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Introduction Imitation Learning for Human Pose Prediction Experiment Results

We use a combination of two different imitation learning approaches to train our AResuIts on the Human 3.6M Dataset: with the Mean Angle Error (MAE) performance metric
pose prediction agent under this RL formulation:
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The Human Pose Prediction Problem: predict a sequence of future human poses given a

sequence of human poses observed in the past. | | | o | |
ABehaworaI Cloning (BC): trains the prediction agent for the optimal policy:

Challenges: previous methods for this prediction problem were mainly based on purely g+ = argmin Egg_ [l (779(8), WE(S))}
supervised training of various RNN architectures, but they face two severe challenges: A mo €11
AGenerallze poorly over unseen domains of the human motion space. WGAIL-div: alternatively continues training the prediction agent and a critic to

AHard to keep a balance between long-term and short-term prediction accuracies. learn an optimal policy using the objective function:
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Our solution: we propose a new reinforcement learning formulation for the problem of
Policy Gradient

human pose prediction, and use a combination of two imitation learning algorithms to train N
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our pose prediction agent under this RL formulation: one is based on behavioral cloning
and the other one is based on generative adversarial imitation learning. [
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RL Formulation of Human Pose Prediction ]

Expert Demonstration
(ground truth)

Overview: we define a Markov Decision Process to model the generation of pose
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prediction sequences. We divide the whole prediction sequence evenly into K steps, AAbIation Study:

where each step contains a window of m pose vectors to predict. ENN Ercodor stat(zgzn;bfgggg EAN Docodor
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S; = %1, %2, -, $t+(?:—1)xm} architecture for our prediction v ) o (] CeJ o (e ) e
A Action - the action of the MDP is defined as the next length-m window of pose vectors: agent policy generator network. It /‘j\ @ ﬁ\ (% (% F@
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In WGAIL-div training:
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