THE TRIANGULATION CONJECTURE

CIPRIAN MANOLESCU

In topology, a basic building block for spaces is the n-simplex. A 0-simplex
is a point, a 1-simplex is a closed interval, a 2-simplex is a triangle, and a 3-
simplex is a tetrahedron. In general, an n-simplex is the convex hull of n+1
vertices in n-dimensional space. One constructs more complicated spaces by
gluing together several simplices along their faces, and a space constructed
in this fashion is called a simplicial complex. For example, the surface of a
cube can be built out of twelve triangles—two for each face. Topologically,
the cube is indistinguishable from a sphere (and also from a tetrahedron,
or from an octahedron), since all these surfaces can be deformed into each
other without tearing them apart; we say that they are homeomorphic.

Apart from simplicial complexes, manifolds form another fundamental
class of spaces studied in topology. An n-dimensional manifold is a space
that looks locally like the n-dimensional Euclidean space. Manifolds are
ubiquitous in many parts of mathematics; for instance, they can appear as
spaces of solutions to systems of polynomial equations, or to systems of dif-
ferential equations. However, knowing that a space is a manifold does not
tell us much about its global structure. To study the properties of a man-
ifold, it is helpful to triangulate it, that is, to construct a homeomorphism
to a simplicial complex. For example, the surface of a sphere is a two-
dimensional manifold, and it admits a triangulation with twelve triangles,
in the form of the cube. (Of course, it also admits many other triangula-
tions.) A triangulation yields a combinatorial description for the manifold.
Furthermore, if we have two manifolds and we try to tell them apart, the
first thing to do is to check if their topological invariants (such as their ho-
mology groups) are the same. If we are able to triangulate the manifolds,
it is straightforward to compute their homology groups in terms of the two
triangulations.

The triangulation conjecture—first formulated by Kneser in 1924—claimed
that every manifold was triangulable. The conjecture turned out to be false
in general, although it is true for manifolds of dimension up to 3, and also for
all differentiable manifolds (those that are “smoothly” like Euclidean space,
so that one can do calculus on them). In Kneser’s time, it was already
known that every two-dimensional surface is triangulable, due to the work
of Radé. The case of differentiable manifolds was settled in the 1940’s by
Cairns and Whitehead. In 1952, Moise showed that any three-dimensional
manifold is differentiable, and thus triangulable.
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Much of the later progress towards settling the conjecture was done by
people associated with UCLA, at various points in time. In 1968, Rob Kirby,
then a professor at UCLA, discovered the so-called torus trick, a technique
that enabled him to find (in joint work with Laurence Siebenmann) the first
example of a manifold that does not admit a piecewise linear structure. A
piecewise linear structure, also called a combinatorial triangulation, is the
kind of triangulation in which the manifold structure is evident—technically,
a triangulation in which the link of every vertex is a sphere. Most of the
triangulations of a manifold that one can think of are of this type. The
simplest way to construct a non-combinatorial triangulation is to first trian-
gulate a non-trivial homology sphere (a manifold with the same homology
groups as the sphere, but not a sphere), and then to take its double suspen-
sion. One then needs to appeal to the Double Suspension Theorem, proved
in the 1970’s by Bob Edwards (also at UCLA) and J. W. Cannon, to see
that the resulting space is a manifold (in fact, a sphere).

The work of Kirby and Siebenmann showed that there exist manifolds
without piecewise linear structures in any dimension greater than 4. Di-
mension four is very special in topology, and new techniques were needed
in that case. In the early 1980’s, Michael Freedman revolutionized four-
dimensional topology, and in particular gave an example of a four-manifold
(the Eg manifold) that has no differentiable or piecewise linear structures.

The first counterexamples to the triangulation conjecture were also found
in dimension four: In the mid 1980’s, Andrew Casson introduced a new
invariant of homology 3-spheres. This can be used it to show that, for
example, Freedman’s Eg manifold is not triangulable.

This left open the question of triangulability for manifolds in dimensions
greater than 4. In the 1970’s, this problem had been shown to be equivalent
to a different problem, about 3-manifolds and homology cobordism. The
equivalence was discovered by Ron Stern (a UCLA Ph.D.) together with
his collaborator David Galewski, and independently by Takao Matumoto.
In technical terms, they showed that all manifolds of dimension > 4 are
triangulable if and only if the 3-dimensional homology cobordism group
admits an element of order two and Rokhlin invariant one. Furthermore,
Galewski and Stern gave an explicit example of a 5-dimensional manifold
that is not triangulable, if the answer to the question above were negative.
By taking products with tori, one would also obtain counterexamples in all
higher dimensions.

Indeed, the answer to the question about homology cobordism turned out
to be negative. The proof involves techniques from gauge theory, namely,
a new version of Floer homology called Pin(2)-equivariant Seiberg-Witten
Floer homology. Gauge theory is the study of certain elliptic partial differ-
ential equations that first appeared in physics—they govern the weak and
strong interactions between particles. In the 1980’s, Donaldson pioneered
the use of gauge theory in low-dimensional topology. Out of gauge theory
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came Floer homology, an invariant associated to three-manifolds that is par-
ticularly useful in studying cobordisms. (A cobordism between two three-
manifolds Y and Y’ is a four-manifold with initial boundary Y and final
boundary Y”.) Floer homology is what Atiyah called a topological quantum
field theory (TQFT). The main property of a TQFT is that a cobordism
from Y to Y’ induces a map between the respective invariants (in this case,
their Floer homologies). This should be contrasted with what happens in
ordinary homology, where we need an actual map (not a cobordism!) be-
tween Y and Y’ to get a map between their homologies. The various kinds of
Floer homologies (instanton, Seiberg-Witten, Heegaard Floer) are the main
tool for studying cobordisms between 3-manifolds, and the answer to the
Galewski-Stern-Matumoto problem is only one of their many applications.



