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ABSTRACT
Computer science education has promised open access around
the world, but access is largely determined by what human lan-
guage you speak. As younger students learn computer science
it is less appropriate to assume that they should learn English
beforehand. To that end, we present CodeInternational, the
first tool to translate code between human languages. To de-
velop a theory of non-English code, and inform our translation
decisions, we conduct a study of public code repositories on
GitHub. The study is to the best of our knowledge the first on
human-language in code and covers 2.9 million Java reposito-
ries. To demonstrate CodeInternational’s educational utility,
we build an interactive version of the popular English-language
Karel reader and translate it into 100 spoken languages. Our
translations have already been used in classrooms around the
world, and represent a first step in an important open CS-
education problem.
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1. INTRODUCTION
Reading and writing comments, method names and variable
names, are crucial parts of software engineering. As such, pro-
grams have both a human language, the language of identifiers
and comments, in addition to the source-code language (eg
Java or Python). This has meant that non-English speakers are
often second-class citizens when learning to program [21]. In
this paper we present a tool for translating a program from
one human language to another, to assist in code education,
which could reduce the barrier to computer science education
for non-English speakers.

The main contributions presented in this paper are:

1. Analysis of 1.1M non-English code projects on GitHub
(Sec. 2).
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2. CodeInternational1: A tool which can translate code be-
tween human languages, powered by Google Translate
(Sec. 3).

3. Validation of CodeInternational by evaluating the trans-
lation of 1,000 randomly chosen projects from GitHub
(Sec. 5).

4. Use of CodeInternational to automatically translate the pop-
ular Karel textbook into 100+ languages. We further extend
the textbook to parse and run KarelJava code in any lan-
guage; we report adoption by classrooms around the world
(Sec. 4).

Our human-language code translator was inspired by a desire
to make programming more accessible [6]. An accurate and
useful translator would enable faster localization of instruction
materials and it would allow learners (as well as practitioners)
to translate code that they are working with.

As programming becomes more of a requisite common knowl-
edge skill, we expect coding education to become open-access
to everyone. One barrier to this goal is human language. En-
glish is currently the modal language of programming instruc-
tion perhaps given that the keywords of most of the popular
languages, Java, JavaScript etc, are in English (even including
Python and Lua, invented in the Netherlands and Brasil respec-
tively). However, a majority of the world, estimated in 2008
at 80%, cannot “use” English for communication and substan-
tially more do not speak English as their L1 language (the
technical term for one’s arterial language, aka, mother tongue)
[11]. Should the more than 6 billion non-English speakers
learn to program in their native language or in English? This
question is debated, which we address in the discussion.

We take the position that whether or not code instruction is in
English, if students do not speak English as their L1 language,
their code education would benefit from the ability to translate
Code between their preferred language and English.

1.1 Related Work
To the best of our knowledge, automatic translation of code
between human languages did not appear in literature, making
us hypothesize: it is either difficult, or had remained ignored.
Nonetheless, we summarize related work, motivating our con-
tribution.

1https://compedu.stanford.edu/codeinternational.html
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Translation of Text automatic translation of natural language
has recently achieved high accuracy and is used in highly
sensitive contexts [26, 19, 14]. At the time of writing this arti-
cle, Google Translate uses Neural Machine Translation [2] to
translate pairwise between languages and has become incredi-
bly accurate, at least for languages common on the web [35].
Further research has been done on transliterating text [24, 1].
However, current state-of-the-art methods for text translation
fail at translating code. Directly running a translation algo-
rithm on code would fail to distinguish between code syntax
and identifiers, would not recognize terms embedded in identi-
fiers e.g. with camel case getElementAt, and could produce
code with one identifier name having different translations on
separate lines. As such, current automatic text translation, if
ran directly on code, would produce malfunctional code.

Code Instruction in Non-English In 2017, Dasgupta and Hill
published seminal work outlining the importance of learning
to code in one’s own language. They conclude that “novice
users who code with their programming language keywords
and environment localized into their home countries’ primary
language demonstrate new programming concepts at a faster
rate than users from the same countries whose interface is in
English” [12]. Since then, there has been a large set of pa-
pers expanding on the barriers for non-native English speakers.
Guo et al survey over 800 non-English students learning who
report on the many challenges that come with not understand-
ing English while coding. [20] reinforced by [13, 23]. This
has led to preliminary work into translating compiler errors
[29] and advocation for language-free block programming [3].
However, while language-free programming is a great step
forward for younger students, it doesn’t address the needs
of CS1 students who program in common programming lan-
guages like Python or Java. While all of this work motivates
our contribution, none has attempted an automatic solution
to the problem, making crowd-translation a viable alternative
[10].

Mining Github To understand the patterns of code that stu-
dents and practitioners use, we analyze public repositories on
GitHub. Other researchers also analyzed GitHub, sometimes
via the dataset and tools provided by [18], including work
on social diversity of teams [34] and affiliation influence on
code popularity [5]. This has led to a set of best practices
for navigating the promises and perils of mining GitHub [22].
A growing number of students are using GitHub in software
engineering courses [16] which makes it a valuable resource
for understanding code of the general population, including
students.

Code Conversion There is a rich literature of work to trans-
late code between programming languages, such as C or C++
to Java [32, 33], or even from English to code [25]. However,
the emphasis is often on maintaining efficiency, not on making
code readable for students. We focus on translating the human
language of code. Byckling et al [7] analyze naming conven-
tions of identifiers based on their function (fixed, iterators,
transformers, etc), and correlate the naming consistency with
the students’ learning experience. This motivates aspects of
our translation. See Section 3.1.

2. HUMAN LANGUAGES ON GITHUB
How do non-English speakers program in a language like
Java, where the keywords and core libraries are written in
English? We employ a data driven approach to tell the story
of non-English code and inform the decisions we made in our
auto-translator. We analyzed Java repositories on GitHub, the
largest host of source code in the world, where 1.1 million
unique users host 2.9 million public Java projects. We down-
loaded and analyzed the human language used for writing
comments (in Java code), naming identifiers (method and vari-
able names), and writing git commit messages. We focused
on Java code as it is both one of the most popular source-code
languages on GitHub and in the classroom. A selection of
results from this study are that:

1. Non-English code is a large-scale phenomena.

2. Transliteration is common in identifiers for all languages.

3. Languages clusters into three distinct groups based on how
speakers use identifiers/comments/transliteration.

4. Non-latin script users write comments in their L1 script but
write identifiers in English.

5. Right-to-left (RTL) language scripts, such as Arabic, have
no observed prevalence on GitHub identifiers, implying that
existing coders who speak RTL languages have substantial
barriers in using their native script in code.

This is, to the best of our knowledge, the first analysis of the
human languages on GitHub. See Figure 1 for an overview.

Users on GitHub do not state their L1 (arterial) language.
While a subset of users optionally state their country, this is
neither common nor reliable. To estimate a user’s preferred
language, we use the language that they use in the git commit
message. To find subsets of users who speak a given language,
we search for all users who write git commits in that lan-
guage. We observe that, especially in personal projects, users
write commit messages in their L1 language at a higher rate
than comments or identifiers. To identify languages we use
Google Language Detect which is highly accurate (more-so
for common internet languages) and can identify languages
with non-Roman Alphabet text which has been transliterated,
for example it can detect both 算法 the Chinese characters
for “algorithm” and “suanfa”, the Mandarin transliteration, as
Chinese2.

Of the 1.1 million GitHub users, 12.7% wrote commit mes-
sages in non-English languages. Of those,Chinese was the
most common (28.6% of non-English committers), followed
by Spanish, Portuguese, French, and Japanese. More than
100 languages were detected in commit messages on public
Java projects. Figure 1 contains breakdowns and the appendix
contains the full list. This does not match the distribution
of non-English in web content (55% English) with both ma-
jor and minor languages underrepresented. For example the
2Google Translate provides a confidence for its language detection.
We only consider positive detections with confidence > 0.5. We do not
run language detection on ASCII strings less than 2 characters long.
Identifiers are turned into phrases using case parsing as described in
Section 3. All “positive” results are manually verified.



Figure 1: (a): Non-Eng languages for Java GitHub commits
and their proportions (showing top four). (b) Java non-Eng
example methods. (c) Use of local language in identifiers
and comments conditioned on users speaking different lan-
guages. (d) Proportion of non-English projects with script vs
transliteration

prevalence of Spanish on GitHub (2.1%) is about half of web-
content (5.1% [31]) and further trails native speakers (7.8% of
the worlds population [8]).

Github does not present a random sample of programs written
in the world, and we consider the relevant confounds this in-
troduces. To that point, we believe the under-representation of
certain languages is a form of Survivorship Bias. It suggests
that users have found barriers to entry towards joining the
GitHub community. Those barriers could derive from the En-
glish dominance of programming languages, code instruction,
or the github interface.

2.1 Non-English in Java
The use of non-English in identifiers and comments is large
for the population of users who we define as non-English
“speakers” (those who use non-English in their git-commit
messages). 90% of users who use a non-English language in
the commit messages also use that language in their comments
or as identifiers. We note that, in Java, identifiers can be
written in any script.

Surprisingly, the patterns of non-English usage differs sub-
stantially when we condition on users “speaking” different
languages. For example, among the detected Spanish speak-
ers, 87.2% percent of users write identifiers in Spanish. On
the other hand, among Chinese users, only 23.3% of users
write code with Chinese identifiers (either in Chinese script or
ASCII). Figure 1c shows coding patterns conditioned on users
speaking different languages. For each language we plot the
percent of projects with identifiers in the language, against the
percent of projects with comments in the language. Languages
naturally cluster into three categories: (1) Major-Euro-Latin:
languages with high use of non-English identifier including
Spanish, German and French (2) Non-Latin: languages in
non-latin scripts including Russian and Chinese which have
low use of non-English identifiers and (3) English-Comment:
Programmers write their comments in English (> 70% of
projects only have English comments). This group contains
many smaller and non-European languages like Dutch and
Bahasa Indonesia. ∼50% of projects in this group still uses
their L1 language in identifiers.

The use of identifiers in local language (as opposed to English)
is very clearly split on whether languages use the Latin alpha-
bet. On average 82% of projects from users speak languages
with different scripts like Chinese, Korean, or Russian have
only English identifiers, compared to 12% of projects from
Latin alphabet users (p < 0.0001). The percentage of projects
with only English comments is roughly correlated to the En-
glish Proficiency Index [17] of the corresponding countries
(ρ = 0.42 p < 0.01).

2.2 Transliteration on GitHub
Transliteration is the process of transferring a word from the
alphabet of one language to another (eg -> na-
maste duniya). We observed that most Java code with human
languages that have non-ASCII scripts like Kanji, Devanagari,
or even Spanish accents like ñ, will have been “transliterated”
into ASCII.



The Java Language Specification states that, “letters and digits
(in identifiers) may be drawn from the entire Unicode character
set, which supports most writing scripts”. This specification
is not widely known, and even if Java supports non-ASCII ,
there can be complexities of file encodings across different
operating systems.

We find that regardless of L1 language most users transliter-
ate identifiers: among L1 Chinese speakers, 93% of projects
have identifiers which are only written in ASCII. Similarly in
Spanish 88% of projects have only ASCII identifiers. As a
concrete example, in GitHub Java code "numero" is 3.8x more
common than "número". Among comments languages differ
greatly: 99% of Chinese projects have non ASCII comments
compared to only 53% of Spanish. As an example, a comment
preceeding a method specifies in script that it is calculating
the Fibonacci sequence, however, the method name (an iden-
tifier) is transliterated “//斐波那契” however the code uses
a transliteration of the phonemes in the script “public int fei-
bonaqie(int n)”. This is a common pattern: Within comments,
计数 chinese for count), is 4.0x more common than jishu,
the transliteration. However in identifiers jishu is 4.8x more
common. The difference in transliteration patterns between
Chinese and Spanish suggests a different intent: in Spanish
transliteration is used to avoid file encoding errors, in Chinese
it is to prevent a mix of scripts among identifiers.

2.3 Right-to-Left Languages on GitHub
One question that we did not have a solid pre-conception for
was: How do Java users who speak languages with right-to-
left (RTL) scripts like Arabic, Urdu or Hebrew, write code?

18,961 users on GitHub report their country as one where a
RTL script (Arabic or Hebrew) is the primary script. Those
users have 8,060 public Java repositories of which only 50
repositories (0.6%) have Arabic or Hebrew script (excluding
string literals). Of those repositories, only a single Java file
had a single identifier written in Arabic and none in Hebrew.
It is extremely rare for methods or identifiers to be a mix of
RTL and LTR.

3. CODE INTERNATIONAL
The GitHub analysis is coherent with the contemporary narra-
tive: there are perhaps hundreds of millions of learners who
will not speak English as their L1 language. For those learners,
teachers need a tool to translate code so they can give exam-
ples with less congitive load. Similarly students need a tool to
understand the non-English code they encounter. Finally, to a
growing extent, English speakers will begin to interact with
code written in other languages.

To address this need, we designed a tool to help program-
mers, regardless of their spoken language, access code in
many languages. The tool, which we call CodeInternational,
takes-in code written in either Java or Python with comments
and identifiers written in a human-language, and translates
the comments and identifiers into another human-language.
It supports the growing set of human languages covered by
Google Translate and is adaptive to the particular context of
source-code. To translate code, it first parses the code and
extracts four types of tokens:

Figure 2: High-level of how CodeInternational work

• Comments: inline or multi-line comments. Their purpose
is for the programmer to communicate to programmers (in-
cluding herself) on the purpose of code sections.

• Immutable: consisting of language keywords (while,
void, etc), and identifiers imported from libraries that are
external to the code being translated (e.g. FileReader of
java.io). By default this group is not translated.

• Target identifiers: including variable and function names
that are defined in the code base undergoing translation.

• String literals: In some cases a user may want String literals
to be translated, other times they should be unchanged.

Our translation algorithm is as follows. We (1) collect all of
the target identifiers defined in the codebase and (2) translate
them (enforcing that if two identifiers have the same name,
they are given the same translation). Once the identifiers are
translated we (3) translate the comments preserving structure
and references to identifiers. (4) Finally string literals are op-
tionally translated. See Figure 2 for a highlevel depiction and
Figure 3 for a concrete example. Each of these steps has sur-
prising challenges. In this section we cover the corresponding
solutions we developed. The mapping of identifier translations
that the tool decides on is preserved to assist any external
source which needs to refer to the newly translated identifiers
(such as text in a text-book or code in a related project).

CodeInternational is implemented in Python. Tokenization is
performed using a modified version of "Javalang" (for Java)
and the "Parser" library (for Python). Supporting other pro-
gramming languages requires a small amount of extra work.

3.1 Translating Identifiers
In order to properly translate identifiers, we consider the fol-
lowing:

Identifier segmentation: Translating an identifier using
a tool like Google Translate does not work by default
as identifiers are often composed of unsegmented words.
For example: getFavoriteNumber is readable to a human
as "get favorite number" but is not parsable by an on-
line translator. We segment identifiers using naming con-
ventions (e.g. camelCaseVariable, PascalCaseClass,
UPPERCASE_CONSTANT). We thus segment identifiers into
phrases which we feed into an automatic translator. We then
recombine the translated phrase using the original casing con-
vention. For example, to translate the method name identifier
“turnAround” into Spanish: “turnAround” is segmented into
“turn around”, which is translated into “media vuelta” that is



import acm.program.*;
/**
* Program: Moon Weight
* ---------------------
* Calculates a user’s weight on the moon based on their
* earth weight. */
public class MoonWeight {

private static final int FRACTION = 0.165;
public void run() {

// Get the user’s weight on earth
double earthWeight = readDouble("What’s your weight? ");
// Calculate the users moon weight
double moonWeight = earthWeight * FRACTION;
// Output the result using concatenation
println("On the moon you weigh: " + moonWeight);

}
public static void run(String[] args) {

new MoonWeight().run();
}

}

ENGLISH CHINESE (SIMPLIFIED)

import acm.program.*;
/**
* 程序：月亮重量
* ---------------------
* 根据地球重量计算用户在月球上的重量.
*/
public class YueliangZhongliang {

private static final int FENSHU = 0.165;
public void zhixing() {

// 获取用户在地球上的重量
double diqiuZhongliang = readDouble("你的体重是多少? ");
// 计算用户的月亮重量
double yueliangZhongliang = diqiuZhongliang * FENSHU;
// 使用连接输出结果
println("你在月球上称重 : " + yueliangZhongliang);

}
public static void run(String[] args) {

new YueliangZhongliang().zhixing();
}

}

Translation defaults:
Don’t translate imports,
Translate all comments,

Transliterate all identifiers,
Translate all string literals

Figure 3: An example of using CodeInternational to translate a simple Java program from English to Chinese. Mandarin speakers
will notice that when the meaning is misrepresented in English (for Calculate the users moon weight), then the translation could
fail to capture user’s intended meaning (translation says calculate moon weight).

then formatted into the original camelCase, “mediaVuelta”.
Advances in artificial intelligence for word segmentation could
enable future versions of this tool to break up words, without
a given case-segmentation (eg "turnaround").

Verb prior: The correct translation for a phrase can be am-
biguous, especially without context. As an example, the
method “move” translated into Spanish could be translated
into a noun (“movimiento”, movement) or a verb (“moverse”).
For method identifiers, there is an implicit context that an
action is being performed. We incorporate this context by
placing a prior on the first word being a verb. Thus, for ex-
ample, when we translate “move()” into Spanish we chose
“moverse()” instead of “movimiento()”, the noun movement,
as Google suggests.

In addition to knowing the translations of methods should
start with verbs, we also have a select number of reasonable
tenses for the verb: infinitive (eg “toMove”), third person
present (eg “moves” as in “he moves”) and imperative (eg
“move”). In most languages, including English, we translate
verbs with a prior that they be the imperative tense. In English
you would expect a method to be “getObject()” the imperative.
However some languages, especially Romance languages, use
the infinitive of the verb: as an example, Spanish “obtener”
the infinitive of “obtain” is 200x more common on GitHub
then “obtenga” the imperative.

Translating short identifiers: Short variable names that are
used for mathematical symbols or as iterators should not be
translated. This is especially important to pay attention to for
the canonical for loop identifier “i”. For example translating
the code “for(int i = 0; i < 10; i++)” into Spanish should not
produce “for(int yo = 0; yo < 10; yo++)” even though “yo” is
the translation of the pronoun “I”. We only translate identifiers
which are at least two characters long. This exception has its

own edge-case: CJK (Chinese, Japanese Korean) identifiers
can be non-mathematical names even if only a character long.

3.2 Translating comments
Once we have finished translating identifiers, we translate the
comments in a program. Translating comments has two com-
plexities: (1) we would like to maintain the comment structure,
eg if it is a block javadoc comment, we would like to reserve
the column of "*"s on the left margin of the comment and (2)
we want references to identifiers to be translated exactly as
they were in the code.

To translate a comment we classify the structure (eg JavaDoc,
BlockComment, or PythonDocString). We then strip the text,
translate it, and reformat it back into the same structure. For
multi-line comments, we are conscious not to increase the
maximum length of a line, taking into account the wider width
of CJK characters.

3.3 Translating Right-to-Left languages
Arabic, Hebrew, Farsi, and Urdu are popular right-to-left
(RTL) natural languages. When translating code to RTL lan-
guages, comment can be translated (mixing RTL within the
left-to-right syntax) and optionally transliterated (keeping left-
to-right flow). Some of the difficulty in RTL transliteration
is in distinguishing between short- and long-vowels. Further,
these languages contains consonants that cannot be described
using Latin alphabets, which are generally represented with
numbers in the transliteration culture – e.g. 7 for h , which is
closest to Latin alphabet “h” e.g. in “Ahmad”.

When translating non-Latin scripts which are LTR, we give
the user the option to transliterate identifiers and separately,
to transliterate comments or not. Transliteration is currently
supported in Arabic, Chinese, Hebrew, Japanese, Korean, and
Russian.



3.4 Prior and posterior translations
Translations of code need to be coherent with respect to other
translations of written text (or other files) that refers to the
code. To that end our translator takes-in and uses a preset
identifier translation map, and returns the translations it made.
This system enables having humans override translations, for
translating textbooks with text that references embedded code
and more.

4. TRANSLATING GITHUB
How good is a translation of source-code from one human
language to another? Evaluating quality of a translation is
hard without a large collection of native speakers and since we
are powered by Google, evaluation can devolve into evaluating
how accurate Google Translation is. Such an evaluation is a
moving target: Google Translation is perennially improving.

To evaluate out translator, we randomly selected 1,000 (1k)
single file projects from public GitHub Java and translated
them into the languages: Chinese, Spanish and Arabic. We
measure (1) how often the translated code still compiles and
(2) what percent of identifiers that we attempt to translate are
translatable.

Of the 1k projects, 100% maintained their ability to be com-
piled, regardless of whether we translated or transliterated the
comments or identifiers. From the 1k projects, 91% of the
identifiers were able to be translated. The nine percent that
were not able to be translated were mainly abbreviations (such
as users who named a variable frac instead of fraction or pct
instead of percent). This presents an opportunity for future
work. Overall the results paint the picture of a functioning tool
which is ready for use.

5. INTERNATIONAL KAREL
Our motivation for developing an automatic human-language
code translation tool was to support education for non-English
speakers. To that end, we used CodeInternational to translate
a web-version of the popular Karel the Robot learns Java
reader by Eric Robers [30] a textbook for Karel the Robot, a
grid world robot invented by Richard Pattis [27] to help CS1
students learn to program. Karel has been the inspiration for
assignments on platforms such as Code.org and CodeHS and
is a staple of the first weeks of CS1 [4].

We translated a Karel reader in Python and Java to 100 lan-
guages. The translated web-readers are free to use and are
hosted online3. At time of publication, the reader has been
public (without advertising) and has already been used by over
3,000 people from 50 countries. With permission from Eric
Roberts, we first made an eBook version of his Karel reader
and simplified the English used [15]. The reader merges text
and code in a seem-less fashion. Then, for each language: we
(a) translated code on each chapter using CodeInternational
and (b) translated the reader text such that any reference to
identifiers in the example code would use the same translations.

3Python: https://compedu.stanford.edu/karel-reader/docs/
python/en/intro.html and Java: https://compedu.stanford.edu/
karel-reader/docs/java/en/intro.html

In order to have text which is consistent with the correspond-
ing code we heavily rely on the “Posterior identifier translation
map” from CodeInternational’s translations.

5.1 Line-highlighting in any language
To make the Karel reader a fantastic learning experience, we
made it so that each code-snippet is runnable. When run, the
program executes the code and highlights the corresponding
lines as the program is run, regardless of the complexity of the
program’s control flow. In order to line-highlight, we parse
and compile the Python-Karel or Java-Karel programs using
an engine written in JavaScript. Our line-highlighter builds
upon the compiler described in Informatics Education using
Nothing but a Browser [28].

Our Karel reader can run and line-highlight in any human-
language that we translate into. For example our compiler can
execute and line-highlight the command "moverse()" if the
code is written in Spanish, "移动()" if the program is written
in Chinese, "emshi()" if the program is written in Arabic, or
"move()" if the Karel program is written in English. We chose
to only transliterate commands for RTL scripts. Figure 4
shows three screenshots from the international Karel reader,
though of course a PDF is unable to capture the ability of the
reader to line-highlight code.

5.2 Usage in Classrooms
We know of three classes where the internationalized Karel
eReader has been used. These classes are around the world in:
Istanbul, Bogota and Prague. The eReader has been visited by
>1k users in 3 months. Both the English and the non-English
version of the website have a high average session duration,
respectively, 9.7 and 10.1 minutes. Moreover, the tool has
been used to translate the CSBridge4 curriculum website and
assignments; HTML that mixes code and description (used by
400 students / year).

6. DISCUSSION
Whether English should be used as the sole language of in-
struction has been debated. Case for code instruction in
English: In order to program professionally, one will have
to interact with keywords and libraries that are written for
English speakers. English is the language of code, and it
is practically required from anyone who wants to interact
globally: correspond via email, read stack-overflow, watch
educational videos, travel, etc. For classrooms where English
is the main form of instruction, but students are not yet fluent,
CodeInternational can be used to assist learning English and
learning to program. Students could improve their English
through coding, e.g. by placing English code against their L1
code, side-by-side. Case for instruction on transl(iter)ated
code: On the other hand, people argue that it is beneficial for
students to have much of their coding instruction in their L1
language, and doing so benefits access to CS. The primary
reason for this is intuitive: the cognitive-load of learning to
program is already high. Moreover, if students learn coding
using their L1 language and enjoy it, they become intrinsi-
cally motivated to learn English, knowing that English would
4https://www.csbridge.org/

https://compedu.stanford.edu/karel-reader/docs/python/en/intro.html
https://compedu.stanford.edu/karel-reader/docs/python/en/intro.html
https://compedu.stanford.edu/karel-reader/docs/java/en/intro.html
https://compedu.stanford.edu/karel-reader/docs/java/en/intro.html
https://www.csbridge.org/


All code and chapter
text is translated into 
100+ languages (such 
that text references to 
code are consistent)
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Figure 4: Three screenshots from the Karel eReader, translated both into 100+ languages for Java and Python: Left: intro page in
Hindi; Middle: code translated into Arabic with transliterated identifiers; Right: reference in Spanish.

broaden their access to learning material (learning earning a
language, with no short-term motives, could be dull especially
for young students). In this context CodeInternational can help
students who are interacting with libraries in English. Perhaps
more importantly, our tool can help teachers rapidly develop
localized content that builds off English content. The alterna-
tive: manual-translation of API, code-examples and website
text, can be a huge barrier to translating material. Finally, our
tool builds off GoogleTranslate, which is high accurate, but
charges $1 per 50,000 characters. A free version would have a
huge impact on utility.

We call for future work from tool experts, for example, to
extend popular code-editors (e.g. vim, XCode, Visual Stu-
dio, Eclipse) to integrate with our APIs. This could allow
back-and-forth translation and side-by-side display. Option-
ally, integrating with automatic text-to-speech (e.g. [9]) could
allow students learn English pronunciation of code compo-
nents. Moreover, one remaining feature in automatic human-
translation of code is identifier consistency: if two identifiers
have specific terms in common, eg getHeight, setHeight, we
would like the translation of “height” to be consistent. While
they are often consistent in our work, it is not enforced. Full
consistency is hard, but not impossible, with modern neural
machine translation.

7. CONCLUSION
We analyze millions of non-English Java programs on GitHub
to inform our understanding of patterns of human-language
and make some surprising observations. We build CodeIn-
ternational, an open-source tool which can translate Java or
Python code between human languages. We evaluate our tool
and use it to make an internationalized Karel eReader (with
runnable code) in 100+ languages. Our tool is already be-
ing used in classrooms around the world, a trend we hope to
continue supporting.
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