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1 Householder Transformations

Much of this section was copied and paraphrased from Heath’s Scientific Computing. Anyways.
Suppose we are looking for an orthogonal transformation that annihilates desired components

of a given vector. Recall that a square real matrix Q is said to be orthogonal if its columns are
orthonormal, that is, that QT Q = I. Orthogonal transformations are nice because they preserve
Euclidean norms of any vectors v, as follows:

‖Qv‖22 = (Qv)T Qv = vT QT Qv = vT v = ‖v‖22
These sorts of transformations are nice, because when applied to any linear system, they maintain
Euclidean norms and won’t penalize the difficulty of solving the problem numerically.

Now, we are really looking for an orthogonal transformation of a vector that annihilates its
components while maintaining the two-norm (or Euclidean norm) ‖·‖2. We can accomplish this
with a Householder transformation, which is a matrix of the form

H = I − 2
vvT

vT v
.
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Obviously, v is a non-zero vector. From our definition, it is easy to see that H = HT , and a little
math gives us that

HH = (I − 2
vvT

vT v
)(I − 2

vvT

vT v
) = I − 4

vvT

vT v
+ 4

vvT

vT v
· vvT

vT v
= I

To derive the full Householder, we first consider the problem of taking a vector a and annihi-
lating all of its components but the first, giving us a vector αe1, in such a way that ‖a‖2 = α.
Basically, we would like to have

Ha =




α
0
...
0


 = α




1
0
...
0


 = ‖a‖2e1

Using the original formula for H, we have

αe1 = Ha = a− 2
vvT

vT v
a

so that

v = (a− αe1)
vT v

2vT a
= (a± ‖a‖2e1) · C(v, a)

Because the constant C term will be factored out by division when we determine the actual
transformation H, we can eliminate it, giving us that

v = a− αe1

In general, to avoid cancellation (whatever that means), we choose α = −sign(a1)‖a‖2.
In the more general case, when actually working with a system that we would like to transform

orthogonally into an upper-triangular system (for easier solving), we would like to take an m-vector
a and annihilate its last m− k components. That is, we would like to take a vector

a =
[

a1

a2

]

where a1 is a k − 1-vector and a2 is an m − k + 1-vector, and transform it into a vector which
contains a1 as its first k − 1 elements, as its kth element we would like ‖a‖2, and the remaining
m− k elements we would like to be zeros. Here is the derivation of the vector v to be used in the
Householder transformation for this case:

Ha =
[

a1

0

]
+ αek =

(
I − 2

vvT

vT v

)[
a1

a2

]
=

[
a1

a2

]
− 2

vvT

vT v
a

Subtracting a from both sides and multiplying by negative one, we have
[

0
a2

]
− αek = 2v

vT a

vT v
= v · C(v, a)

and again we can eliminate the constant term to give us that we should set v to be

v =
[

0
a2

]
− ‖a2‖2ek

From the above discussion, it is fairly easy to see that given an m× n matrix A, if we apply n
Householder transformations to eliminate the below diagonal elements for A, we will get a matrix
R such that

HnHn−1 · · ·H1A =
[

R
0

]
.

For further explication and use of the Householder, see Heath.
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2 Convex Sets and Local/Global Minima

The definition of a convex set is a set S ⊆ Rn which contains the line segment between any two of
its points. More specifically, if S is convex, then for any x, y ∈ S, α ∈ [0, 1],

αx + (1− α)y ∈ S.

A function f : S ⊆ Rn → R is convex on a convex set S if its value along any line segment in S lies
on or below the chord connecting the function values at the endpoints of the segment. That is,

f(αx + (1− αy)) ≤ αf(x) + (1− α)f(y)

2.1 Local Minima as Global Minima

One really nice property of convex sets is that any local minimum of a convex function f on a
convex set S is a global minimum of f on S. To see this, consider the definition of a local minimum:

f(x) < f(x + ε)

for some small ε, which states that x ∈ S is the smallest value f takes on in some ball of radius
ε = ‖ε‖ on S. Now, we consider some other point y ∈ S. Assume, for the sake of contradiction,
that f(y) < f(x), which means that x is not the global minimum of f on S. By the definition of
convexity, the chord connecting x and y lies completely in S. Thus, we can assert that there is a
point on the chord αx + (1− α)y that lies inside the ball, that is, there is some αr such that

‖αrx + (1− αr)y − x‖ < ε

Consider some small αr ∈ (0, 1), and let αrx + (1−αr)y = x + εr, which is a point inside the ball
x + ε. Now, consider that

f(y) < f(αx + (1− α)y) (1)
≤ αf(x) + (1− α)f(y) (2)
≤ αf(x) + (1− α)f(x) = f(x)

where equation (1) follows because y is, by our assumption, the global minimum of f on S, and
equation (2) follows because f is convex on S. Note that the above implies that for any α ∈ [0, 1),
we have that αf(x)+ (1−α)f(y) < f(x), specifically, for α = αr. We saw above, though, that for
αr, x + εr was inside the ball given by x + ε, so that f(x + εr) > f(x). This is a contradiction,
however, because we saw from equation (2) that αf(x) + (1 − α)f(y) ≤ f(x). Our assumption
that f(y) < f(x) must thus be false, and we have that if x is a local minimum of f on S, then x
is a global minimum of f on S.

2.2 Uniqueness of Global Minima

If we have a function f which is strictly convex on a convex set S, that is, f(αx + (1 − α)y) <
αf(x) + (1 − α)f(y) for α ∈ (0, 1), then a local minimum of f is the unique global minimum of
f on S. To see this, suppose we have two distinct points, x and y, which are local minima of f
on S. By the above result, if x and y existed, we know that they are both global minima, so that
f(x) = f(y). This means, however, that because f is strictly convex,

f(αx + (1− α)y) < αf(x) + (1− α)f(y)
= αf(x) + (1− α)f(x) = f(x)

This is a contradiction because x is a global minima of f on S, so our assumption that y also
existed must be false. Thus, if a function f is strictly convex on a convex set S, any local minimum
of f is the unique global minimum of f on S.
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3 Second Order Convexity Conditions

This is a problem from Boyd’s book on convex optimization. Suppose we have a function f : R→ R,
which is convex, and a, b ∈ dom f , with a < b. First, we consider x ∈ [a, b]. If θ ∈ [0, 1], we know
that f(θx+(1−θx)) ≤ θf(x)+(1−θ)f(x). Because this is the case, and because x = θa+(1−θ)b
for some θ for any x ∈ [a, b], it is easy to see that θ = x−b

a−b = b−x
b−a . Thus,

f(x) = f(θa + (1− θ)b)
≤ θf(a) + (1− θ)f(b)

=
b− x

b− a
f(a) +

x− a

b− a
f(b)

Using this, we can prove some more interesting things. First, we have

f(x) +
x− b

b− a
f(a) ≤ x− a

b− a
f(b)

(b− a)f(x)− bf(a) ≤ (x− a)f(b)− xf(a)
(b− a)f(x)− bf(a) + af(a) ≤ (x− a)f(b)− xf(a) + af(a)

[f(x)− f(a)] · (b− a) ≤ (x− a)[f(b)− f(a)]
f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a

Similarly,

(x− b)f(a) ≤ (x− a)f(b)− f(x)(b− a)
(b− x)f(b) + (x− b)f(a) ≤ (b− a)f(b)− (b− a)f(x)

[f(b)− f(a)] (b− x) ≤ (b− a)[f(b)− f(x)]
f(b)− f(a)

b− a
≤ f(b)− f(x)

b− x

If we suppose that f is differentiable, taking each side of the two inequalities in turn, we have
(by L’Hôpital’s rule) that

lim
x→a

f(x)− f(a)
x− a

= lim
x→a

f ′(x)
1

= f ′(a) ≤ f(b)− f(a)
b− a

≤ lim
x→b

f(b)− f(x)
b− x

= f ′(b).

While we used the above inequalities to prove this, it also easily follows from the gradient of a
convex function f being a global underestimator of f (that is f(x) ≥ f(y) + f ′(y)(x− y)).

Lastly, we assume that f is twice differentiable. Using the above result, that

f ′(a) ≤ f(b)− f(a)
b− a

≤ f ′(b)

we see that f ′(b)− f ′(a) ≥ 0, so that f ′(y)−f ′(x)
y−x ≥ 0 as long as y > x, and we then have

lim
y→x

f ′(y)− f ′(x)
y − x

= lim
y→x

f ′′(y)− d
dy f ′(x)

1− d
dy x

= lim
y→x

f ′′(y) = f ′′(x) ≥ 0.

Thus we see that if f is convex and twice differentiable, f ′′(x) ≥ 0.
As for the opposite direction, we need simply use the fact that f is twice differentiable (so that

f ′′ is integrable) and we can prove the converse. So suppose that f ′′(u) ≥ 0 for all u in dom f . It
easily follows that if y > z, we have that f ′(y) ≥ f ′(z), because f ′′(u) ≥ 0 implies that

∫ y

z

f ′′(u)du = f ′(y)− f ′(z) ≥
∫ y

z

0 · du = 0
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Now we simply take the integral from x to y of our result (assuming y ≥ x, though the negative
signs just change if the opposite is the case), seeing

f ′(y)− f ′(z) ≥ 0∫ y

x

f ′(y)− f ′(z)dz ≥
∫ y

x

0 · dz

f ′(y)z|yx − f(z)|yx ≥ 0
f ′(y)(y − x)− f(y) + f(x) ≥ 0

⇒ f(x) ≥ f(y) + f ′(y)(x− y)

This shows that a tangent to f is a global underestimator of f , so f is convex if f ′′(x) ≥ 0 for
x ∈ dom f .

In the end, we see that a function f is convex if and only if f ′′(x) ≥ 0.

3.1 Multivariate case

In the multivariate case, we would like to prove that if the hessian ∇2f of a function f : Rn → R
is positive semi-definite, that is, ∇2f º 0 or xT∇2fx ≥ 0, that f is convex.

First, suppose that ∇2f º 0. Now, consider the single variable function g that restricts f to
some arbitrary line in f ’s domain, that is, dom g = [0, 1], and

g(t) = f(tx + (1− t)y)

for x,y ∈ dom f . We now take the first and second derivatives of g with respect to t:

d

dt
g(t) = ∇f(tx + (1− t)y)T (x− y)

d2

dt2
g(t) = (x− y)T∇2f(tx + (1− t)y)(x− y)

g′′(t) ≥ 0.

Now, suppose that f is convex, and again restrict it to a line using g. Because g is the
intersection of a convex set with f , g is convex and hence g′′(t) ≥ 0. Thus, we have that for all
x, y ∈ dom f ,

g′′(t) = (x− y)T∇2f(tx + (1− t)y)(x− y) ≥ 0.

As near as I can tell, we have proved that a twice differentiable function f : Rn → R with open,
convex domain is convex if and only if ∇2f º 0.

4 Iterative Methods for Optimization

In this section, we will be considering the problem of minimizing some function f : Rn → R.

4.1 Steepest Decent

In general, we know that ∇f(x) is the direction of the fastest ascent for the function f(x). As
such, to minimize the function f(x), we would like to move our solution in the −∇f direction. For
steepest descent, then, we define the update operator for our estimate xk+1 at step k + 1 to be

xk+1 = xk − α∇f(xk).
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To make this a smarter method, we would like to take the largest steps possible at each step of
the search, so we would like to travel in the −∇f(x) direction until ‖∇f(x)‖ is small (or zero).
To this end, we can define a function xk(t) = xk −∇f(xk)t, so that we would like to minimize

f(xk(t)) = f(xk −∇f(xk) · t) = g(t),

which is simply a one-dimensional minimization problem we can solve using a line search. It is
easy to see that if we minimize g(t), we have traveled as far along the path of −∇f(xk) as we can
without making our function grow again.

As a more specific example, which can be enlightening, consider the function f defined as
follows (where A is symmetric and positive definite)

f(x) =
1
2
xT Ax− bT x + c

whose derivative, it is easy to see, is

∇f(x) =
1
2
Ax +

1
2
AT x− b = Ax− b

Thus, to solve this minimization problem, we must solve Ax = b.
For steepest descent, we know that our search direction is −∇f(x) = b−Ax, and we also know

that the residual for any potential solution x is given by

r = b−Ax = Axexact −Ax = A(xexact − x) = Aeerror

Unfortunately, we very rarely know anything about our error e, but we do know that in steepest
descent we would like to go in the direction r until we are parallel to the level curves of our function,
which is (as stated above) a one dimensional minimization problem. That is, we would like to have
∇f(xk) ⊥ sk, where sk is the search direction at iteration k of steepest descent. This implies that
∇f(x)T sk = 0 if and only if ∇f(xk+1)T sk = 0. Recognizing that rk = b− Axk, we can solve for
our updates as follows:

0 = rT
k+1rk

= (b−Axk+1)T rk

= (b−A(xk + αsk))T rk

= (b−Axk − αArk)T rk

= (b−Axk)T rk − α(Ark)T rk

= rT
k rk − αrT

k Ark

In the end, this gives that α = rT
k rk

rT
k Ark

.
In short, here is the steepest descent method used to find the solution to the equation Ax = b:

rk = b−Axk

α =
rT

k rk

rT
k Ark

xk+1 = xk + αrk

The more general formulation is

α = argmin
t

f(xk −∇f(xk) · t)
xk+1 = xk − α∇f(xk)
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4.1.1 Digression on Choosing Directions

As a thought experiment, suppose our initial guess had an error e = x − xexact, where e is an
eigenvector of A. This would give us that

r = b−Ax = Axexact −Ax = A(xexact − x) = −Ae = −λe

With the above, we see that

xk+1 = xk +
rT

k rk

rT
k Ark

rk

= xk +
rT

k rk

rT
k A(−λe)

· (−λe)

= xk +
rT

k rk

λrT
k e

e

= xk +
rT

k rk

−rT
k rk

e

= xk − e = xk − (xk − xexact)
= xexact

What this tells us is that if we can pick an eigenvector of the matrix as our search direction, we
can get our result immediately. That would be pretty neat.

4.2 Conjugate Gradient

Conjugate gradient is a search method that tries to choose its search directions not completely
orthogonally, but by recalling its previous search directions and scaling its newest directions with
them, which generally leads to a nice speedup. This scaling makes the directions it searches
conjugate; a more specific definition is that two vectors x and y are conjugate (with respect to a
matrix A) if they are orthogonal in the inner product (x, y) = xT Ay = 0.

To motivate this section, we are again going to be considering solving the system Ax = b,
where A is symmetric and positive definite. Now, let us move on to trying to solve our minimiza-
tion problem by picking orthogonal search directions. That is, we would like to pick directions
s0, s1, . . . , sk, where sT

i sj = 0 for i 6= j. Recall that xk+1 = xk + αsk, which implies that

xk+1 − xexact = xk − xexact + αsk

ek+1 = ek + αsk (3)

If we could go in in one direction of search until all error was orthogonal to the search direction,
we could easily take large steps in the search space for the minimum of our function. The problem
is that we do not know our error exactly, so we would like to eliminate all of our residual errors.

To this end, we make what are known as A-orthogonal steps rather than strictly orthogonal
directions (we will see why in a bit). To eliminate our residual errors, we have

0 = rT
k+1sk = −(Aek+1)T sk

= −A(ek + αsk)T sk

From this, we can see that

α =
sT

k Aek

sT
k Ask

=
sT

k rk

sT
k Ask

This is A-orthogonal because we would like to constrain our search so that sT
j Ask = 0 for all j 6= k.

7



Let us suppose that we would like to write our error as the scaled sum of a series of our search
terms. That is, e0 =

∑
j ajsj (this sum takes into account all steps in the search). From this, we

can derive some interesting properties of our error.

sT
k Ae0 = sT

k A
∑

j

ajsj

=
∑

j

ajs
T
k Asj

= aksT
k Ask +

∑

j 6=k

ajskAsj

= aksT
k Ask (4)

where equation (4) follows because we are using A-orthogonal directions, so the summation goes
to zero. This tells us that (again using A-orthogonal directions)

ak =
sT

k Ae0

sT
k Ask

=
sT

k A(e0 +
∑k−1

j=0 αjsj)

sT
k Ask

Consider equation (3): ek+1 = ek + αsk. From this, we can see that

ek = ek−1 + αksk−1 = ek−2 + αk−2sk−2 + αk−1sk−1

= e0 +
k−1∑

j=0

αjsj

Because of this, we have

ak =
sT

k Aek

sT
k Ask

= − sT
k rk

sT
k Ask

= −αk

This allows us to consider the error at the kth step of our search.

ek = e0 +
k−1∑

j=0

αjsj =
∑

j

ajsj +
k−1∑

j=0

αjsj

= −
∑

j

αjsj +
k−1∑

j=0

αjsj

If we pre-multiply ek by one of our search directions transposed with A, in the case when
i ≤ k − 1, we have

sT
i Aek = −sT

i rk

= −
∑

j

αjs
T
i Asj +

k−1∑

j=0

αjsi
T Asj

= −αis
T
i Asi + αis

T
i Asi

= 0 (5)

Similarly, for i ≥ k, we see that
−sT

i rk = −αis
T
i Asi

Note also from the second equation above that if we find a search direction for every dimension of
the space we are trying to optimize, then our error at step k will go to zero.
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We now have a lot of math that is really doing very little for us unless we can find our A-
orthogonal directions to optimize. We can use simple Gram-Schmidt orthonormalization to remove
the components of search directions already seen to choose a new search direction. That is, for
some v not in the direction of sk, to get a our new vector sk which is A-orthogonal to all of the
sj , we use the following:

sk = v −
k−1∑

j=0

vT Asj

sT
j Asj

sj

For i ≤ k − 1, we have

sT
k Asi = vT Asi −

k−1∑

j=0

vT Asj

sT
j Asj

sT
j Asi

= vT Asi − vT Asi

sT
i Asi

sT
i Asi = 0

where the last line follows because our previous search vectors sj have all been A-orthogonalized.
In the other case for i, that i ≥ k, we see that

sT
k ri = vT ri −

k−1∑

j=0

vT Asj

sT
j Asj

sT
j ri

= vT ri (6)

because, as we proved above in equation (5), sT
j ri = 0 for j < i. We now have a relatively tedious

way to calculate our next orthogonal search directions; armed with this, we can calculate the
distance we should take steps in our search. Recalling that αk = sT

k rk

sT
k Ask

, we see that sT
k rk = vT rk

implies that αk = vT rk

sT
k Ask

.
Naturally, there is a simpler way to calculate the new search directions using the old ones than

an expensive Gram-Schmidt orthogonalization step. Consider that

rk+1 = b−Axk+1 = b−A(xk + αksk) = b−Ask − αkAsk = rk − αkAsk

so that αkAsk = rk − rk+1. This tells us that

αkrT
i Ask = rT

i rk − rT
i rk+1 and rT

i rk+1 = rT
i rk − αkrT

i Ask

Given that we are trying to find the k+1 search directions from the previous step, we set i = k+1.
Now, we have that αkrT

k+1Ask = rT
k+1rk − rT

k+1rk+1. Because when k < i, vT
k ri = sT

k ri = 0 (see
equations (6) and (5)), we know that if we simply set vk to be rk, then we have that rT

k ri = 0.
As such, since k < k + 1, we see that

rT
k+1Ask =

rT
k+1rk − rT

k+1rk+1

αk
= −rT

k+1rk+1

αk

Naturally, when i > k + 1, we have αkrT
i Ask = 0.

Taking the above two paragraphs and combining them into the update rule for our search
directions, (recalling that we set rk = vk), we have the following update rule:

sk+1 = rk+1 −
k∑

j=0

rT
k+1Asj

sT
j Asj

sj

= rk+1 +
rT

k+1rk+1

rT
k rk

sk
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The sum goes to zero except for the j = k term, since αjr
T
k+1Asj = 0 except when j = k.

Combining all of the above work for minimizing the function f(x) = 1
2xT Ax − bT x + c, we

have the following set of update rules for the conjugate gradient method:

s0 = r0 = b−Ax0

αk =
rT

k rk

sT
k AsT

k

xk+1 = xk + αksk

rk+1 = rk − αkAsk

sk+1 = rk+1 +
rT

k+1rk+1

rT
k rk

sk

In the more general case, when we are trying to optimize an arbitrary function f : Rn → R,
we modify the method above a little. First, recall that for the case of the quadratic function of
with A, b, and c, that ∇f(x) = A − bT x = −r. As such, for an arbitrary f , we can see that rk

corresponds to ∇f(xk), giving us the more general conjugate gradient method.

s0 = −∇f(x0)
αk = argmin

t
f(xk − sk · t)

xk+1 = xk + αksk

sk+1 = −∇f(xk+1) +
∇f(xk+1)T∇f(xk+1)
∇f(xk)T∇f(xk)

sk

5 Perceptron Convergence

Foregoing, temporarily, any introduction to the perceptron algorithm, let us denote a hyperplane
by

f(x) = βT
1 x + β0 = 0

or simply by βT xext = 0, where xext = 〈x, 1〉. If we have separability, that is, that for some β

y(i)βT x
(i)
ext > 0 ∀i

we can scale β accordingly to give us normalization for the points closest to the hyperplane. I do not
have a great justification for this, but it is relatively (though somewhat unjustifiably) easy to see
that if the above condition holds then for some C > 0 and z(i) = x

(i)
ext/‖x(i)

ext‖, then y(i)βz(i) ≥ C.
Given this, we can simply divide both sides of the equation by C, giving us a new β∗ such that

y(i)βT
∗ z(i) ≥ 1.

In the perceptron algorithm, we have a current estimate for β, let us call that βk. The
perceptron will identify a point z(i) that is misclassified and produce the update βk+1 = βk +
z(i)y(i). With this, we can bound the difference of βk and β∗, which implies that the algorithm
will converge to a separating hyperplane. Consider the following:

‖βk+1 − β∗‖2 = ‖βk+1‖2 + ‖β∗‖2 − 2βT
∗ βk+1

= ‖βk + z(i)y(i)‖2 + ‖β∗‖2 − 2βT
∗ (βk + z(i)y(i))

= 2y(i)βT
k z(i) + βT

k βk + ‖z(i)‖2 + ‖β∗‖2 − 2βT
∗ βk − 2y(i)βT

∗ z(i)

≤ 2y(i)βT
k z(i) + ‖βk‖2 + 1 + ‖β∗‖2 − 2βT

∗ βk − 2
= (βk − β∗)

T (βk − β∗)− 1 + 2y(i)βT
k z(i)

< ‖βk − β∗‖2 − 1 (7)
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where the fourth line follows because y(i)βT
∗ z(i) ≥ 1, and the last line, equation (7), follows because

βk misclassified z(i), making the y(i)βT
k z(i) term negative. Noting this contraction, we see that

the perceptron algorithm will converge to a separating hyperplane (in the case of separable data)
in no more than ‖β0 − β∗‖2 steps. Unfortunately, because the scaling can be very bad to give us
the 1-margin separating hyperplane from above, this could be a huge number of steps. That, my
friends, is why we use support vector machines.

6 Duality of SVMs

In this section, we consider the Support Vector Machine and its dual. We will focus on the case of
data that is not separable, so that we are trying to minimize a norm of the vector w plus penalty
terms for un-separated subject to data points. That is, we are seeking

argmin
w

1
2
wT w + cT ξ

subject to y(i)(wT x(i) + b) ≥ 1− ξi, i = 1, . . . , m

ξ º 0

The Lagrangian for this is

L(w, ξ, λ, β) =
1
2
wT w + cT ξ +

m∑

i=1

λi(1− ξi − y(i)(wT x(i) + b))− βT ξ

Taking derivatives, we have that

∇wL = w +
m∑

i=1

λi(−y(i)x(i))

∇bL = −
m∑

i=1

λiy
(i)

∇ξL = c− λ− β

Setting each of the above to zero and solving, we have that λi = ci− βi, which, because βi > 0 for
the optimal solution (because of duality, etc.), implies that 0 ≤ λi ≤ ci in the dual. We also have
that w =

∑m
i=1 λiy

(i)x(i) and the constraint that in the dual,
∑m

i=1 λiy
(i) = 0. Substituting,

1
2

(
m∑

i=1

λiy
(i)x(i)

)T (
m∑

i=1

λiy
(i)x(i)

)
+ cT ξ +

m∑

i=1

λi − λT ξ − βT ξ −
m∑

i=1

λiy
(i)




m∑

j=1

λjy
(j)(x(j))T x(i) + b




After some simplification and using the Lagrange constraint from the ξ, we have that our dual
optimization problem becomes

argmax
λ

−1
2

m∑

i=1

m∑

j=1

λiλjy
(i)y(j)(x(i))T x(j) +

m∑

i=1

λi

s.t. 0 ¹ λ ¹ c
m∑

i=1

λiy
(i) = 0

which can be optimized using pairwise coordinate ascent on the λis (as in the SMO algorithm).
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7 Projection of a vector onto linear constraints

Let us suppose that we would like to project a vector z onto the set {x|Ax = b}. Thus, we would
like to find the x that minimizes ||z − x|| subject to Ax = b. First, we get our Lagrangian

L(x, λ) = zT z − 2xT z + xT x + λT (Ax− b)

whose derivative we take with respect to x. This gives us

∇xL(x, λ) = −2z + 2x + AT λ.

Setting this to zero, we find that x = z−AT λ/2. Plugging this into the lagrangian above, we have

L(λ) = zT z − 2
(

z − 1
2
AT λ

)T

z +
(

z − AT λ

2

)T (
z − AT λ

2

)
+ λT

(
A

(
z − AT λ

2

)
− b

)

= zT z − 2zT z + λT Az + zT z +
λT AAT λ

4
− λT Az −+λT Az − λT AAT λ

2
− λT b

= λT Az − λT AAT λ

4
− λT b

The derivative of the above with respect to λ is

∇λL(λ) = Az −AAT λ/2− b,

and setting this to 0, we have
λ = 2(AAT )−1(Az − b).

Finally, plugging this into x = z −AT λ/2, we have that

x = z −AT (AAT )−1Az + AT (AAT )−1b.

Thus, the projection of z onto the null space of A is I − AT (AAT )−1A, and the projection onto
Ax = b given the projection into the nullspace is simply adding AT (AAT )−1b, which is a solution
of Ax = b.

8 Minimization of a linear function subject to elliptical con-
straints

In this section, we consider the following problem:

minimize cT x
subject to xT Ax ≤ 1

where A ∈ Sn
++. First, we form the Lagrangian:

L(x, ν) = cT x + ν(xT Ax− 1).

Taking the gradient with respect to x, we have

∇xL(x, ν) = c + 2νAx

so that x = − 1
2ν A−1c. We can solve assuming equality because unless the ellipse is unbounded or

c = 0, the optimal value will be on the edge of the ellipsoid xT Ax ≤ 1. Plugging this in to the
inequality constraint, we have that

1
4ν2

cT A−1AA−1c = 1 so ν = ±1
2
||A− 1

2 c||2.
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Plugging all this in, we find that the assignments to x and the minimum and maximum values are

x∗ = ± 1
||A− 1

2 c||2
A−1c so cT x∗ = − 1

||A− 1
2 c||2

cT A−1c = ||A− 1
2 c||2.

9 KL Divergence for Gaussian distributions

First, recall that the KL divergence between two distributions P and Q is defined as

DKL(P ||Q) = EP

[
log

P

Q

]
.

Also, the density function for a multivariate Gaussian (normal) distribution with mean µ and
covariance matrix Σ is

p(x) =
1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
.

Now, consider two multivariate Gaussians in Rn, P1 and P2. We have

D(P1||P2)
= EP1 [log P1 − log P2]

=
1
2
EP1

[− log det Σ1 − (x− µ1)T Σ−1
1 (x− µ1) + log det Σ2 + (x− µ2)T Σ−1

2 (x− µ2)
]

=
1
2

log
det Σ2

det Σ1
+

1
2
EP1

[−(x− µ1)T Σ−1
1 (x− µ1) + (x− µ2)T Σ−1

2 (x− µ2)
]

=
1
2

log
det Σ2

det Σ1
+

1
2
EP1

[−tr(Σ−1
1 (x− µ1)(x− µ1)T ) + tr(Σ−1

2 (x− µ2)(x− µ2)T )
]

=
1
2

log
det Σ2

det Σ1
+

1
2
EP1

[−tr(Σ−1
1 Σ1) + tr(Σ−1

2 (xxT − 2xµT
2 + µ2µ

T
2 ))

]

=
1
2

log
det Σ2

det Σ1
− 1

2
n +

1
2
tr(Σ−1

2 (Σ1 + µ1µ
T
1 − 2µ2µ

T
1 + µ2µ

T
2 ))

=
1
2

(
log

detΣ2

detΣ1
− n + tr(Σ−1

2 Σ1) + tr(µT
1 Σ−1

2 µ1 − 2µT
1 Σ−1

2 µ2 + µT
2 Σ−1

2 µ2)
)

=
1
2

(
log

detΣ2

detΣ1
− n + tr(Σ−1

2 Σ1) + (µ2 − µ1)T Σ−1
2 (µ2 − µ1)

)
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