
was rewarded for locating the other object). Like Rumelhart et al. (1986), we found that it was
unproblematic to train an agent to respond correctly to both positive and negative instructions. To
explore generalization, we then trained the agent to follow instructions find a Xforall X 2 X and
negated instructions find a not X for only X 2 X; (where X = X; [ Xz, and X1 \ X5 = 3),
and tested how it interpreted negative commands for X 2 Xs.

— - Interestingly, when X; contained only a few
Training set  Train accuracy  Test accuracy objects (jX1j = 6), the agent interpreted
6 words 1.00 0.40 negated instructions (involving objects from
Xp) with below chance accuracy. In other

40 words 0.97 0.60 words, for objects X, 2 X,, in response to
100 words 0.91 0.78 the instruction find a not X, the agent was
more likely to find the object X5 than the cor-
rect referent of the instruction. We suspect in
Table 1: Accuracy extending a negation predicate to such cases that the agent simply infers that not
novel arguments (test accuracy) when agents are trained X refers to the set fy 2 X; : X & yg (a
to negate different numbers of words/objects. highly non-compositional interpretation). Im-
portantly, however, for (jX1j = 40) the agent

achieved above chance interpretation of held-out negated instructions, and for for (jX;j = 100)
performance on held-out negated instructions increased to 0:78 (Table 1).These results show that a
systematic understanding of abstract modifiers can emerge in a neural network agent, and under-
lines a strong interaction between this emergence and the size of the training set. However, the fact
that larger training sets yield better generalization in neural networks is not novel or unexpected.
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In what follows, we establish that not only the amount, but also the type of training data (or agent
experience) can have a significant impact on systematicity.

4.2 3D VERSUS 2D ENVIRONMENT

(a) (b)

Figure 3: Screenshots from the agent’s perspective of an episode in the grid-world and Unity environments.
In both cases the instruction is put the picture frame on the bed.

Our first observation is that the specifics of the environment (irrespective of the logic of the task)
can play an important role in emergent systematicity. To show this most explicitly we consider a
simple color-shape generalisation task. Prior studies in both 2D and 3D environments have shown
that neural-network-based agents can correctly interpret instructions referring to both the color and
shape of objects (find a red ball) zero-shot when they have never encountered that particular com-
bination during training (Chaplot et al., 2018; Hill et al., 2017; Yu et al., 2018). We replicate the
demonstration of of Hill et al. (2017), in the 3D DeepMind-Lab environment (Beattie et al., 2016),
and for comparison implement an analogous task in a 2D grid-world (compare Fig 3 (a) and Fig 4).

As in the original experiments, we split the available colors and shapes in the environment into sets
S =s[$8and C = c [ €. We then train the agent on episodes with instructions sampled from one
ofthesetsc sS,€ sSorc $§, and, once trained, we evaluate its performance on instructions from
€ &. All episodes involve the agent in a small room faced with two objects, one of which matches
the description in the instruction. Importantly, both the color and the shape word in the instruction
are needed to resolve the task, and during both training and testing the agent faces trials in which
the confounding object either matches the color of the target object or the shape of the target object.
While it was not possible to have exactly the same shapes in set S in both the grid world and the
3D environment, the size of C and S and all other aspects of the environment engine were the same
in both conditions. As shown in Table 2 (top), we found that training performance was marginally
worse on the 3D environment, but that test performance in 3D (M = 0:97;SD = 0:04) was six
percentage points higher than in 2D (M = 0:91;SD = 0:08) (a suggestive but not significant
difference given the small sample of agents; t(8) = 1:38; p = 0:20).

To probe this effect further, we devised an analogue of the ‘putting’ task (Section 3.2) in the 2D
grid-world. In both the 3D and 2D environments, the agent was trained on ‘lifting’ trials, in which it
had to visit a specific object, and on ‘putting’ trials, in which it had to pick up a specific object and
move it to the bed. To match the constraints of the grid-world, we reduced the total global object
set in the Unity room to ten, allocating three to both lifting and putting trials during training, and
the remaining seven only to lifting trials. The evaluation trials then involved putting the remaining
seven objects on the bed (see Figure 3 for an illustration of the two environments). While the grid-
world and the 3D room tasks are identical at a conceptual (and linguistic) level, the experience of
an agent is quite different in the two environments. In the grid world, the agent observes the entire
environment (including itself) from above at every timestep, and can move to the 81 =9 9 possible
locations by choosing to move up, down, left or right. To lift an object in the grid-world, the agent
simply has to move to the square occupied by that object, while ‘putting’ requires the agent to lift
the object and then walk to the square occupied by the white (striped) bed.
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As shown in Table 2 (bottom), agents in both conditions achieved near perfect performance in train-
ing. However, on test trials, performance of the agent in the Unity room (M = 0:63; SD = 0:06)
was significantly better than the agent in the grid world (M = 0:40; SD = 0:14); t(8) = 3:48;p <
0:005. In failure cases, the agent in the grid world can be observed exhibiting less certainty, putting
the wrong object on the bed or running out of time without acting decisively with the objects.

4.3 EGOCENTRIC FRAME OF REFERENCE

To understand more precisely why

agents trained in 3D worlds gener- Train accuracy  Test accuracy
alize better, we ran a further con- Color-shape task

dition in which we gave the agent  nd world 0.99 0.91 +0.09
in the grid-world an ego-centric per- 3D room (DM-Lab) 0.98 0.97 +0.04

spective, as it has in the 3D world.
Specifically, we adapted the grid-  Ppytting task

world so that the agent’s field of  Grid world 0.99 0.40 +0.14
view was 5 5 and centred on  Grid world, scrolling 0.93 0.60 +£0.14
the agent (rather than 9 9 and 3D room (Unity) 0.99 0.63 £0.06

fixed). While this egocentric con-
straint made it harder for the agentto  Table 2: Tests of systematic generalization in 2D and 3D environ-
learn the training task, performance ments; five randomly-initialized agent replicas in each condition.
on the test set improved significantly

t(8) = 2:35; p < 0:05, accounting for most of the difference in generalisation performance between
the 3D world and the (original) 2D world. This suggests that an agent’s ability to factorise expe-
rience and behaviour into chunks that can be re-used effectively in novel situations is significantly
improved by the frame of reference provided by first-person (and/or egocentric) experience. See
also Appendix D.1 for a demonstration that partial-observability alone (as opposed to an egocentric
perspective) does not induce the same boost to systematicity.

4.4  ACTIVE PERCEPTION OVER TIME

Egocentric vs.  allocentric vision is

not the only difference between a grid- Regime  Train accuracy  Test accuracy
world and a 3D world. Another dif- Classifier 0.95 0.80 =0.05
ference is that, in the 3D world, the Agent 1.00 1.00 40.00

agent experiences a much richer variety
of (highly correlated) visual stimuli in  Table 3: Generalization accuracy achieved by a vision-and-
any particular episode. To isolate the ef- language classifier trained on single screenshots versus a situ-
fect of this factor on generalisation, we ated agent trained in the DMLab environment.

return to the color-shape task, which is

appropriate for the present experiment because a single train/test experiment (defined in terms of
the instructions and objects that the agent experiences) can be constructed either as an interactive
MDP for a situated agent or as a supervised classification problem. In the vision+language classi-
fier condition, a supervised model must predict either left or right in response to a still image (the
first frame of an episode) of two objects and a language instruction of the form find a red ball. In
the agent condition, our situated RL agent begins an episode facing two objects and is trained to
move towards and bump into the object specified by the instruction. Importantly, the architecture
for the vision+language classifer and the agent were identical except that the final (action and value-
prediction) layer in the agent is replaced by a single linear layer and softmax over two possible
outcomes in the classifier.

On the same set of training instructions, we trained the classifier to maximise the likelihood of its
object predictions, and the agent to maximise the return from selecting the correct object. As shown
in Table 3, the accuracy of the classifier on the training instructions converged at 0:95 compared
to 1:0 for the agent (which may be explained by greater difficulty in detecting differences between
objects given a more distant viewpoint). More importantly, performance of the classifier on test
episodes (M = 0:80, SD = 0:05) was significantly worse than that of the agent (M = 1:00,
SD = 0:00); t(8) = 8:61, p < 0:0001. We conclude that an agent that can move its location
and its gaze (receiving richer variety views for a given set of object stimuli) learns not only to






