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ABSTRACT  

Modern cognitive computing workloads require computing systems tailored to the applications, where the underlying 
hardware fabrics should naturally match the characteristics of learning algorithms and compute kernels. With emerging 
memory technologies (e.g., resistive RAM (RRAM), magnetic RAM (MRAM)), we design neuro-inspired computing 
systems that exploit technology characteristics such as rich device physics, circuit architecture, and integration 
capabilities with CMOS and beyond-CMOS technologies. Our methodology is built upon a combination of experimental 
characterization, cross-stack modeling, and system integration, illustrated by case studies for neural networks and high-
dimensional (HD) computing. Finally, we discuss the prospects of heterogeneous learning machines that emphasize the 
integration of compute kernels and learning algorithms, as well as the integration of emerging nanotechnologies.  

Keywords: Non-volatile memories (NVM), resistive RAM (RRAM), neuro-inspired computing, device-algorithm co-
design, domain-specific architectures, machine learning, 3D integration 
 

1. INTRODUCTION  
The explosion of data and the growing computational complexity in vision, speech, control, health and other cognitive 
applications have far exceeded the storage and processing capabilities of today’s computing solutions. The application 
characteristics and requirements are evolving towards more sophisticated learning, personalization and domain 
adaptation, and the computing and learning activities are spreading from cloud to edge. Isolated improvements in 
technologies, architectures, or computational models have diminishing returns by themselves and is insufficient for 
addressing the grand challenge of developing energy-efficient learning hardware for wide adoption. 

Neuro-inspired computing, where the fundamental fabrics of memory and computation function closely and dynamically 
with deployed learning algorithms, offers unique opportunities towards domain-specific architectures with desired 
functionalities, versatility, and efficiency, where both ends of the spectrum are exposed to cross-stack design and 
optimization. Emerging non-volatile memories, such as phase-change memory (PCM), resistive RAM (RRAM), 
magnetic RAM (MRAM), and ferroelectric RAM (FeRAM), are becoming key technology enablers [1]. Device-level 
properties including analog programmability in resistive memories and nonlinear dynamics in spintronics, combined 
with circuit architectures (e.g., crossbar array), have been explored for hardware realizations of neural networks [2]-[11]. 

In this paper, we emphasize co-designing neuro-inspired computing systems with the technology characteristics, by 
presenting several experimental case studies using RRAM. Beyond data storage, RRAM used in those case studies serve 
as “nanokernels” for key operations in target applications. We first review the modeling of RRAM, which serves as the 
basis for linking experimental characterizations with circuit and system analysis. We then discuss the interaction 
between intrinsic stochasticity of RRAM and learning behaviors of neural networks. Next, we introduce high-
dimensional (HD) computing as a robust neuro-inspired model mimicking activities and associativity in high-
dimensional neural circuits of the human brain [12], followed by a description of a native realization of essential HD 
kernels within 3D vertical RRAM.  Finally, we probe into the future prospects of learning systems that capitalize on the 
integration of emerging technologies, driven by the integration of computational models and learning algorithms to meet 
the diverse needs of applications, such as continuous and life-long learning of computing systems. 



 
 

 
 

 
Figure 1. (a) Modeling conductive filament evolutions in metal-oxide RRAM. (b) Measured and modeled statistical 
distributions of low resistance states (LRS) and high resistance states (HRS) under different SET and RESET programming 
conditions. (c) Measured and modeled stochastic SET behaviors. Overall SET probability is a function of pulsing 
conditions. 

2. MODELING AND EXPERIMENTAL CASE STUDIES 
2.1 Variability-aware modeling of RRAM 

The fundamental switching mechanisms of resistive memories, RRAM, lead to statistical behaviors during 
programming. This phenomenon is characterized by physical parameters such as resistances and voltages. These 
statistical behaviors need to be properly characterized and modeled for a better understanding of their implications and 
roles in neuro-inspired computing systems. For metal-oxide RRAM devices, switching of states is governed by 
conductive filament evolutions. A full cycle of filament growth and rupture can be described by a suite of oxygen 
vacancy generation and recombination processes, induced and maintained by electrical field and temperature effects.  

Building upon these basic physical understandings, RRAM models [13], [14] have been developed to capture essential 
SET and RESET switching behaviors between low resistance states (LRS) and high resistance states (HRS), as 
illustrated in Fig. 1(a). The RRAM models are publicly available for download and use [15]. These models account for 
the cycle-to-cycle variability of oxygen-vacancy-based filament evolutions under certain programming conditions. As 
shown in Fig. 2(b), analog resistance distributions that are measured from HfOx-based RRAM devices are reproduced 
under various voltage and current conditions. When RRAM is operated at a voltage below the SET and RESET 
thresholds, it exhibits a different stochastic switching behavior. Fig. 1(c) shows measured statistical results for overall 
SET probability of RRAM devices starting from HRS states, using different strength of pulsing conditions characterized 
by pulse amplitude and pulse width. Capturing the statistical distributions within different regimes of operations is 
important for utilizing and optimizing RRAM in a computing system that can harness the device characteristics. One 
example is a recent work that uses analog programmability and statistical distributions to store encoded analog 
information within RRAM arrays [16]. 

2.2 Stochastic synapses in neural networks 

Probabilistic switching of RRAM as a function of pulse voltage and time is as characterized in Fig. 2(a). The 
probabilistic switching leads to a weight primitive in neural networks, where weight values are masked with stochasticity. 
The sparsity is tunable depending on the pulsing conditions seen by RRAM weight storage devices. As an illustration for 
the interaction between device stochasticity and learning characteristics, a simple fully-connected neural network under 
an unsupervised feature learning setting is simulated with stochastic weight updates and winner-take-all (WTA) 
mechanism [17]. Dominant receptive fields encoded by RRAM resistances are formed after learning on images with 
noises. Synaptic stochasticity assists the convergence of the learning process while smoothing out the impact of input 
noises. Using the variability-aware RRAM model described in the previous subsection, we can further study implications 
of such device-algorithm interactions from an energy perspective. Fig. 2(c) shows the simulated network energy 
consumption, with contributions from probabilistic switching of RRAM and current summation, as a function of pulsing 
conditions. For a given switching probability, one can trade off overall energy consumption with speed of convergence 
by picking different combinations of pulse width and amplitude. Moderately short pulses result in the lowest energy 
consumption. The trend holds true across a wide range of switching probabilities, which are one of the design choices 
that lead to tradeoffs between convergence speed and energy consumption. 

 

g g
2r

LRS LRSàHRS HRSàLRS LRS

RESET SET SET

 

1k 10k 100k 1M 10M 100M
0.01

0.5
2

10
30
50
70
90
98

99.5

HRS

 

 

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

)

Resistance (Ω)

Experiments

2.8 V2.5 V100 μA500 μA

LRS

 

1k 10k 100k 1M 10M 100M
0.01

0.5
2

10
30
50
70
90
98

99.5

HRSLRS

Simulations

 

 

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

)

Resistance (Ω)

500 μA 100 μA 2.5 V 2.8 V

0.7 0.8 0.9 1.0 1.1
0

20

40

60

80

100

 

 

60 ns
100 ns
500 ns
1 us
10 usSE

T 
Pr

ob
ab

ili
ty

 (%
)

Pulse Amplitude (V)

Symbols: exp.
Lines: model 

(a) (b) (c)



 
 

 
 

 
Figure 2. (a) Experimental mapping of pulsing conditions onto switching probabilities (PSET). (b) Illustration of feature 
learning in neural networks with synaptic weights masked by stochasticity. (c) Optimizing neural network energy 
consumption by tuning pulse conditions. 

 

In addition to learning robust features, the synaptic stochasticity has been investigated as a bridge between spiking 
networks and backprop-based deep neural networks (DNNs), with the intention of understanding the role of synaptic 
uncertainty observed in the cortex and the role of regularization in deep neural networks. For example, in Synaptic 
Sampling Machines (S2Ms) which can be configured as either non-spiking or spiking models [18], it is found that 
synaptic noise plays an important role of a regularizer during learning, akin to the effect of the DropConnect technique 
being applied to DNN training for regularization and decorrelation [19]. Robustness to pruning (80% of weight 
connections) can be obtained in S2M.  

 

2.3 3D RRAM as nanokernels for HD computing 

In addition to device physics, the unique physical structure and circuit architecture of NVM have been exploited for 
computing. Here we elaborate with an example that utilizes a vertical 3D RRAM architecture for high-dimensional (HD) 
computing [20]. 

Learning is about data representations and associated operations that form knowledge upon those representations. 
Drawing inspiration from how the brain computes with patterns of neural activities not readily associated with scalar 
numbers, a robust learning framework called HD computing was developed based on high-dimensional vector 
representations (when the dimensionality is in thousands) [12]. Cognitive applications demonstrated using HD 
computing framework range from recognition and visual question answering, to bio-signal processing for human-
machine interface and healthcare (e.g., electromyography or EMG, electroencephalography or EEG) [21]. HD 
computing is built upon rich and subtle mathematical properties of high-dimensional space. The vectors sampled from 
HD space (i.e., HD vectors) are (pseudo)random with independent and identically distributed (i.i.d.) components, where 
information is distributed equally among all the components. As a result, each individual HD vector forms a powerful 
and robust representation that is resilient to errors in the components. 

HD vectors are initialized randomly to represent symbolic information. In an example of language recognition task, 
letters in an alphabet are paired with HD vectors that are naturally near-orthogonal. Learning in HD space does not 
involve weight update or tuning. Instead, the HD vectors corresponding to sampled inputs are piped through a set of 
compute kernels, namely multiply, accumulate, permute (MAP), which preserve, bind, and compose low-level symbolic 
information into more complex and richer representations, in the same form as the inputs (i.e., the outputs are still HD 
vectors of the same dimensionality). This is similar to how low-level features are combined into high-level features in 
deep convolutional neural networks (CNNs). In HD computing, what’s being learned is the underlying structure, 
relationship, or pattern associated with the sampled inputs for the specific task. This is akin to a compression process, 
where the encoded HD vector contains richer information than the sampled inputs. Using a simplified comparison for 
understanding, learning in neural networks produces new weight matrices whereas learning in HD framework produces 
new HD vectors. HD inference can be seen as decoding with inquiry vectors, or equivalently, similarity comparison 
between learned vectors and inquiry vectors.   
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Figure 3. Experimental demonstrations of native multiply, accumulate, permute (MAP) kernels for HD computing within 4-
layer 3D vertical RRAMs.  

 

We approach the memory-intensive HD operations with a vertical 3D architecture of RRAM where memory cells are 
around vertical pillars across multiple layers [22], [23]. Due to the nonvolatile and stochastic nature of programming, 
binary vectors can be produced directly within RRAM cells with inherent randomness required for the initial random 
projection. Afterwards, these binary vectors stay within memories, where MAP kernels are implemented by exploiting 
the circuit-level properties of the vertical 3D architecture. Fig. 3 illustrates the MAP operations on a 4-layer 3D vertical 
RRAM integrated with FinFET select transistors. The multiply operations on binary vectors are equivalent to bit-wise 
XOR. We leverage the voltage dividers formed by the RRAM cells and select transistors underneath to construct non-
volatile XOR/XNOR look-up tables. Details of operation schemes are discussed in [13]. This architecture design results 
in a few initial write operations for creating the XOR look-up tables, while most subsequent operations are read-only, 
without the need of re-programming RRAM. We measured multiply operations for 1012 cycles without errors. For 
accumulate operations, current summing is performed along vertical pillars with each RRAM cell contributing to the 
total current. We measured up to 1011 cycles without disturb errors. Permute operations simply shift bit ‘1’ or ‘0’ in a 
vector, which are realized through bit copy operations within 3D RRAM. In summary, algorithm-level characteristics 
(e.g., error resilience in HD representations) and technology-level characteristics (stochasticity and 3D connectivity of 
RRAM) are exploited together for an RRAM-centric HD computing system design.  

3. HETEROGENEOUS LEARNING MACHINES 
We have been witnessing the growing need for providing hardware support in the cloud and at the edge for increasingly 
complex learning and inference workloads, while accommodating the diverse compute kernels found in them [24]. 
Combined with the opportunities of natural and native “nanokernel” realizations with emerging device technologies, this 
leads us to co-designing emerging device technologies and computing architectures to create scalable, efficient, and 
secure heterogeneous learning machines (Fig. 4). Here, integration of technologies is crucial. In the case of energy-
efficient neural network acceleration at the edge, NVM technologies such as MRAM and 3D RRAM, integrated fully on 
chip with CMOS-based accelerators, address the inefficiencies of off-chip DRAM [25]. Technology-system design   
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Figure 4. Illustration of a heterogeneous learning system with on-device learning, inference, and long-term memory 
associations. Examples of modules are based on separate studies that are relevant to these key features.   

 

space explorations of NVM-embedded accelerators are conducted using important vision workloads such as ResNet, 
MobileNet and Faster-RCNN. We find that high-density on-chip NVM (e.g., 3D RRAM) enables more aggressive pareto 
optimizations and provides simultaneous energy and area benefits for accelerators, which is not achievable with today’s 
embedded DRAM (eDRAM) or large SRAM. In the case of running MobileNet, compared to accelerators with off-chip 
DRAM, integrating 3D RRAM on chip provides 2.22´ overall energy benefits with 4´ less on-chip SRAM buffers, 
resulting in 33% accelerator area savings at the same time. 

As discussed earlier, HD computing serves as a simple yet powerful learning template with sequences and signals. 
Through technology integration, benefits and characteristics of individual device components can be combined and 
utilized. For example, an HD nanosystem was built with monolithic 3D integration of RRAM and carbon nanotube 
transistors (CNTs) [26]. Running language recognition on the HD nanosystem, a 7.6´ energy benefit is projected over a 
silicon CMOS implementation, as a result of energy efficiency of RRAMs/CNTs, and new designs that exploit device-
level properties (e.g., CNT’s variability, RRAM’s analog programmability).  

Finally, for a learning machine that targets continuous, lifelong learning, an energy- and area-efficient associative 
memory (AM) module is crucial for long-term knowledge storage and fast retrieval, which also helps to overcome 
potential catastrophic forgetting issues in a learning system. A hardware AM realization that leverages the integration of 
HfOx RRAM and MoS2 FETs has been reported [27]. In this work, low leakage and robust current control lead to high 
search capacity and energy efficiency. Owing to low temperature fabrication, the combination of RRAM and MoS2 can 
be further integrated into a high-rise monolithic 3D system, approaching a closer emulation of human memories in terms 
of ultra-dense connectivity for learning and memory functionalities. 

4. CONCLUSIONS 
In this paper, we present a device-to-algorithm analysis of neuro-inspired computing with emerging non-volatile 
memories, specifically using RRAM as an example. Our methodology is built upon a combination of experimental 
characterization, cross-stack modeling, and system integration. There is plenty of room at the bottom, for exploiting 
inherent device characteristics as well technology integration opportunities. There is also plenty of room at the top, for 
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exploring diverse models and learning algorithms. Innovations in computing architectures and efficient hardware 
realizations in the middle will be necessary to build a heterogeneous learning machine for future computing workloads. 
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